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Preface

Number theory and algebra play an increasingly significant role in com-
puting and communications, as evidenced by the striking applications of
these subjects to such fields as cryptography and coding theory. My goal
in writing this book was to provide an introduction to number theory and
algebra, with an emphasis on algorithms and applications, that would be
accessible to a broad audience. In particular, I wanted to write a book
that would be accessible to typical graduate students in computer science
who have a some amount of general mathematical experience, but without
presuming too much specific mathematical knowledge.

Prerequisites. The mathematical prerequisites are minimal: no particular
mathematical concepts beyond what is taught in a typical undergraduate
calculus sequence are assumed.

The computer science prerequisites are also quite minimal: it is assumed
that the reader is proficient in programming, and has had some exposure
to the analysis of algorithms, essentially at the level of an undergraduate
course on algorithms and data structures.

Even though it is mathematically quite self contained, the text does pre-
suppose that the reader is comfortable with mathematical formalism and
has some experience in reading and writing mathematical proofs. Read-
ers may have gained such experience in computer science courses such as
algorithms, automata or complexity theory, or some type of “discrete math-
ematics for computer science students” course. They also may have gained
such experience in undergraduate mathematics courses, such as abstract or
linear algebra — these courses overlap with some of the material presented
here, but even if the reader already has had some exposure to this material,
it nevertheless may be convenient to have all of the relevant material easily
accessible in one place, and moreover, the emphasis and perspective here
will no doubt be different than in a typical mathematics course on these
subjects.

Structure of the text. The structure of the book is somewhat unique. All
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iv Preface

of the mathematics required beyond a typical calculus sequence is developed
“from scratch.” Moreover, the book generally alternates between “theory”
and “applications”: one or two chapters on a particular set of purely math-
ematical concepts are followed by one or two chapters on algorithms and
applications — the mathematics provides the theoretical underpinnings for
the applications, while the applications both motivate and illustrate the
mathematics. Of course, this dichotomy between theory and applications
is not perfectly maintained: the chapters that focus mainly on applications
include the development of some of the mathematics that is specialized for
a particular application, and very occasionally, some of the chapters that
focus on mathematics include a discussion of related algorithmic ideas as
well.

In developing the mathematics required to discuss certain applications,
I tried to strike a reasonable balance between, on the one hand, presenting
the absolute minimum required to understand and rigorously analyze the
applications, and on the other hand, presenting a full-blown development of
the relevant mathematics. In striking this balance, I wanted to be reason-
ably economical and concise, while at the same time, I wanted to develop
enough of the theory so as to give a fairly well rounded account, giving the
reader more of a feeling for the mathematical “big picture.”

The mathematical material covered includes the basics of number theory
(including unique factorization, congruences, the distribution of primes,
quadratic reciprocity), abstract algebra (including groups, rings, fields, and
vector spaces), as well as discrete probability theory (which is needed for
the analysis of probabilistic algorithms). The treatment of these topics is
more or less standard, except that the text only deals with commutative
structures (i.e., abelian groups and commutative rings with unity) — this
is all that is really needed for the purposes of this text, and the theory of
these structures is much simpler and more transparent than that of more
general, non-commutative structures.

The choice of topics covered in this book was motivated primarily by
their applicability to computing and communications, especially to the spe-
cific areas of cryptography and coding theory. The book may be useful, for
example, for reference and self study by readers who want to learn about
cryptography. The book could also be used, for example, as a textbook
on a course on computational number theory and algebra, geared towards
computer science students, either upper division undergraduates, or first
year graduate students.

Since this is an introductory textbook, and not an encyclopedic refer-
ence for specialists, some topics simply could not be covered. One such
topic whose exclusion will undoubtedly be lamented by some is the the-
ory of lattices, along with algorithms for and applications of lattice basis
reduction. Another such topic is that of fast algorithms for integer and
polynomial arithmetic — although some of the basic ideas of this topic
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are developed in the exercises, the main body of the text deals only with
classical, quadratic-time algorithms for integer and polynomial arithmetic.
As an introductory text, some topics just had to go; moreover, there are
more advanced texts that cover these topics perfectly well, and these texts
should be readily accessible to students who have mastered the material in
this book.

Using the text. Here are a few tips on using the text.

• When viewing this book with a PDF viewer, one should be able to
“navigate” through it by clicking on theorem, equation, citation, or
page numbers appearing in the text. Web page addresses (i.e., URLs)
are also “clickable.” Also, if the viewer supports it, there should be
a list of “bookmarks” through which one can jump directly to any
chapter or section within the book. Most viewers have some kind of
a “back button” (either explicitly on a control panel, or implicitly as
a special character code) that should prove useful in navigation.

• There are a few sections that are marked with a “♣,” indicating that
the material covered in that section is a bit technical, and is not
needed in the sequel.

• There are many examples in the text — these form an integral part
of the text, and should not be skipped.

• There are a number of exercises in the text that serve to reinforce
— as well as to develop important applications of — the material in
the text. In solving exercises, the reader is free to use any previously
stated results in the text, including those in previous exercises — the
only exception to this rule is that results in §3.5, §5.5, and §18.2 are
not to be considered available outside of the section in which they
appear.

• There is a very brief “Preliminaries” chapter, that fixes a bit of nota-
tion and recalls a few standard facts — this should be skimmed over
by the reader.

• There is an appendix that contains a few useful facts; where such a
fact is used in the text, there is a reference such as “see §A.n,” which
refers to item number n in Appendix A.

Status of the book. This is still a BETA release, but the book is now
essentially in its final form. I would appreciate any feedback, especially
feedback that identifies any errors or serious omissions. Please send your
comments to shoup@cs.nyu.edu.

I am committed to the principle that academic books should be freely
available in digital form. I am currently investigating options for publica-
tion in print form that are consistent with that principle.

mailto:shoup@cs.nyu.edu
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Chapter 0

Preliminaries

We establish here a few notational conventions used throughout the text.

Arithmetic with ∞
We shall sometimes use the symbols “∞” and “−∞” in simple arithmetic
expressions involving real numbers. The interpretation given to such ex-
pressions is the usual, natural one; for example, for all real numbers x,
we have −∞ < x < ∞, x +∞ = ∞, x − ∞ = −∞, ∞ +∞ = ∞, and
(−∞) + (−∞) = −∞. Some such expressions have no sensible interpreta-
tion (e.g., ∞−∞).

Logarithms and exponentials

log x denotes the natural logarithm of x. The logarithm of x to the base b
is denoted logb x.

ex denotes the usual exponential function, where e ≈ 2.71828 is the base
of the natural logarithm. We may also write exp[x] instead of ex.

Sets and relations

We use the symbol ∅ to denote the empty set. For two sets A,B, we use
the notation A ⊆ B to mean that A is a subset of B (with A possibly equal
to B), and the notation A ( B to mean that A is a proper subset of B
(i.e., A ⊆ B but A 6= B); further, A ∪ B denotes the union of A and B,
A ∩ B the intersection of A and B, and A \ B the set of all elements of A
that are not in B.

For sets S1, . . . , Sn, we denote by S1×· · ·×Sn the Cartesian product
of S1, . . . , Sn, that is, the set of all n-tuples (a1, . . . , an), where ai ∈ Si for
i = 1, . . . , n.

We use the notation S×n to denote the cartesian product of n copies
of a set S, and for x ∈ S, x×n denotes the element of S×n consisting of n
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2 Preliminaries

copies of x. (We shall reserve the notation Sn to denote the set of all nth
powers of S, assuming a multiplication operation on S is defined.)

Two sets A and B are disjoint if A ∩B = ∅. A collection {Ci} of sets
is called pairwise disjoint if Ci ∩ Cj = ∅ for all i, j with i 6= j.

A partition of a set S is a pairwise disjoint collection of non-empty
subsets of S whose union is S. In other words, each element of S appears
in exactly one subset.

A binary relation on a set S is a subset R of S × S. Usually, one
writes a ∼ b to mean that (a, b) ∈ R, where ∼ is some appropriate symbol,
and rather than refer to the relation as R, one refers to it as ∼.

A binary relation ∼ on a set S is called an equivalence relation if for
all x, y, z ∈ S, we have

• x ∼ x (reflexive property),

• x ∼ y implies y ∼ x (symmetric property), and

• x ∼ y and y ∼ z implies x ∼ z (transitive property).

If ∼ is an equivalence relation on S, then for x ∈ S one defines the set
[x] := {y ∈ S : x ∼ y}. Such a set [x] is an equivalence class. It follows
from the definition of an equivalence relation that for all x, y ∈ S, we have

• x ∈ [x], and

• either [x] ∩ [y] = ∅ or [x] = [y].

In particular, the collection of all distinct equivalence classes partitions the
set S. For any x ∈ S, the set [x] is called the the equivalence class
containing x, and x is called a representative of [x].

Functions

For any function f from a set A into a set B, if A′ ⊆ A, then f(A′) :=
{f(a) ∈ B : a ∈ A′} is the image of A′ under f , and f(A) is simply refered
to as the image of f ; if B′ ⊆ B, then f−1(B′) := {a ∈ A : f(a) ∈ B′} is
the pre-image of B′ under f .

A function f : A→ B is called one to one or injective if f(a) = f(b)
implies a = b. The function f is called onto or surjective if f(A) = B.
The function f is called bijective if it is both injective and surjective; in
this case, f is called a bijection. If f is bijective, then we may define the
inverse function f−1 : B → A, where for b ∈ B, f−1(b) is defined to be
the unique a ∈ A such that f(a) = b.

If f : A → B and g : B → C are functions, we denote by g ◦ f
their composition, that is, the function that sends a ∈ A to g(f(a)) ∈ C.
Function composition is associative; that is, for functions f : A → B,
g : B → C, and h : C → D, we have (h ◦ g) ◦ f = h ◦ (g ◦ f). Thus, we can
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simply write h ◦ g ◦ f without any ambiguity. More generally, if we have
functions fi : Ai → Ai+1 for i = 1, . . . , n, where n ≥ 2, then we may write
their composition as fn ◦ · · · ◦ f1 without any ambiguity. As a special case
of this, if Ai = A and fi = f for i = 1, . . . , n, then we may write fn ◦ · · · ◦f1

as fn. It is understood that f1 = f , and that f0 is the identity function
on A. If f is a bijection, then so is fn for any non-negative integer n, the
inverse function of fn being (f−1)n, which one may simply write as f−n.

Binary operations

A binary operation ? on a set S is a function from S×S to S, where the
value of the function at (a, b) ∈ S × S is denoted a ? b.

A binary operation ? on S is called associative if for all a, b, c ∈ S, we
have (a?b)?c = a? (b?c). In this case, we can simply write a?b?c without
any ambiguity. More generally, for a1, . . . , an ∈ S, where n ≥ 2, we can
write a1 ? · · · ? an without any ambiguity.

A binary operation ? on S is called commutative if for all a, b ∈ S,
we have a ? b = b ? a. If the binary operation ? is both associative and
commutative, then not only is the expression a1 ? · · ·?an unambiguous, but
its value remains unchanged even if we re-order the ai’s.



Chapter 1

Basic Properties of the Integers

This chapter reviews some of the basic properties of the integers, including
the notions of divisibility and primality, unique factorization into primes,
greatest common divisors, and least common multiples.

1.1 Divisibility and Primality

Consider the integers Z := {. . . ,−2,−1, 0, 1, 2, . . .}. For a, b ∈ Z, we say
that b divides a, or alternatively, that a is divisible by b, if there exists
c ∈ Z such that a = bc. If b divides a, then b is called a divisor of a, and
we write b | a. If b does not divide a, then we write b - a.

We first state some simple facts:

Theorem 1.1. For all a, b, c ∈ Z, we have

(i) a | a, 1 | a, and a | 0;

(ii) 0 | a if and only if a = 0;

(iii) a | b and a | c implies a | (b + c);

(iv) a | b implies a | −b;

(v) a | b and b | c implies a | c.

Proof. These properties can be easily derived from the definition using
elementary facts about the integers. For example, a | a because we can
write a = a · 1; 1 | a because we can write a = 1 · a; a | 0 because we can
write 0 = a · 0. We leave it as an easy exercise for the reader to verify the
remaining properties. 2

Another simple but useful fact is the following:

4



1.1 Divisibility and Primality 5

Theorem 1.2. For all a, b ∈ Z, we have a | b and b | a if and only if
a = ±b.

Proof. Clearly, if a = ±b, then a | b and b | a. So let us assume that
a | b and b | a, and prove that a = ±b. If either of a or b are zero, then
part (ii) of the previous theorem implies that the other is zero. So assume
that neither is zero. Now, b | a implies a = bc for some c ∈ Z. Likewise,
a | b implies b = ad for some d ∈ Z. From this, we obtain b = ad = bcd,
and canceling b from both sides of the equation b = bcd, we obtain 1 = cd.
The only possibility is that either c = d = −1, in which case a = −b, or
c = d = 1, in which case a = b. 2

Any integer n is trivially divisible by ±1 and ±n. We say that an integer
p is prime if p > 1 and the only divisors of p are the trivial divisors ±1
and ±p. Conversely, an integer n is called composite if n > 1 and it is
not prime. So an integer n > 1 is composite if and only if n = ab for some
integers a, b with 1 < a < n and 1 < b < n. The first few primes are

2, 3, 5, 7, 11, 13, 17, . . . .

The number 1 is not considered to be either prime or composite. Also, we
do not consider the negative of a prime (e.g., −2) to be prime (although
one can, and some authors do so).

A basic fact is that any integer can be expressed as a signed product of
primes in an essentially unique way. More precisely:

Theorem 1.3 (Fundamental Theorem of Arithmetic). Every non-
zero integer n can be expressed as

n = ±pe1
1 · · · per

r ,

where the pi are distinct primes and the ei are positive integers. Moreover,
this expression is unique, up to a reordering of the primes.

Note that if n = ±1 in the above theorem, then r = 0, and the product
of zero terms is interpreted (as usual) as 1.

To prove this theorem, we may clearly assume that n is positive, since
otherwise, we may multiply n by −1 and reduce to the case where n is
positive.

The proof of the existence part of Theorem 1.3 is easy. If n is 1 or prime,
we are done; otherwise, there exist a, b ∈ Z with 1 < a < n, 1 < b < n, and
n = ab, and we apply an inductive argument with a and b.

The uniqueness part of Theorem 1.3 is by no means obvious, and most
of the rest of this section and the next section are devoted to developing
a proof of this. We give a quite leisurely proof, introducing a number of
other very important tools and concepts along the way that will be useful
later. An essential ingredient in this proof is the following:
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Theorem 1.4 (Division with Remainder Property). For a, b ∈ Z
with b > 0, there exist unique q, r ∈ Z such that a = bq + r and 0 ≤ r < b.

Proof. Consider the set S of non-negative integers of the form a− zb with
z ∈ Z. This set is clearly non-empty, and so contains a minimum. Let r be
the smallest integer in this set, with r = a − qb for q ∈ Z. By definition,
we have r ≥ 0. Also, we must have r < b, since otherwise, we would have
0 ≤ r− b < r and r− b = a− (q + 1)b ∈ S, contradicting the minimality of
r.

That proves the existence of r and q. For uniqueness, suppose that
a = bq + r and a = bq′ + r′, where 0 ≤ r < b and 0 ≤ r′ < b. Then
subtracting these two equations and rearranging terms, we obtain

r′ − r = b(q − q′). (1.1)

Now observe that by assumption, the left-hand side of (1.1) is less than b in
absolute value. However, if q 6= q′, then the right-hand side of (1.1) would
be at least b in absolute value; therefore, we must have q = q′. But then
by (1.1), we must have r = r′. 2

In the above theorem, it is easy to see that q = ba/bc, where for any
real number x, bxc denotes the greatest integer less than or equal to x. We
shall write r = a rem b; that is, a rem b denotes the remainder in dividing
a by b. It is clear that b | a if and only if a rem b = 0.

One can generalize the notation a rem b to all integers a and b, with
b 6= 0: we define a rem b := a− bq, where q = ba/bc.

In addition to the “floor” function b·c, the “ceiling” function d·e is also
useful: for any real number x, dxe is defined as the smallest integer greater
than or equal to x.

Exercise 1.1. Let n be a composite integer. Show that there exists a
prime p dividing n, such that p ≤ |n|1/2. 2

Exercise 1.2. For integer n and real x, show that n ≤ x if and only if
n ≤ bxc. 2

Exercise 1.3. For real x and positive integer n, show that bbxc/nc =
bx/nc. In particular, for positive integers a, b, c, bba/bc/cc = ba/(bc)c. 2

Exercise 1.4. For real x, show that 2bxc ≤ b2xc ≤ 2bxc+ 1. 2

Exercise 1.5. For positive integers m and n, show that the number of
multiples of m among 1, 2, . . . , n is bn/mc. More generally, for integer
m ≥ 1 and real x ≥ 0, show that the number of multiples of m in the
interval [1, x] is bx/mc. 2

Exercise 1.6. For integers a, b with b < 0, show that b < a rem b ≤ 0.
2
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1.2 Ideals and Greatest Common Divisors

To carry on with the proof of Theorem 1.3, we introduce the notion of
an ideal of Z, which is a non-empty set of integers that is closed under
addition, negation, and multiplication by an arbitrary integer. That is, a
non-empty set I ⊆ Z is an ideal if and only if for all a, b ∈ I and all z ∈ Z,
we have

a + b ∈ I, −a ∈ I, and az ∈ I.

Note that in fact closure under addition and negation already implies clo-
sure under multiplication by an arbitrary integer, and so the definition is
a bit redundant. However, we present the definition in this form, as it
generalizes more nicely to other settings.

It is easy to see that any ideal must contain 0, and that {0} and Z are
ideals. Moreover, an ideal I is equal to Z if and only if 1 ∈ I — to see this,
note that 1 ∈ I implies that for all z ∈ Z, z = 1 · z ∈ I, and hence I = Z;
conversely, if I = Z, then in particular, 1 ∈ I.

For a ∈ Z, define aZ := {az : z ∈ Z}; that is, aZ is the set of all
integer multiples of a. It is easy to see that aZ is an ideal: for az, az′ ∈ aZ
and z′′ ∈ Z, we have az + az′ = a(z + z′) ∈ aZ, −az = a(−z) ∈ aZ, and
(az)z′′ = a(zz′′) ∈ aZ. The set aZ is called the ideal generated by a,
and any ideal of the form aZ for some a ∈ Z is called a principal ideal.

We observe that for all a, b ∈ Z, we have a ∈ bZ if and only if b | a.
We also observe that for any ideal I, we have a ∈ I if and only if aZ ⊆ I.
Both of these observations are simple consequences of the definitions, as the
reader may verify. Combining these two observations, we see that aZ ⊆ bZ
if and only if b | a.

We can generalize the above method of constructing ideals. For
a1, . . . , ak ∈ Z, define

a1Z + · · ·+ akZ := {a1z1 + · · ·+ akzk : z1, . . . , zk ∈ Z}.

That is, a1Z + · · · + akZ consists of all linear combinations, with integer
coefficients, of a1, . . . , ak. We leave it to the reader to verify that a1Z+· · ·+
akZ is an ideal and contains a1, . . . , ak; it is called the ideal generated by
a1, . . . , ak. In fact, this ideal is the “smallest” ideal containing a1, . . . , ak, in
the sense that any other ideal that contains a1, . . . , ak must already contain
this ideal (verify).

Example 1.1. Let a := 3 and consider the ideal aZ. This consists of all
integer multiples of 3; that is, aZ = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}. 2

Example 1.2. Let a1 := 3 and a2 := 5, and consider the ideal a1Z +
a2Z. This ideal contains 2a1 − a2 = 1. Since it contains 1, it contains all
integers; that is, a1Z + a2Z = Z. 2
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Example 1.3. Let a1 := 4 and a2 := 6, and consider the ideal a1Z +
a2Z. This ideal contains a2 − a1 = 2, and therefore, it contains all even
integers. It does not contain any odd integers, since the sum of two even
integers is again even. 2

The following theorem says that all ideals of Z are principal.

Theorem 1.5. For any ideal I ⊆ Z, there exists a unique non-negative
integer d such that I = dZ.

Proof. We first prove the existence part of the theorem. If I = {0}, then
d = 0 does the job, so let us assume that I 6= {0}. Since I contains non-zero
integers, it must contain positive integers, since if z ∈ I then so is −z. Let
d be the smallest positive integer in I. We want to show that I = dZ.

We first show that I ⊆ dZ. To this end, let c be any element in I. It
suffices to show that d | c. Using the division with remainder property,
write c = qd+ r, where 0 ≤ r < d. Then by the closure properties of ideals,
one sees that r = c − qd is also an element of I, and by the minimality of
the choice of d, we must have r = 0. Thus, d | c.

We next show that dZ ⊆ I. This follows immediately from the fact that
d ∈ I and the closure properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note
that if dZ = d′Z, we have d | d′ and d′ | d, from which it follows by
Theorem 1.2 that d′ = ±d. 2

For a, b ∈ Z, we call d ∈ Z a common divisor of a and b if d | a and
d | b; moreover, we call such a d a greatest common divisor of a and b
if d is non-negative and all other common divisors of a and b divide d.

Theorem 1.6. For any a, b ∈ Z, there exists a unique greatest common
divisor d of a and b, and moreover, aZ + bZ = dZ.

Proof. We apply the previous theorem to the ideal I := aZ + bZ. Let
d ∈ Z with I = dZ, as in that theorem. We wish to show that d is a greatest
common divisor of a and b. Note that a, b, d ∈ I and d is non-negative.

Since a ∈ I = dZ, we see that d | a; similarly, d | b. So we see that d is
a common divisor of a and b.

Since d ∈ I = aZ + bZ, there exist s, t ∈ Z such that as + bt = d.
Now suppose a = a′d′ and b = b′d′ for a′, b′, d′ ∈ Z. Then the equation
as + bt = d implies that d′(a′s + b′t) = d, which says that d′ | d. Thus, any
common divisor d′ of a and b divides d.

That proves that d is a greatest common divisor of a and b. As for
uniqueness, note that if d′′ is a greatest common divisor of a and b, then
d | d′′ and d′′ | d, and hence d′′ = ±d, and the requirement that d′′ is
non-negative implies that d′′ = d. 2
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For a, b ∈ Z, we denote by gcd(a, b) the greatest common divisor of a
and b. Note that as we have defined it, gcd(a, 0) = |a|. Also note that when
at least one of a or b are non-zero, gcd(a, b) is the largest positive integer
that divides both a and b.

An immediate consequence of Theorem 1.6 is that for all a, b ∈ Z, there
exist s, t ∈ Z such that as + bt = gcd(a, b), and that when at least one of
a or b are non-zero, gcd(a, b) is the smallest positive integer that can be
expressed as as + bt for some s, t ∈ Z.

We say that a, b ∈ Z are relatively prime if gcd(a, b) = 1, which is
the same as saying that the only common divisors of a and b are ±1. It is
immediate from Theorem 1.6 that a and b are relatively prime if and only
if aZ + bZ = Z, which holds if and only if there exist s, t ∈ Z such that
as + bt = 1.

Theorem 1.7. For a, b, c ∈ Z such that c | ab and gcd(a, c) = 1, we have
c | b.

Proof. Suppose that c | ab and gcd(a, c) = 1. Then since gcd(a, c) = 1,
by Theorem 1.6 we have as + ct = 1 for some s, t ∈ Z. Multiplying this
equation by b, we obtain

abs + cbt = b. (1.2)

Since c divides ab by hypothesis, and since c clearly divides cbt, it follows
that c divides the left-hand side of (1.2), and hence that c divides b. 2

As a consequence of this theorem, we have:

Theorem 1.8. Let p be prime, and let a, b ∈ Z. Then p | ab implies that
p | a or p | b.

Proof. Assume that p | ab. The only divisors of p are ±1 and ±p. Thus,
gcd(p, a) is either 1 or p. If p | a, we are done; otherwise, if p - a, we must
have gcd(p, a) = 1, and by the previous theorem, we conclude that p | b. 2

Theorem 1.8 is the key to proving the uniqueness part of Theorem 1.3.
Indeed, suppose we have

p1 · · · pr = p′1 · · · p′s,

where p1, . . . , pr and p′1, . . . , p
′
s are primes (duplicates are allowed among

the pi and among the p′j). If r = 0, we must have s = 0 and we are
done. Otherwise, as p1 divides the right-hand side, by inductively applying
Theorem 1.8, one sees that p1 divides p′j for some j = 1, . . . , s, and hence
p1 = p′j . We can cancel these terms and proceed inductively (on r). That
proves the uniqueness part of Theorem 1.3.
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Exercise 1.7. Let a, b, c be positive integers, with gcd(a, b) = 1 and
c ≥ ab. Show that there exist non-negative integers s, t such that c = as+bt.
2

Exercise 1.8. Show that for any integers a, b with d := gcd(a, b) 6= 0,
we have gcd(a/d, b/d) = 1. 2

1.3 Some Consequences of Unique Factoriza-
tion

The following theorem is a consequence of just the existence part of Theo-
rem 1.3:

Theorem 1.9. There are infinitely many primes.

Proof. By way of contradiction, suppose that there were only finitely many
primes; call them p1, . . . , pk. Then set n := 1 +

∏k
i=1 pi, and consider a

prime p that divides n. There must be at least one such prime p, since
n ≥ 2, and every positive integer can be written as a product of primes.
Clearly, p cannot equal any of the pi, since if it did, then p would divide
n−

∏k
i=1 pi = 1, which is impossible. Therefore, the prime p is not among

p1, . . . , pk, which contradicts our assumption that these are the only primes.
2

For a prime p, we may define the function νp, mapping non-zero integers
to non-negative integers, as follows: for integer n 6= 0, if n = pem, where
p - m, then νp(n) := e. We may then write the factorization of n into
primes as

n = ±
∏
p

pνp(n),

where the product is over all primes p, with all but finitely many of the
terms in the product equal to 1.

It is also convenient to extend the domain of definition of νp to include
0, defining νp(0) := ∞. Following standard conventions for arithmetic
with infinity (see Chapter 0), it is easy to see that for all a, b ∈ Z, we have

νp(a · b) = νp(a) + νp(b) for all p. (1.3)

From this, it follows that for all a, b ∈ Z, we have

b | a if and only if νp(b) ≤ νp(a) for all p, (1.4)

and
νp(gcd(a, b)) = min(νp(a), νp(b)) for all p. (1.5)
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For a, b ∈ Z a common multiple of a and b is an integer m such that
a | m and b | m; moreover, such an m is the least common multiple
of a and b if m is non-negative and m divides all common multiples of a
and b. In light of Theorem 1.3, it is clear that the least common multiple
exists and is unique, and we denote the least common multiple of a and b
by lcm(a, b). Note that as we have defined it, lcm(a, 0) = 0, and that when
both a and b are non-zero, lcm(a, b) is the smallest positive integer divisible
by both a and b. Also, for all a, b ∈ Z, we have

νp(lcm(a, b)) = max(νp(a), νp(b)) for all p, (1.6)

and
gcd(a, b) · lcm(a, b) = |ab|. (1.7)

It is easy to generalize the notions of greatest common divisor and least
common multiple from two integers to many integers. For a1, . . . , ak ∈ Z,
with k ≥ 1, we call d ∈ Z a common divisor of a1, . . . , ak if d | ai for
i = 1, . . . , k; moreover, we call such a d the greatest common divisor of
a1, . . . , ak if d is non-negative and all other common divisors of a1, . . . , ak

divide d. It is clear that the greatest common divisor of a1, . . . , ak exists
and is unique, and moreover, we have

νp(gcd(a1, . . . , ak)) = min(νp(a1), . . . , νp(ak)) for all p. (1.8)

Analogously, for a1, . . . , ak ∈ Z, with k ≥ 1, we call m ∈ Z a common
multiple of a1, . . . , ak if ai | m for i = 1, . . . , k; moreover, such an m is called
the least common multiple of a1, . . . , ak if m divides all common multiples
of a1, . . . , ak. It is clear that the least common multiple of a1, . . . , ak exists
and is unique, and moreover, we have

νp(lcm(a1, . . . , ak)) = max(νp(a1), . . . , νp(ak)) for all p. (1.9)

We say that integers a1, . . . , ak are pairwise relatively prime if
gcd(ai, aj) = 1 for all i, j with i 6= j. Note that if a1, . . . , ak are pairwise
relatively prime, then gcd(a1, . . . , ak) = 1; however, gcd(a1, . . . , ak) = 1
does not imply that a1, . . . , ak are pairwise relatively prime.

Consider the rational numbers Q := {a/b : a, b ∈ Z, b 6= 0}. Because
of the unique factorization property for Z, given any rational number a/b,
if we set d := gcd(a, b), and define the integers a′ := a/d and b′ := b/d,
then we have a/b = a′/b′ and gcd(a′, b′) = 1. Moreover, if ã/b̃ = a′/b′,
then we have ãb′ = a′b̃, and so b′ | a′b̃, and since gcd(a′, b′) = 1, we see
that b′ | b̃; if b̃ = d̃b′, it follows that ã = d̃a′. Thus, we can represent every
rational number as a fraction in lowest terms, that is, a fraction of the
form a′/b′ where a′ and b′ are relatively prime; moreover, the values of a′

and b′ are uniquely determined up to sign, and every other fraction that
represents the same rational number is of the form (d̃a′)/(d̃b′), for some
non-zero integer d̃.
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Exercise 1.9. Let n be a positive integer. Show that if a, b are relatively
prime integers, each of which divides n, then ab divides n. More generally,
show that if a1, . . . , ak are pairwise relatively prime integers, each of which
divides n, then their product a1 · · · ak divides n. 2

Exercise 1.10. For positive integer n, let D(n) denote the set of positive
divisors of n. For relatively prime, positive integers n1, n2, show that the
sets D(n1) × D(n2) and D(n1 · n2) are in one-to-one correspondence, via
the map that sends (d1, d2) ∈ D(n1)×D(n2) to d1 · d2. 2

Exercise 1.11. Let p be a prime and k an integer 0 < k < p. Show that
the binomial coefficient (

p

k

)
=

p!
k!(p− k)!

,

which is an integer, of course, is divisible by p. 2

Exercise 1.12. An integer a ∈ Z is called square-free if it is not di-
visible by the square of any integer greater than 1. Show that any integer
n ∈ Z can be expressed as n = ab2, where a, b ∈ Z and a is square-free. 2

Exercise 1.13. Show that any non-zero x ∈ Q can be expressed as

x = ±pe1
1 · · · per

r ,

where the pi are distinct primes and the ei are non-zero integers, and that
this expression in unique up to a reordering of the primes. 2

Exercise 1.14. Show that if an integer cannot be expressed as a square of
an integer, then it cannot be expressed as a square of any rational number.
2

Exercise 1.15. Show that for all integers a, b, and all primes p, we have
νp(a + b) ≥ min{νp(a), νp(b)}, and that if νp(a) < νp(b), then νp(a + b) =
νp(a). 2

Exercise 1.16. For a prime p, we may extend the domain of definition
of νp from Z to Q: for non-zero integers a, b, let us define νp(a/b) :=
νp(a)− νp(b).

(a) Show that this definition of νp(a/b) is unambiguous, in the sense that
it does not depend on the particular choice of a and b.

(b) Show that for all x, y ∈ Q, we have νp(xy) = νp(x) + νp(y).

(c) Show that for all x, y ∈ Q, we have νp(x + y) ≥ min{νp(x), νp(y)},
and that if νp(x) < νp(y), then νp(x + y) = νp(x).
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(d) Show that for all non-zero x ∈ Q, we have

x = ±
∏
p

pνp(x),

where the product is over all primes, and all but a finite number of
terms in the product is 1.

2

Exercise 1.17. Let n be a positive integer, and let Cn denote the number
of pairs of integers (a, b) such that 1 ≤ a ≤ n, 1 ≤ b ≤ n and gcd(a, b) = 1,
and let Fn be the number of distinct rational numbers a/b, where 0 ≤ a <
b ≤ n.

(a) Show that Fn = (Cn + 1)/2.

(b) Show that Cn ≥ n2/4. Hint: first show that Cn ≥ n2(1−
∑

d≥2 1/d2),
and then show that

∑
d≥2 1/d2 ≤ 3/4.

2

Exercise 1.18. This exercise develops a characterization of least com-
mon multiples in terms of ideals.

(a) Arguing directly from the definition of an ideal, show that if I and J
are ideals of Z, then so is I ∩ J .

(b) Let a, b ∈ Z, and consider the ideals I := aZ and J := bZ. By part
(a), we know that I ∩ J is an ideal. By Theorem 1.5, we know that
I ∩ J = mZ for some uniquely determined non-negative integer m.
Show that m = lcm(a, b).

2

Exercise 1.19. For a1, . . . , ak ∈ Z, with k > 1, show that

gcd(a1, . . . , ak) = gcd(gcd(a1, . . . , ak−1), ak)

and
lcm(a1, . . . , ak) = lcm(lcm(a1, . . . , ak−1), ak).

2

Exercise 1.20. Show that for any a1, . . . , ak ∈ Z, if d :=
gcd(a1, . . . , ak), then dZ = a1Z+· · ·+akZ; in particular, there exist integers
s1, . . . , sk such that

d = a1s1 + · · ·+ aksk.

2
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Exercise 1.21. Show that for all integers a, b, we have

gcd(a + b, lcm(a, b)) = gcd(a, b).

2

Exercise 1.22. Show that for integers c, a1, . . . , ak, we have

gcd(ca1, . . . , cak) = |c| gcd(a1, . . . , ak).

2



Chapter 2

Congruences

This chapter introduces the basic properties of congruences modulo n, along
with the related notion of congruence classes modulo n. Other concepts dis-
cussed include the Chinese remainder theorem, Euler’s phi function, arith-
metic functions and Möbius inversion, and Fermat’s little theorem.

2.1 Definitions and Basic Properties

For positive integer n, and for a, b ∈ Z, we say that a is congruent to b
modulo n if n | (a− b), and we write a ≡ b (mod n). If n - (a− b), then we
write a 6≡ b (mod n). The relation a ≡ b (mod n) is called a congruence
relation, or simply, a congruence. The number n appearing in such
congruences is called the modulus of the congruence.

A simple observation is that a ≡ b (mod n) if and only if there exists an
integer c such that a = b + cn. From this, and Theorem 1.4, the following
is immediate:

Theorem 2.1. Let n be a positive integer. For every integer a, there
exists a unique integer b such that a ≡ b (mod n) and 0 ≤ b < n, namely,
b := a rem n.

If we view the modulus n as fixed, then the following theorem says that
the binary relation “· ≡ · (mod n)” is an equivalence relation on the set Z:

Theorem 2.2. Let n be a positive integer. For all a, b, c ∈ Z, we have:

(i) a ≡ a (mod n);

(ii) a ≡ b (mod n) implies b ≡ a (mod n);

(iii) a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n).

15
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Proof. For (i), observe that n divides 0 = a− a. For (ii), observe that if n
divides a− b, then it also divides −(a− b) = b− a. For (iii), observe that
if n divides a− b and b− c, then it also divides (a− b) + (b− c) = a− c. 2

A key property of congruences is that they are “compatible” with integer
addition and multiplication, in the following sense:

Theorem 2.3. For all positive integers n, and all a, a′, b, b′ ∈ Z, if a ≡
a′ (mod n) and b ≡ b′ (mod n), then

a + b ≡ a′ + b′ (mod n)

and
a · b ≡ a′ · b′ (mod n).

Proof. Suppose that a ≡ a′ (mod n) and b ≡ b′ (mod n). This means
that there exist integers c and d such that a′ = a + cn and b′ = b + dn.
Therefore,

a′ + b′ = a + b + (c + d)n,

which proves the first congruence of the theorem, and

a′b′ = (a + cn)(b + dn) = ab + (ad + bc + cdn)n,

which proves the second congruence. 2

Theorems 2.2 and 2.3 allow one to work with congruence relations mod-
ulo n much as one would with ordinary equalities: one can add, subtract,
or multiply both sides of a given congruence modulo n, and if x is congru-
ent to y modulo n, one may substitute y for x in any simple arithmetic
expression (more precisely, any polynomial in x with integer coefficients)
appearing in a congruence modulo n.

Example 2.1. Observe that

3 · 5 ≡ 1 (mod 7). (2.1)

Using this fact, let us find the set of solutions z to the congruence

3z + 4 ≡ 6 (mod 7). (2.2)

Suppose that z is a solution to (2.2). Subtracting 4 from both sides of (2.2),
we see that

3z ≡ 2 (mod 7). (2.3)

Now, multiplying both sides of (2.3) by 5, and using (2.1), we obtain

z ≡ 1 · z ≡ (3 · 5) · z ≡ 2 · 5 ≡ 3 (mod 7).
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Thus, if z is a solution to (2.2), we must have z ≡ 3 (mod 7); conversely,
one can verify that if z ≡ 3 (mod 7), then (2.2) holds. We conclude that
the integers z that are solutions to (2.2) are precisely those integers that
are congruent to 3 modulo 7, which we can list as follows:

. . . ,−18,−11,−4, 3, 10, 17, 24, . . .

2

In the next section, we shall give a systematic treatment of the problem
of solving linear congruences, such as the one appearing in the previous
example.

Exercise 2.1. Let a, b, n, n′ ∈ Z with n > 0 and n′ | n. Show that if
a ≡ b (mod n), then a ≡ b (mod n′). 2

Exercise 2.2. Let a, b, n, n′ ∈ Z with n > 0, n′ > 0, and gcd(n, n′) = 1.
Show that if a ≡ b (mod n) and a ≡ b (mod n′), then a ≡ b (mod nn′). 2

Exercise 2.3. Let a be a positive integer whose base-10 representation
is a = (ak−1 · · · a1a0)10. Let b be the sum of the decimal digits of a; that
is, let b := a0 + a1 + · · · + ak−1. Show that a ≡ b (mod 9). From this,
justify the usual “rules of thumb” for determining divisibility by 9 and 3: a
is divisible by 9 (respectively, 3) if and only if the sum of the decimal digits
of a is divisible by 9 (respectively, 3). 2

Exercise 2.4. Let a, b, n ∈ Z such that n > 0 and a ≡ b (mod n). Show
that gcd(a, n) = gcd(b, n). 2

Exercise 2.5. Prove that for any prime p and integer x, if x2 ≡
1 (mod p) then x ≡ 1 (mod p) or x ≡ −1 (mod p). 2

2.2 Solving Linear Congruences

For a positive integer n, and a ∈ Z, we say that a′ ∈ Z is a multiplicative
inverse of a modulo n if aa′ ≡ 1 (mod n).

Theorem 2.4. Let a, n ∈ Z with n > 0. Then a has a multiplicative
inverse modulo n if and only if a and n are relatively prime.

Proof. This follows immediately from Theorem 1.6: a and n are relatively
prime if and only if there exist s, t ∈ Z such that as + nt = 1, if and only
if there exists s ∈ Z such that as ≡ 1 (mod n). 2

Note that the existence of a multiplicative inverse of a modulo n depends
only on the value of a modulo n; that is, if b ≡ a (mod n), then a has an
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inverse if and only if b does. Indeed, by Theorem 2.3, if b ≡ a (mod n),
then for any integer a′, aa′ ≡ 1 (mod n) if and only if ba′ ≡ 1 (mod n).
(This fact is also implied by Theorem 2.4 together with Exercise 2.4.)

We now prove a simple “cancellation law” for congruences:

Theorem 2.5. Let a, n, z, z′ ∈ Z with n > 0. If a is relatively prime to
n, then az ≡ az′ (mod n) if and only if z ≡ z′ (mod n). More generally, if
d := gcd(a, n), then az ≡ az′ (mod n) if and only if z ≡ z′ (mod n/d).

Proof. For the first statement, assume that gcd(a, n) = 1, and let a′ be
a multiplicative inverse of a modulo n. Then, az ≡ az′ (mod n) implies
a′az ≡ a′az′ (mod n), which implies z ≡ z′ (mod n), since a′a ≡ 1 (mod n).
Conversely, if z ≡ z′ (mod n), then trivially az ≡ az′ (mod n). That proves
the first statement.

For the second statement, let d = gcd(a, n). Simply from the definition
of congruences, one sees that in general, az ≡ az′ (mod n) holds if and
only if (a/d)z ≡ (a/d)z′ (mod n/d). Moreover, since a/d and n/d are
relatively prime, the first statement of the theorem implies that (a/d)z ≡
(a/d)z′ (mod n/d) holds if and only if z ≡ z′ (mod n/d). That proves the
second statement. 2

Theorem 2.5 implies that multiplicative inverses modulo n are uniquely
determined modulo n; indeed, if a is relatively prime to n, and if aa′ ≡ 1 ≡
aa′′ (mod n), then we may cancel a from the left- and right-hand sides of
this congruence, obtaining a′ ≡ a′′ (mod n).

Example 2.2. Observe that

5 · 2 ≡ 5 · (−4) (mod 6). (2.4)

Theorem 2.5 tells us that since gcd(5, 6) = 1, we may cancel the common
factor of 5 from both sides of (2.4), obtaining 2 ≡ −4 (mod 6), which one
can also verify directly.

Next observe that
3 · 5 ≡ 3 · 3 (mod 6). (2.5)

We cannot simply cancel the common factor of 3 from both sides of (2.5);
indeed, 5 6≡ 3 (mod 6). However, gcd(3, 6) = 3, and as Theorem 2.5
guarantees, we do indeed have 5 ≡ 3 (mod 2). 2

Next, we consider the problem of determining the solutions z to con-
gruences of the form az + c ≡ b (mod n), for given integers a, b, c, n. Since
we may both add and subtract c from both sides of a congruence modulo
n, it is clear that z is a solution to the above congruence if and only if
az ≡ b − c (mod n). Therefore, it suffices to consider the problem of de-
termining the solutions z to congruences of the form az ≡ b (mod n), for
given integers a, b, n.
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Theorem 2.6. Let a, b, n ∈ Z with n > 0. If a is relatively prime to n,
then the congruence az ≡ b (mod n) has a solution z; moreover, any integer
z′ is a solution if and only if z ≡ z′ (mod n).

Proof. The integer z := ba′, where a′ is a multiplicative inverse of a
modulo n, is clearly a solution. For any integer z′, we have az′ ≡ b (mod n)
if and only if az′ ≡ az (mod n), which by Theorem 2.5 holds if and only if
z ≡ z′ (mod n). 2

Suppose that a, b, n ∈ Z with n > 0, a 6= 0, and gcd(a, n) = 1. This
theorem says that there exists a unique integer z satisfying

az ≡ b (mod n) and 0 ≤ z < n.

Setting s := b/a ∈ Q, we may generalize our “rem” notation, defining
s rem n to be this value z. As the reader may easily verify, this definition
of s rem n does not depend on the particular choice of fraction used to
represent the rational number s. With this notation, we can simply write
a−1 rem n to denote the unique multiplicative inverse of a modulo n that
lies in the interval 0, . . . , n− 1.

Theorem 2.6 may be generalized as follows:

Theorem 2.7. Let a, b, n ∈ Z with n > 0, and let d := gcd(a, n). If
d | b, then the congruence az ≡ b (mod n) has a solution z, and any integer
z′ is also a solution if and only if z ≡ z′ (mod n/d). If d - b, then the
congruence az ≡ b (mod n) has no solution z.

Proof. For the first statement, suppose that d | b. In this case, by Theo-
rem 2.5, we have az ≡ b (mod n) if and only if (a/d)z ≡ (b/d) (mod n/d),
and so the statement follows immediately from Theorem 2.6, and the fact
that a/d and b/d are relatively prime.

For the second statement, we show that if az ≡ b (mod n) for some
integer z, then d must divide b. To this end, assume that az ≡ b (mod n)
for some integer z. Then since d | n, we have az ≡ b (mod d). However,
az ≡ 0 (mod d), since d | a, and hence b ≡ 0 (mod d); that is, d | b. 2

Example 2.3. The following table illustrates what the above theorem
says for n = 15 and a = 1, 2, 3, 4, 5, 6.

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2z rem 15 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3z rem 15 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4z rem 15 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5z rem 15 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6z rem 15 0 6 12 3 9 0 6 12 3 9 0 6 12 3 9



20 Congruences

In the second row, we are looking at the values 2z rem 15, and we see
that this row is just a permutation of the first row. So for every b, there
exists a unique z such that 2z ≡ b (mod 15). We could have inferred this
fact from the theorem, since gcd(2, 15) = 1.

In the third row, the only numbers hit are the multiples of 3, which
follows from the theorem and the fact that gcd(3, 15) = 3. Also note that
the pattern in this row repeats every five columns; that is also implied by
the theorem; that is, 3z ≡ 3z′ (mod 15) if and only if z ≡ z′ (mod 5).

In the fourth row, we again see a permutation of the first row, which
follows from the theorem and the fact that gcd(4, 15) = 1.

In the fifth row, the only numbers hit are the multiples of 5, which
follows from the theorem and the fact that gcd(5, 15) = 5. Also note that
the pattern in this row repeats every three columns; that is also implied by
the theorem; that is, 5z ≡ 5z′ (mod 15) if and only if z ≡ z′ (mod 3).

In the sixth row, since gcd(6, 15) = 3, we see a permutation of the third
row. The pattern repeats after five columns, although the pattern is a
permutation of the pattern in the third row. 2

Next, we consider systems of linear congruences with respect to moduli
that are relatively prime in pairs. The result we state here is known as
the Chinese remainder theorem, and is extremely useful in a number of
contexts.

Theorem 2.8 (Chinese Remainder Theorem). Let n1, . . . , nk be
pairwise relatively prime, positive integers, and let a1, . . . , ak be arbitrary
integers. Then there exists an integer z such that

z ≡ ai (mod ni) (i = 1, . . . , k).

Moreover, any other integer z′ is also a solution of these congruences if and
only if z ≡ z′ (mod n), where n :=

∏k
i=1 ni.

Proof. Let n :=
∏k

i=1 ni, as in the statement of the theorem. Let us also
define

n′i := n/ni (i = 1, . . . , k).

From the fact that n1, . . . , nk are pairwise relatively prime, it is clear that
gcd(ni, n

′
i) = 1 for i = 1, . . . , k. Therefore, let

mi := (n′i)
−1 rem ni and wi := n′imi (i = 1, . . . , k).

By construction, one sees that for i = 1, . . . , k, we have

wi ≡ 1 (mod ni)

and
wi ≡ 0 (mod nj) for j = 1, . . . , k with j 6= i.
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That is to say, for i, j = 1, . . . , k, we have wi ≡ δij (mod nj), where

δij :=
{

1 if i = j,
0 if i 6= j.

Now define

z :=
k∑

i=1

wiai.

One then sees that

z ≡
k∑

i=1

wiai ≡
k∑

i=1

δijai ≡ aj (mod nj) for j = 1, . . . , k.

Therefore, this z solves the given system of congruences.
Moreover, if z′ ≡ z (mod n), then since ni | n for i = 1, . . . , k, we see

that z′ ≡ z ≡ ai (mod ni) for i = 1, . . . , k, and so z′ also solves the system
of congruences.

Finally, if z′ solves the system of congruences, then z′ ≡ z (mod ni)
for i = 1, . . . , k. That is, ni | (z′ − z) for i = 1, . . . , k. Since n1, . . . , nk

are pairwise relatively prime, this implies that n | (z′ − z), or equivalently,
z′ ≡ z (mod n). 2

Example 2.4. The following table illustrates what the above theorem
says for n1 = 3 and n2 = 5.

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
z rem 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
z rem 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

We see that as z ranges from 0 to 14, the pairs (z rem 3, z rem 5) range
over all pairs (a1, a2) with a1 ∈ {0, 1, 2} and a2 ∈ {0, . . . , 4}, with every
pair being hit exactly once. 2

Exercise 2.6. Find an integer z such that z ≡ −1 (mod 100), z ≡
1 (mod 33), and z ≡ 2 (mod 7). 2

2.3 Residue Classes

As we already observed in Theorem 2.2, for any fixed positive integer n, the
binary relation “· ≡ · (mod n)” is an equivalence relation on the set Z. As
such, this relation partitions the set Z into equivalence classes. We denote
the equivalence class containing the integer a by [a mod n], or when n is
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clear from context, we may simply write [a]. Historically, these equivalence
classes are called residue classes modulo n, and we shall adopt this
terminology here as well.

It is easy to see from the definitions that

[a mod n] = a + nZ := {a + nz : z ∈ Z}.

Note that a given residue class modulo n has many different “names”;
for example, the residue class [1] is the same as the residue class [1+n]. For
any integer a in a residue class, we call a a representative of that class.

The following is simply a restatement of Theorem 2.1:

Theorem 2.9. For a positive integer n, there are precisely n distinct
residue classes modulo n, namely, [a mod n] for a = 0, . . . , n− 1.

Fix a positive integer n. Let us define Zn as the set of residue classes
modulo n. We can “equip” Zn with binary operations defining addition
and multiplication in a natural way as follows: for a, b ∈ Z, we define

[a] + [b] := [a + b],

and we define
[a] · [b] := [a · b].

Of course, one has to check this definition is unambiguous, in the sense
that the sum or product of two residue classes should not depend on which
particular representatives of the classes are chosen in the above definitions.
More precisely, one must check that if [a] = [a′] and [b] = [b′], then [a op b] =
[a′ op b′], for op ∈ {+, ·}. However, this property follows immediately from
Theorem 2.3.

It is also convenient to define a negation operation on Zn, defining

−[a] := [−1] · [a] = [−a].

Having defined addition and negation operations on Zn, we naturally define
a subtraction operation on Zn as follows: for a, b ∈ Z,

[a]− [b] := [a] + (−[b]) = [a− b].

Example 2.5. Consider the residue classes modulo 6. These are as fol-
lows:

[0 mod 6] = {. . . ,−12,−6, 0, 6, 12, . . .}
[1 mod 6] = {. . . ,−11,−5, 1, 7, 13, . . .}
[2 mod 6] = {. . . ,−10,−4, 2, 8, 14, . . .}
[3 mod 6] = {. . . ,−9,−3, 3, 9, 15, . . .}
[4 mod 6] = {. . . ,−8,−2, 4, 10, 16, . . .}
[5 mod 6] = {. . . ,−7,−1, 5, 11, 17, . . .}
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Let us write down the addition and multiplication tables for Z6. The ad-
dition table looks like this:

+ [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

The multiplication table looks like this:

· [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

2

These operations on Zn yield a very natural algebraic structure whose
salient properties are as follows:

Theorem 2.10. Let n be a positive integer, and consider the set Zn of
residue classes modulo n with addition and multiplication of residue classes
as defined above. For all α, β, γ ∈ Zn, we have

(i) α + β = β + α (addition is commutative),

(ii) (α + β) + γ = α + (β + γ) (addition is associative),

(iii) α + [0 mod n] = α (existence of additive identity),

(iv) α− α = [0 mod n] (existence of additive inverses),

(v) α · β = β · α (multiplication is commutative),

(vi) (α · β) · γ = α · (β · γ) (multiplication is associative),

(vii) α · (β + γ) = α · β + α · γ (multiplication distributes over addition)

(viii) α · [1 mod n] = α (existence of multiplicative identity).
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Proof. All of these properties follow trivially from the corresponding prop-
erties for the integers, together with the definitions of addition, subtraction,
and multiplication of residue classes. 2

An algebraic structure satisfying the conditions in the above theorem is
known more generally as a “commutative ring with unity,” a notion that
we will discuss in Chapter 9.

Note that while all elements of Zn have an additive inverses, not all
elements of Zn have a multiplicative inverse. Indeed, for a ∈ Z, the residue
class [a mod n] ∈ Zn has a multiplicative inverse in Zn if and only if a
has a multiplicative inverse modulo n, which by Theorem 2.4, holds if and
only if gcd(a, n) = 1. Since multiplicative inverses modulo n are uniquely
determined modulo n (see discussion following Theorem 2.5), it follows that
if α ∈ Zn has a multiplicative inverse in Zn, then this inverse is unique,
and we may denote it by α−1.

One denotes by Z∗n the set of all residue classes that have a multiplicative
inverse. It is easy to see that Z∗n is closed under multiplication; indeed,
if α, β ∈ Z∗n, then (αβ)−1 = α−1β−1. Also, note that for α ∈ Z∗n and
β, β′ ∈ Zn, if αβ = αβ′, we may effectively cancel α from both sides of this
equation, obtaining β = β′ — this is just a restatement of the first part of
Theorem 2.5 in the language of residue classes.

For α ∈ Zn and positive integer k, the expression αk denotes the product
α · α · · · · · α, where there are k terms in the product. One may extend this
definition to k = 0, defining α0 to be the multiplicative identity [1 mod n].
If α has a multiplicative inverse, then it is easy to see that for any integer
k ≥ 0, αk has a multiplicative inverse as well, namely, (α−1)k, which we
may naturally write as α−k.

In general, one has a choice between working with congruences modulo
n, or with the algebraic structure Zn; ultimately, the choice is one of taste
and convenience, and it depends on what one prefers to treat as “first class
objects”: integers and congruence relations, or elements of Zn.

Exercise 2.7. Show that for any positive integer n, and any integer k,
the residue classes [k + a mod n], for a = 0, . . . , n − 1, are distinct and
therefore include all residue classes modulo n. 2

Exercise 2.8. Verify the following statements for Zn:

(a) There is only one element of Zn that acts as an additive identity; that
is, if α ∈ Zn satisfies α + β = β for all β ∈ Zn, then α = [0].

(b) Additive inverses in Zn are unique; that is, for all α ∈ Zn, if α + β =
[0], then β = −α.
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(c) If α ∈ Z∗n and γ, δ ∈ Zn, then there exists a unique β ∈ Zn such that
αβ + γ = δ.

2

Exercise 2.9. Verify the usual “rules of exponent arithmetic” for Zn.
That is, show that for α ∈ Zn, and non-negative integers k1, k2, we have

(αk1)k2 = αk1k2 and αk1αk2 = αk1+k2 .

Moreover, show that if α ∈ Z∗n, then these identities hold for all integers
k1, k2. 2

2.4 Euler’s Phi Function

Euler’s phi function φ(n) is defined for positive integers n as the number
of elements of Z∗n. Equivalently, φ(n) is equal to the number of integers
between 0 and n− 1 that are relatively prime to n. For example, φ(1) = 1,
φ(2) = 1, φ(3) = 2, and φ(4) = 2.

A fact that is sometimes useful is the following:

Theorem 2.11. For any positive integer n, we have∑
d|n

φ(d) = n,

where the sum is over all positive divisors d of n.

Proof. Consider the list of n rational numbers 0/n, 1/n, . . . , (n−1)/n. For
any divisor d of n and for any integer a with 0 ≤ a < d and gcd(a, d) = 1, the
fraction a/d appears in the list exactly once, and moreover, every number
in the sequence, when expressed as a fraction in lowest terms, is of this
form. 2

Using the Chinese remainder theorem, it is easy to get a nice formula
for φ(n) in terms for the prime factorization of n, as we establish in the
following sequence of theorems.

Theorem 2.12. For positive integers n, m with gcd(n, m) = 1, we have

φ(nm) = φ(n)φ(m).

Proof. Consider the map

ρ : Znm → Zn × Zm

[a mod nm] 7→ ([a mod n], [a mod m]).
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First, note that the definition of ρ is unambiguous, since a ≡ a′ (mod nm)
implies a ≡ a′ (mod n) and a ≡ a′ (mod m). Second, according to the
Chinese remainder theorem, the map ρ is one-to-one and onto. Moreover,
it is easy to see that gcd(a, nm) = 1 if and only if gcd(a, n) = 1 and
gcd(a,m) = 1 (verify). Therefore, the map ρ carries Z∗nm injectively onto
Z∗n × Z∗m. In particular, |Z∗nm| = |Z∗n × Z∗m|. 2

Theorem 2.13. For a prime p and a positive integer e, we have φ(pe) =
pe−1(p− 1).

Proof. The multiples of p among 0, 1, . . . , pe − 1 are

0 · p, 1 · p, . . . , (pe−1 − 1) · p,

of which there are precisely pe−1. Thus, φ(pe) = pe − pe−1 = pe−1(p − 1).
2

As an immediate consequence of the above two theorems, we have:

Theorem 2.14. If n = pe1
1 · · · per

r is the factorization of n into primes,
then

φ(n) =
r∏

i=1

pei−1
i (pi − 1) = n

r∏
i=1

(1− 1/pi).

Exercise 2.10. Show that φ(nm) = gcd(n, m) · φ(lcm(n, m)). 2

2.5 Fermat’s Little Theorem

Let n be a positive integer, and let a ∈ Z with gcd(a, n) = 1. Consider the
sequence of powers of α := [a mod n] ∈ Z∗n:

[1] = α0, α1, α2, . . . .

Since each such power is an element of Z∗n, and since Z∗n is a finite set, this
sequence of powers must start to repeat at some point; that is, there must
be a positive integer k such that αk = αi for some i = 0, . . . , k − 1. Let
us assume that k is chosen to be the smallest such positive integer. We
claim that i = 0, or equivalently, αk = [1]. To see this, suppose by way of
contradiction that αk = αi, for some i = 1, . . . , k − 1. Then we can cancel
α from both sides of the equation αk = αi, obtaining αk−1 = αi−1, and
this contradicts the minimality of k.

From the above discussion, we see that the first k powers of α, that
is, [1] = α0, α1, . . . , αk−1, are distinct, and subsequent powers of α simply
repeat this pattern. More generally, we may consider both positive and
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negative powers of α — it is easy to see (verify) that for all i, j ∈ Z, we
have αi = αj if and only if i ≡ j (mod k). In particular, we see that for
any integer i, we have αi = [1] if and only of k divides i.

This value k is called the multiplicative order of α or the multi-
plicative order of a modulo n. It can be characterized as the smallest
positive integer k such that

ak ≡ 1 (mod n).

Example 2.6. Let n = 7. For each value a = 1, . . . , 6, we can com-
pute successive powers of a modulo n to determine its multiplicative order
modulo n.

i 1 2 3 4 5 6
1i rem 7 1 1 1 1 1 1
2i rem 7 2 4 1 2 4 1
3i rem 7 3 2 6 4 5 1
4i rem 7 4 2 1 4 2 1
5i rem 7 5 4 6 2 3 1
6i rem 7 6 1 6 1 6 1

So we conclude that modulo 7: 1 has order 1; 6 has order 2; 2 and 4
have order 3; and 3 and 5 have order 6. 2

Theorem 2.15 (Euler’s Theorem). For any positive integer n, and
any integer a relatively prime to n, we have aφ(n) ≡ 1 (mod n). In partic-
ular, the multiplicative order of a modulo n divides φ(n).

Proof. Let α := [a mod n] ∈ Z∗n. Consider the map f : Z∗n → Z∗n that
sends β ∈ Z∗n to αβ. Observe that f is injective, since if αβ = αβ′, we may
cancel α from both sides of this equation, obtaining β = β′. Since f maps
Z∗n injectively into itself, and since Z∗n is a finite set, it must be the case
that f is surjective as well. Thus, as β ranges over the set Z∗n, so does αβ,
and we have ∏

β∈Z∗n

β =
∏

β∈Z∗n

(αβ) = αφ(n)

( ∏
β∈Z∗n

β

)
. (2.6)

Canceling the common factor
∏

β∈Z∗n
β ∈ Z∗n from the left- and right-hand

side of (2.6), we obtain
αφ(n) = [1].

That proves the first statement of the theorem. The second follows from
the observation made above that αi = [1] if and only if the multiplicative
order of α divides i. 2

As a consequence of this, we obtain:
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Theorem 2.16 (Fermat’s Little Theorem). For any prime p, and
any integer a 6≡ 0 (mod p), we have ap−1 ≡ 1 (mod p). Moreover, for
any integer a, we have ap ≡ a (mod p).

Proof. The first statement follows from Theorem 2.15, and the fact that
φ(p) = p − 1. The second statement is clearly true if a ≡ 0 (mod p),
and if a 6≡ 0 (mod p), we simply multiply both sides of the congruence
ap−1 ≡ 1 (mod p) by a. 2

For a positive integer n, we say that a ∈ Z with gcd(a, n) = 1 is a
primitive root modulo n if the multiplicative order of a modulo n is
equal to φ(n). If this is the case, then for α := [a mod n], the powers αi

range over all elements of Z∗n as i ranges over the interval 0, . . . , φ(n) − 1.
Not all positive integers have primitive roots — we will see in §10.2 that
the only positive integers n for which there exists a primitive root modulo
n are

n = 1, 2, 4, pe, 2pe,

where p is an odd prime and e is a positive integer.

Exercise 2.11. Find an integer whose multiplicative order modulo 101
is 100. 2

Exercise 2.12. Suppose α ∈ Z∗n has multiplicative order k. Show that
for any m ∈ Z, the multiplicative order of αm is k/ gcd(m, k). 2

Exercise 2.13. Suppose α ∈ Z∗n has multiplicative order k, β ∈ Z∗n has
multiplicative order `, and gcd(k, `) = 1. Show that αβ has multiplicative
order k`. Hint: use the previous exercise. 2

Exercise 2.14. Prove that for any prime p, we have

(p− 1)! ≡ −1 (mod p).

Hint: using the result of Exercise 2.5, we know that the only elements of Z∗p
that act as their own multiplicative inverse are [±1]; rearrange the terms
in the product

∏
β∈Z∗p

β so that except for [±1], the terms are arranged
in pairs, where each pair consists of some β ∈ Z∗p and its multiplicative
inverse. 2

2.6 Arithmetic Functions and Möbius Inver-
sion

A function, such as Euler’s function φ, from the positive integers into the
reals is sometimes called an arithmetic function (actually, one usually
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considers complex-valued functions as well, but we shall not do so here).
An arithmetic function f is called multiplicative if f(1) = 1 and for all
positive integers n, m with gcd(n, m) = 1, we have f(nm) = f(n)f(m).
Theorem 2.12 simply says that φ is multiplicative.

In this section, we develop some of the theory of arithmetic functions
that is pertinent to number theory; however, the results in this section will
play only a very minor role in the remainder of the text.

We begin with a simple observation, which the reader may easily verify:

if f is a multiplicative function, and if n = pe1
1 · · · per

r is the
prime factorization of n, then

f(n) = f(pe1
1 ) · · · f(per

r ).

Next, we define a binary operation on arithmetic functions that has a
number of interesting properties and applications. Let f and g be arith-
metic functions. The Dirichlet product of f and g, denoted f ? g, is the
arithmetic function whose value at n is defined by the formula

(f ? g)(n) :=
∑
d|n

f(d)g(n/d),

the sum being over all positive divisors d of n. Another, more symmetric,
way to write this is

(f ? g)(n) =
∑

n=d1d2

f(d1)g(d2),

the sum being over all pairs (d1, d2) of positive integers with d1d2 = n.
The Dirichlet product is clearly commutative (i.e., f ? g = g ? f), and is
associative as well, which one can see by checking that

(f ? (g ? h))(n) = ((f ? g) ? h)(n) =
∑

n=d1d2d3

f(d1)g(d2)h(d3),

the sum being over all triples (d1, d2, d3) of positive integers with d1d2d3 =
n.

We now introduce three special arithmetic functions: I, J , and µ. The
function I(n) is defined to be 1 when n = 1 and 0 when n > 1. The function
J(n) is defined to be 1 for all n.

The Möbius function µ is defined for positive integers n as follows:

µ(n) :=
{

0 if n is divisible by a square other than 1;
(−1)r if n is the product of r ≥ 0 distinct primes.

Thus, if n = pe1
1 · · · per

r is the prime factorization of n, then µ(n) = 0 if
ei > 1 for some i, and otherwise, µ(n) = (−1)r. Here are some examples:

µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1, µ(6) = 1.
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It is easy to see (verify) that for any arithmetic function f , we have

I ? f = f and (J ? f)(n) =
∑
d|n

f(d).

Also, the functions I, J , and µ are multiplicative (verify). A useful property
of the Möbius function is the following:

Theorem 2.17. For any multiplicative function f , if n = pe1
1 · · · per

r is
the prime factorization of n, we have∑

d|n

µ(d)f(d) = (1− f(p1)) · · · (1− f(pr)). (2.7)

In case r = 0 (i.e., n = 1), the product on the right-hand side of (2.7)
is interpreted (as usual) as 1.

Proof. The non-zero terms in the sum on the left-hand side of
(2.7) are those corresponding to divisors d of the form pi1 · · · pi`

, where
pi1 , . . . , pi` are distinct; the value contributed to the sum by such a term
is (−1)`f(pi1 · · · pi`

) = (−1)`f(pi1) · · · f(pi`
). These are the same as the

terms in the expansion of the product on the right-hand side of (2.7). 2

For example, suppose f(d) = 1/d in the above theorem, and let n =
pe1
1 · · · per

r be the prime factorization of n. Then we obtain:∑
d|n

µ(d)/d = (1− 1/p1) · · · (1− 1/pr). (2.8)

As another example, suppose f = J . Then we obtain

(µ ? J)(n) =
∑
d|n

µ(d) =
r∏

i=1

(1− 1),

which is 1 if n = 1, and is zero if n > 1. Thus, we have

µ ? J = I. (2.9)

Theorem 2.18 (Möbius Inversion Formula). Let f and F be arith-
metic functions. Then we have F = J ? f if and only if f = µ ? F .

Proof. If F = J ? f , then

µ ? F = µ ? (J ? f) = (µ ? J) ? f = I ? f = f,

and conversely, if f = µ ? F , then

J ? f = J ? (µ ? F ) = (J ? µ) ? F = I ? F = F.
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2

The Möbius inversion formula says this:

F (n) =
∑
d|n

f(d) for all positive integers n

if and only if

f(n) =
∑
d|n

µ(d)F (n/d) for all positive integers n.

As an application of the Möbius inversion formula, we can get a different
proof of Theorem 2.14, based on Theorem 2.11. Let F (n) := n and f(n) :=
φ(n). Theorem 2.11 says that F = J ? f . Applying Möbius inversion to
this yields f = µ ? F , and using (2.8), we obtain

φ(n) =
∑
d|n

µ(d)n/d = n
∑
d|n

µ(d)/d

= n(1− 1/p1) · · · (1− 1/pr).

Of course, one could turn the above argument around, using Möbius
inversion and (2.8) to derive Theorem 2.11 from Theorem 2.14.

Exercise 2.15. In our definition of a multiplicative function f , we made
the requirement that f(1) = 1. Show that if we dropped this requirement,
the only other function that would satisfy the definition would be the zero
function (i.e., the function that is everywhere zero). 2

Exercise 2.16. Let f be a polynomial with integer coefficients, and for
positive integer n define ωf (n) to be the number of integers z ∈ {0, . . . , n−
1} such that f(z) ≡ 0 (mod n). Show that ωf is multiplicative. 2

Exercise 2.17. Show that if f and g are multiplicative, then so is f ? g.
2

Exercise 2.18. Define τ(n) to be the number of positive divisors of n.

(a) Show that τ is a multiplicative function.

(b) Show that
τ(n) = (e1 + 1) · · · (er + 1),

where n = pe1
1 · · · per

r is the prime factorization of n.

(c) Show that ∑
d|n

µ(d)τ(n/d) = 1.
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(d) Show that ∑
d|n

µ(d)τ(d) = (−1)r,

where n = pe1
1 · · · per

r is the prime factorization of n.

2

Exercise 2.19. Define σ(n) :=
∑

d|n d.

(a) Show that σ is a multiplicative function.

(b) Show that

σ(n) =
r∏

i=1

pei+1
i − 1
pi − 1

,

where n = pe1
1 · · · per

r is the prime factorization of n.

(c) Show that ∑
d|n

µ(d)σ(n/d) = n.

(d) Show that ∑
d|n

µ(d)σ(d) = (−1)rp1 · · · pr,

where n = pe1
1 · · · per

r is the prime factorization of n.

2

Exercise 2.20. The Mangoldt function Λ(n) is defined for all positive
integers n by

Λ(n) :=
{

log p if n = pk, where p is prime and k is a positive integer;
0 otherwise.

(a) Show that ∑
d|n

Λ(d) = log n.

(b) Using part (a), show that

Λ(n) = −
∑
d|n

µ(d) log d.

2
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Exercise 2.21. Show that if f is multiplicative, and if n = pe1
1 · · · per

r is
the prime factorization of n, then∑

d|n

(µ(d))2f(d) = (1 + f(p1)) · · · (1 + f(pr)).

2

Exercise 2.22. Show that n is square-free (see Exercise 1.12) if and only
if

∑
d|n(µ(d))2φ(d) = n. 2

Exercise 2.23. Show that for any arithmetic function f with f(1) 6= 0,
there is a unique arithmetic function g, called the Dirichlet inverse of f ,
such that f ? g = I. Also, show that if f(1) = 0, then f has no Dirichlet
inverse. 2

Exercise 2.24. Show that if f is a multiplicative function, then so is its
Dirichlet inverse (as defined in the previous exercise). 2



Chapter 3

Computing with Large Integers

In this chapter, we review standard asymptotic notation, introduce the
formal computational model we shall use throughout the rest of the text,
and discuss basic algorithms for computing with large integers.

3.1 Asymptotic Notation

We review some standard notation for relating the rate of growth of func-
tions.

Suppose that x is a variable taking non-negative integer or real values,
and let g denote a real-valued function that is positive for all sufficiently
large x; also, let f denote any real-valued function in x. Then

• f = O(g) means that |f(x)| ≤ cg(x) for some positive constant c and
all sufficiently large x (read, “f is big-O of g”),

• f = Ω(g) means that f(x) ≥ cg(x) for some positive constant c and
all sufficiently large x (read, “f is big-Omega of g”),

• f = Θ(g) means that cg(x) ≤ f(x) ≤ dg(x), for some positive con-
stants c and d and all sufficiently large x (read, “f is big-Theta of
g”),

• f = o(g) means that f/g → 0 as x → ∞ (read, “f is little-o of g”),
and

• f ∼ g means that f/g → 1 as x → ∞, or equivalently, f(x) =
g(x)(1 + ε(x)) where ε(x)→ 0 as x→∞ (read, “f is asymptotically
equal to g”).

One may also write O(g) in an expression to denote an anonymous function
f such that f = O(g). As an example, one could write

∑n
i=1 i = n2/2 +

O(n). Analogously, Ω(g), Θ(g), and o(g) may denote anonymous functions.
The expression O(1) denotes a function bounded in absolute value by a

34
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constant, while the expression o(1) denotes a function that tends to zero in
the limit.

One may also use the same notation in a setting where x is a real
variable tending to some finite limit x0, in which case, the phrases “for all
sufficiently large x” and “as x→∞” are replaced by “for all x sufficiently
close to x0” and “as x→ x0.”

As an even further use (abuse?) of the notation, one may use the big-
O, -Omega, and -Theta notation for functions on an arbitrary domain, in
which case the relevant bound should hold throughout the entire domain.

Exercise 3.1. Show that if f = o(g) or f = Θ(g), then f = O(g). 2

Exercise 3.2. Let f and g be two functions in x that take positive values
for all sufficiently large x, and suppose f/g tends to a limit L (possibly
L =∞) as x→∞. Show that

(a) if L = 0, then f = o(g);

(b) if 0 < L <∞, then f = Θ(g);

(c) if L =∞, then g = o(f).

2

Exercise 3.3. Let x be a variable tending to ∞. Order the following
functions in x so that for each adjacent pair f, g in the ordering, we have
f = O(g), and indicate if f = o(g), f ∼ g, or g = O(f):

x3, exx2, 1/x, x2(x + 100) + 1/x, x +
√

x, log2 x, log3 x, 2x2, x,

e−x, 2x2 − 10x + 4, ex+
√

x, 2x, 3x, x−2, x2(log x)1000.

2

Exercise 3.4. Repeat the previous exercise, but with x a real variable
that tends to 0. 2

Exercise 3.5. Give an example of two non-decreasing functions f and
g, both mapping positive integers to positive integers, such that f 6= O(g)
and g 6= O(f). 2

Exercise 3.6. Show that

(a) the relation “∼” is an equivalence relation;

(b) f1 ∼ f2 and g1 ∼ g2 implies f1 ? g1 ∼ f2 ? g2, where “?” denotes
addition, multiplication, or division;
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(c) If g → ∞, then f1 ∼ f2 implies f1 ◦ g ∼ f2 ◦ g, where “◦” denotes
function composition.

2

Exercise 3.7. Show that all of the claims in the previous exercise also
hold when the relation “∼” is replaced with the relation “· = Θ(·).” 2

Exercise 3.8. Show that if f1 ∼ f2, then log(f1) = log(f2) + o(1), and
in particular, if f1 = Ω(1), then log(f1) ∼ log(f2). 2

Exercise 3.9. Suppose that f(i) and g(i) are functions defined on the
integers k, k + 1, . . ., and that g(i) takes positive values for all sufficiently
large i. For n ≥ k, define F (n) :=

∑n
i=k f(i) and G(n) :=

∑n
i=k g(i).

Show that if f = O(g) and G(n) > 0 for all sufficiently large n, then
F = O(G). 2

Exercise 3.10. Suppose that f(i) and g(i) are functions defined on the
integers k, k + 1, . . ., both of which take positive values for all sufficiently
large i. For n ≥ k, define F (n) :=

∑n
i=k f(i) and G(n) :=

∑n
i=k g(i).

Show that if f ∼ g and G(n)→∞ as n→∞, then F ∼ G. 2

The following two exercises are continuous variants of the previous two
exercises. To avoid unnecessary distractions, we shall only consider func-
tions that are quite “well behaved.” In particular, we restrict ourselves to
piece-wise continuous functions (see §A.3).

Exercise 3.11. Suppose that f(t) and g(t) are piece-wise continuous on
[a,∞), and that g(t) takes positive values for all sufficiently large t. For
x ≥ a, define F (x) :=

∫ x

a
f(t)dt and G(x) :=

∫ x

a
g(t)dt. Show that if

f = O(g) and G(x) > 0 for all sufficiently large x, then F = O(G). 2

Exercise 3.12. Suppose that f(t) and g(t) are piece-wise continuous
[a,∞), both of which take positive values for all sufficiently large t. For
x ≥ a, define F (x) :=

∫ x

a
f(t)dt and G(x) :=

∫ x

a
g(t)dt. Show that if

f ∼ g and G(x)→∞ as x→∞, then F ∼ G. 2

3.2 Machine Models and Complexity Theory

When presenting an algorithm, we shall always use a high-level, and some-
what informal, notation. However, all of our high-level descriptions can
be routinely translated into the machine-language of an actual computer.
So that our theorems on the running times of algorithms have a precise
mathematical meaning, we formally define an “idealized” computer: the
random access machine or RAM.
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A RAM consists of an unbounded sequence of memory cells

m[0],m[1],m[2], . . .

each of which can store an arbitrary integer, together with a program. A
program consists of a finite sequence of instructions I0, I1, . . ., where each
instruction is of one of the following types:

arithmetic This type of instruction is of the form α ← β ? γ, where ?
represents one of the operations addition, subtraction, multiplication,
or integer division. The values β and γ are of the form c, m[a], or
m[m[a]], and α is of the form m[a] or m[m[a]], where c is an integer
constant and a is a non-negative integer constant. Execution of this
type of instruction causes the value β ? γ to be evaluated and then
stored in α.

branching This type of instruction is of the form IF β 3 γ GOTO i,
where i is the index of an instruction, and where 3 is one of the
comparison operations =, 6=, <, >,≤,≥, and β and γ are as above.
Execution of this type of instruction causes the “flow of control” to
pass conditionally to instruction Ii.

halt The HALT instruction halts the execution of the program.

A RAM executes by executing instruction I0, and continues to execute
instructions, following branching instructions as appropriate, until a HALT
instruction is executed.

We do not specify input or output instructions, and instead assume
that the input and output are to be found in memory at some prescribed
location, in some standardized format.

To determine the running time of a program on a given input, we charge
1 unit of time to each instruction executed.

This model of computation closely resembles a typical modern-day com-
puter, except that we have abstracted away many annoying details. How-
ever, there are two details of real machines that cannot be ignored; namely,
any real machine has a finite number of memory cells, and each cell can
store numbers only in some fixed range.

The first limitation must be dealt with by either purchasing sufficient
memory or designing more space-efficient algorithms.

The second limitation is especially annoying, as we will want to perform
computations with quite large integers — much larger than will fit into any
single memory cell of an actual machine. To deal with this limitation, we
shall represent such large integers as vectors of digits to some base, so that
each digit is bounded so as to fit into a memory cell. This is discussed
in more detail in the next section. Using this strategy, the only other
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numbers we actually need to store in memory cells are “small” numbers
representing array indices, addresses, and the like, which hopefully will fit
into the memory cells of actual machines.

Thus, whenever we speak of an algorithm, we shall mean an algorithm
that can be implemented on a RAM, such that all numbers stored in mem-
ory cells are “small” numbers, as discussed above. Admittedly, this is a
bit imprecise. For the reader who demands more precision, we can make a
restriction such as the following: after the execution of m steps, all num-
bers stored in memory cells are bounded by mc + d in absolute value, for
constants c and d — in making this formal requirement, we assume that
the value m includes the number of memory cells of the input.

Even with these caveats and restrictions, the running time as we have
defined it for a RAM is still only a rough predictor of performance on
an actual machine. On a real machine, different instructions may take
significantly different amounts of time to execute; for example, a division
instruction may take much longer than an addition instruction. Also, on a
real machine, the behavior of the cache may significantly affect the time it
takes to load or store the operands of an instruction. Finally, the precise
running time of an algorithm given by a high-level description will depend
on the quality of the translation of this algorithm into “machine code.”
However, despite all of these problems, it still turns out that measuring the
running time on a RAM as we propose here is nevertheless a good “first
order” predictor of performance on real machines in many cases. Also, we
shall only state the running time of an algorithm using a big-O estimate,
so that implementation-specific constant factors are anyway “swept under
the rug.”

If we have an algorithm for solving a certain class of problems, we
expect that “larger” instances of the problem will require more time to solve
than “smaller” instances. Theoretical computer scientists sometimes equate
the notion of an “efficient” algorithm with that of a polynomial-time
algorithm (although not everyone takes theoretical computer scientists
very seriously, especially on this point). A polynomial-time algorithm is
one whose running time on inputs of length n is bounded by nc + d for
some constants c and d (a “real” theoretical computer scientist will write
this as nO(1)). To make this notion mathematically precise, one needs to
define the length of an algorithm’s input.

To define the length of an input, one chooses a “reasonable” scheme to
encode all possible inputs as a string of symbols from some finite alphabet,
and then defines the length of an input as the number of symbols in its
encoding.

We will be dealing with algorithms whose inputs consist of arbitrary
integers, or lists of such integers. We describe a possible encoding scheme
using the alphabet consisting of the six symbols ‘0’, ‘1’, ‘-’, ‘,’, ‘(’, and ‘)’.



3.3 Basic Integer Arithmetic 39

An integer is encoded in binary, with possibly a negative sign. Thus, the
length of an integer x is approximately equal to log2 |x|. We can encode
a list of integers x1, . . . , xn of numbers as “(x̄1, . . . , x̄n)”, where x̄i is the
encoding of xi. We can also encode lists of lists, and so on, in the obvious
way. All of the mathematical objects we shall wish to compute with can
be encoded in this way. For example, to encode an n×n matrix of rational
numbers, we may encode each rational number as a pair of integers (the
numerator and denominator), each row of the matrix as a list of n encodings
of rational numbers, and the matrix as a list of n encodings of rows.

It is clear that other encoding schemes are possible, giving rise to dif-
ferent definitions of input length. For example, we could encode inputs in
some base other than 2 (but not unary!) or use a different alphabet. In-
deed, it is typical to assume, for simplicity, that inputs are encoded as bit
strings. However, such an alternative encoding scheme would change the
definition of input length by at most a constant multiplicative factor, and
so would not affect the notion of a polynomial-time algorithm.

Note that algorithms may use data structures for representing mathe-
matical objects that look quite different from whatever encoding scheme
one might choose. Indeed, our mathematical objects may never actually be
written down using our encoding scheme (either by us or our programs) —
the encoding scheme is a purely conceptual device that allows us to express
the running time of an algorithm as a function of the length of its input.

Also note that in defining the notion of polynomial time on a RAM, it
is essential that we restrict the sizes of numbers that may be stored in the
machine’s memory cells, as we have done above. Without this restriction,
a program could perform arithmetic on huge numbers, being charged just
one unit of time for each arithmetic operation — not only is this intuitively
“wrong,” it is possible to come up with programs that solve some problems
using a polynomial number of arithmetic operations on huge numbers, and
these problems cannot otherwise be solved in polynomial time (see §3.6).

3.3 Basic Integer Arithmetic

We will need algorithms to manipulate integers of arbitrary length. Since
such integers will exceed the word-size of actual machines, and to satisfy
the formal requirements of our random access model of computation, we
shall represent large integers as vectors of digits to some base B, along with
a bit indicating the sign. That is, for x ∈ Z, if we write

x = ±(
k−1∑
i=0

xiB
i) = ±(xk−1 · · ·x1x0)B ,

where 0 ≤ xi < B for i = 0, . . . , k−1, then x will be represented in memory
as a data structure consisting of the vector of base-B digits x0, . . . , xk−1,
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along with a “sign bit” to indicate the sign of x. When x is non-zero, the
high-order digit xk−1 in this representation should be non-zero.

For our purposes, we shall consider B to be a constant, and moreover,
a power of 2. The choice of B as a power of 2 is convenient for a number
of technical reasons.

A note to the reader: If you are not interested in the low-level details
of algorithms for integer arithmetic, or are willing to take them on faith,
you may safely skip ahead to §3.3.5, where the results of this section are
summarized.

We now discuss in detail basic arithmetic algorithms for unsigned (i.e.,
non-negative) integers — these algorithms work with vectors of base-B
digits, and except where explicitly noted, we do not assume the high-order
digits of the input vectors are non-zero, nor do these algorithms ensure that
the high-order digit of the output vector is non-zero. These algorithms can
be very easily adapted to deal with arbitrary signed integers, and to take
proper care that the high-order digit of the vector representing a non-zero
number is non-zero (the reader is asked to fill in these details in some of the
exercises below). All of these algorithms can be implemented directly in a
programming language that provides a “built-in” signed integer type that
can represent all integers of absolute value less than B2, and that provides
the basic arithmetic operations (addition, subtraction, multiplication, in-
teger division). So, for example, using the C programming language’s int
type on a typical 32-bit computer, we could take B = 215. The resulting
software would be reasonably efficient, but certainly not the best possible.

Suppose we have two unsigned integers a and b, represented with k and
` base-B digits, respectively, with k ≥ `. So we have a = (ak−1 · · · a0)B

and b = (b`−1 · · · b0)B . We present algorithms to compute the base-B
representation of a + b, a − b, a · b, ba/bc, and a rem b. To simplify the
presentation, for integers x, y with y 6= 0, we write div(x, y) to denote
(bx/yc, x rem y).

3.3.1 Addition

The sum c := a + b is of the form c = (ckck−1 · · · c0)B . Using the standard
“paper-and-pencil” method (adapted from base-10 to base-B, of course),
we can compute the base-B representation of a+b in time O(k), as follows:
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carry ← 0
for i← 0 to `− 1 do

tmp ← ai + bi + carry , (carry , ci)← div(tmp, B)
for i← ` to k − 1 do

tmp ← ai + carry , (carry , ci)← div(tmp, B)
ck ← carry

Note that in every loop iteration, the value of carry is 0 or 1, and the
value tmp lies between 0 and 2B − 1.

3.3.2 Subtraction

To compute the difference c := a − b, assuming that a ≥ b, we may use
the same algorithm as above, but with the expression “ai + bi” replaced by
“ai − bi.” In every loop iteration, the value of carry is 0 or −1, and the
value of tmp lies between −B and B − 1. Moreover, since we are assuming
that a ≥ b, we have ck = 0; that is, there is no carry out of the last loop
iteration.

Exercise 3.13. Work out the details of an algorithm that compares two
unsigned integers a and b, determining which of a < b, a = b, or a > b
holds. Assume the inputs are vectors of base-B digits. 2

Exercise 3.14. Work out the details of an algorithm that computes the
sum of two signed integers. Make use of algorithms for unsigned integers
as appropriate. Also, be sure that the you strip any high-order zero digits
from the output vector. 2

3.3.3 Multiplication

The product c := a ·b is of the form (ck+`−1 · · · c0)B , and may be computed
in time O(k`) as follows:

for i← 0 to k + `− 1 do ci ← 0
for i← 0 to k − 1 do

carry ← 0
for j ← 0 to `− 1 do

tmp ← aibj + ci+j + carry
(carry , ci+j)← div(tmp, B)

ci+` ← carry

Note that at every step in the above algorithm, the value of carry lies
between 0 and B − 1, and the value of tmp lies between 0 and B2 − 1.
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Exercise 3.15. Work out the details of an algorithm that computes the
product of two signed integers. Make use of algorithms for unsigned integers
as appropriate. 2

3.3.4 Division with remainder

We now consider the problem of computing q and r such that a = bq + r
and 0 ≤ r < b. Let us assume that a ≥ b; otherwise, we can just set q ← 0
and r ← a. Also, let us assume that b`−1 6= 0. The quotient q will have at
most m := k − ` + 1 base-B digits. Write q = (qm−1 · · · q0)B .

At a high level, the strategy we shall use to compute q and r is the
following:

r ← a
for i← m− 1 down to 0 do

qi ← br/Bibc
r ← r −Bi · qib

One easily verifies by induction that at the beginning of each loop it-
eration, we have 0 ≤ r < Bi+1b, and hence each qi will be between 0 and
B − 1, as required.

Turning the above strategy into a detailed algorithm takes a bit of work.
In particular, we want an easy way to compute br/Bibc. Now, we could in
theory just try all possible choices for qi — this would take time O(B`),
and viewing B as a constant, this is O(`). However, this is not really very
desirable from either a practical or theoretical point of view, and we can
do much better with just a little effort.

We shall first consider a special case; namely, the case where ` = 1.
In this case, the computation of the quotient br/Bibc is facilitated by the
following, which essentially tells us that this quotient is determined by the
high-order two digits of r:

Theorem 3.1. Let x and y be integers such that

0 ≤ x = x′2n + s and 0 < y = y′2n

for some integers n, s, x′, y′, with n ≥ 0 and 0 ≤ s < 2n. Then bx/yc =
bx′/y′c.

Proof. We have
x

y
=

x′

y′
+

s

y′2n
≥ x′

y′
.

It follows immediately that bx/yc ≥ bx′/y′c.
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We also have

x

y
=

x′

y′
+

s

y′2n
<

x′

y′
+

1
y′
≤

(⌊
x′

y′

⌋
+

y′ − 1
y′

)
+

1
y′

.

Thus, we have x/y < bx′/y′c+ 1, and hence, bx/yc ≤ bx′/y′c. 2

From this theorem, one sees that the following algorithm correctly com-
putes the quotient and remainder in time O(k) (in the case ` = 1):

carry ← 0
for i← k − 1 down to 0 do

tmp ← carry ·B + ai

(carry , qi)← div(tmp, b0)
output the quotient q = (qk−1 · · · q0)B and the remainder carry

Note that in every loop iteration, the value of carry lies between 0 and
b0 ≤ B−1, and the value of tmp lies between 0 and B ·b0+(B−1) ≤ B2−1.

That takes care of the special case where ` = 1. Now we turn to the
general case ` ≥ 1. In this case, we cannot so easily get the digits qi of
the quotient, but we can still fairly easily estimate these digits, using the
following:

Theorem 3.2. Let x and y be integers such that

0 ≤ x = x′2n + s and 0 < y = y′2n + t

for some integers n, s, t, x′, y′ with n ≥ 0, 0 ≤ s < 2n, and 0 ≤ t < 2n.
Further suppose that 2y′ ≥ x/y. Then we have

bx/yc ≤ bx′/y′c ≤ bx/yc+ 2.

Proof. For the first inequality, note that x/y ≤ x/(y′2n), and so
bx/yc ≤ bx/(y′2n)c, and by the previous theorem, bx/(y′2n)c = bx′/y′c.
That proves the first inequality.

For the second inequality, first note that from the definitions, x/y ≥
x′/(y′ + 1), which is equivalent to x′y − xy′ − x ≤ 0. Now, the inequality
2y′ ≥ x/y is equivalent to 2yy′ − x ≥ 0, and combining this with the
inequality x′y − xy′ − x ≤ 0, we obtain 2yy′ − x ≥ x′y − xy′ − x, which is
equivalent to x/y ≥ x′/y′ − 2. It follows that bx/yc ≥ bx′/y′c − 2. That
proves the second inequality. 2

Based on this theorem, we first present an algorithm for divsion with re-
mainder that works assuming that b is appropriately “normalized,” meaning
that b`−1 ≥ 2w−1, where B = 2w. This algorithm is shown in Figure 3.1.

Some remarks are in order:
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1. for i← 0 to k − 1 do ri ← ai

2. rk ← 0
3. for i← k − ` down to 0 do
4. qi ← b(ri+`B + ri+`−1)/b`−1c
5. if qi ≥ B then qi ← B − 1
6. carry ← 0
7. for j ← 0 to `− 1 do
8. tmp ← ri+j − qibj + carry
9. (carry , ri+j)← div(tmp, B)

10. ri+` ← ri+` + carry
11. while ri+` < 0 do
12. carry ← 0
13. for j ← 0 to `− 1 do
14. tmp ← ri+j + bi + carry
15. (carry , ri+j)← div(tmp, B)
16. ri+` ← ri+` + carry
17. qi ← qi − 1
18. output the quotient q = (qk−` · · · q0)B

and the remainder r = (r`−1 · · · r0)B

Figure 3.1: Division with Remainder Algorithm

1. In line 4, we compute qi, which by Theorem 3.2 is greater than or
equal to the true quotient digit, but exceeds this value by at most
two.

2. In line 5, we reduce qi if it is obviously too big.

3. In lines 6–10, we compute

(ri+` · · · ri)B ← (ri+` · · · ri)B − qib.

In each loop iteration, the value of tmp lies between −(B2 − B) and
B − 1, and the value carry lies between −(B − 1) and 0.

4. If the estimate qi is too large, this is manifested by a negative value
of ri+` at line 10. Lines 11–17 detect and correct this condition: the
loop body here executes at most twice; in lines 12–16, we compute

(ri+` · · · ri)B ← (ri+` · · · ri)B + (b`−1 · · · b0)B .

Just as in the algorithm in §3.3.1, in every iteration of the loop in lines
13–15, the value of carry is 0 or 1, and the value tmp lies between 0
and 2B − 1.
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The running time for the above algorithm is easily seen to be O(` · (k−
` + 1)).

Now consider the general case, where b may not be normalized. We
multiply both a and b by an appropriate value 2w′

, with 0 ≤ w′ < w,
obtaining a′ := a2w′

and b′ := 2w′
, where b′ is normalized; alternatively,

we can use a more efficient, special-purpose “left shift” algorithm to achieve
the same effect. We then compute q and r′ such that a′ = b′q + r′, using
the above division algorithm for the normalized case. Observe that q =
ba′/b′c = ba/bc, and r′ = r2w′

, where r = a rem b. To recover r, we simply
divide r′ by 2w′

, which we can do either using the above “single precision”
division algorithm, or by using a special-purpose “right shift” algorithm.
All of this normalizing and denormalizing takes time O(k + `). Thus, the
total running time for division with remainder is still O(` · (k − ` + 1)).

Exercise 3.16. Work out the details of an algorithm that computes the
quotient and remainder for signed integers, using an algorithm for unsigned
integers as a subroutine. Your algorithm should compute the quotient q :=
ba/bc and remainder r := a− bq. 2

Exercise 3.17. Suppose that we run the division with remainder algo-
rithm in Figure 3.1 for ` > 1 without normalizing b, but instead, we compute
the value qi in line 4 as follows:

qi ← b(ri+`B
2 + ri+`−1B + ri+`−2)/(b`−1B + b`−2)c.

Show that qi is either equal to the correct quotient digit, or the correct
quotient digit plus 1. Note that a limitation of this approach is that the
numbers involved in the computation are larger than B2. 2

Exercise 3.18. Work out the details for an algorithm that shifts a given
unsigned integer a to the left by a specified number of bits s (i.e., computes
b := a · 2s). The running time of your algorithm should be linear in the
number of digits of the output. 2

Exercise 3.19. Work out the details for an algorithm that shifts a given
unsigned integer a to the right by a specified number of bits s (i.e., computes
b := ba/2sc). The running time of your algorithm should be linear in the
number of digits of the output. Now modify your algorithm so that it
correctly computes ba/2sc for signed integers a. 2

Exercise 3.20. This exercise is for C programmers. Suppose that values
of type int are stored using a 32-bit two’s complement representation,
and that all basic arithmetic operations are computed correctly modulo
232, even if an “overflow” happens to occur. Also assume that double
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precision floating point has 53 bits of precision, and that all basic arithmetic
operations give a result with a relative error of at most 2−53. Also assume
that conversion from type int to double is exact, and that conversion from
double to int truncates the fractional part. These assumptions reflect very
typical implementations, in fact.

Now, suppose we are given int variables a, b, and n, such that 1 < n <
230, 0 ≤ a < n, and 0 ≤ b < n. Show that after the following code sequence
is executed, the value of r is equal to (a · b) rem n:

int q;

q = (int) ((((double) a) * ((double) b)) / ((double) n));
r = a*b - q*n;

if (r >= n)
r = r - n;

else if (r < 0)
r = r + n;

2

3.3.5 Summary

We now summarize the results of this section. For an integer n, we define
len(n) to be the number of bits in the binary representation of |n|; more
precisely,

len(n) :=
{
blog2 |n|c+ 1 if n 6= 0,
1 if n = 0.

Notice that for n > 0, if ` := len(n), then we have log2 n < ` ≤ log2 n + 1,
or equivalently, 2`−1 ≤ n < 2`.

Assuming that arbitrarily large integers are represented as described at
the beginning of this section, with a sign bit and a vector of base-B digits,
where B is a constant power of 2, we may state the following theorem.

Theorem 3.3. Let a and b be arbitrary integers.

(i) We can compute a± b in time O(len(a) + len(b)).

(ii) We can compute a · b in time O(len(a) len(b)).

(iii) If b 6= 0, we can compute the quotient q := ba/bc and the remainder
r := a rem b in time O(len(b) len(q)).

Note the bound O(len(b) len(q)) in part (iii) of this theorem, which
may be significantly less than the bound O(len(a) len(b)). A good way
to remember this bound is as follows: the time to compute the quotient
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and remainder is roughly the same as the time to compute the product bq
appearing in the equality a = bq + r.

This theorem does not explicitly refer to the base B in the underlying
implementation. The choice of B affects the values of the implied big-O
constants; while in theory, this is of no significance, it does have a significant
impact in practice.

From now on, we shall not worry about the implementation details of
long-integer arithmetic, and will just refer directly this theorem. However,
we will occasionally exploit some trivial aspects of our data structure for
representing large integers. For example, it is clear that in constant time,
we can determine the sign of a given integer a, the bit length of a, and
any particular bit of the binary representation of a; moreover, as discussed
in Exercises 3.18 and 3.19, multiplications and divisions by powers of 2
can be computed in linear time via “left shifts” and “right shifts.” It
is also clear that we can convert between the base-2 representation of a
given integer and our implementation’s internal representation in linear
time (other conversions may take longer — see Exercise 3.25).

A note on notation: “len” and “log.” In expressing the run-
ning times of algorithms, we generally prefer to write, for exam-
ple, O(len(a) len(b)), rather than O((log a)(log b)). There are two
reasons for this. The first is esthetic: the function “len” stresses
the fact that running times should be expressed in terms of the bit
length of the inputs. The second is technical: big-O estimates in-
volving expressions containing several independent parameters, like
O(len(a) len(b)), should be valid for all possible values of the param-
eters, since the notion of “sufficiently large” does not make sense in
this setting; because of this, it is very inconvenient to have functions,
like log, that vanish or are undefined on some inputs.

Exercise 3.21. Let n1, . . . , nk be positive integers. Show that

k∑
i=1

len(ni)− k ≤ len
( k∏

i=1

ni

)
≤

k∑
i=1

len(ni).

2

Exercise 3.22. Show that the product n of integers n1, . . . , nk, with each
ni > 1, can be computed in time O(len(n)2). Do not assume that k is a
constant. 2

Exercise 3.23. Show that given integers n1, . . . , nk, with each ni > 1,
and an integer z, where 0 ≤ z < n and n =

∏
i ni, we can compute the k

integers z rem ni, for i = 1, . . . , k, in time O(len(n)2). 2
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Exercise 3.24. Consider the problem of computing bn1/2c for a given
non-negative integer n.

(a) Using binary search, give an algorithm for this problem that runs in
time O(len(n)3). Your algorithm should discover the bits of bn1/2c
one at a time, from high- to low-order bit.

(b) Refine you algorithm from part (a), so that it runs in time O(len(n)2).

2

Exercise 3.25. Show how to convert (in both directions) between the
base-10 representation and our implementation’s internal representation of
an integer n in time O(len(n)2). 2

3.4 Computing in Zn

Let n > 1. For α ∈ Zn, there exists a unique integer a ∈ {0, . . . , n−1} such
that α = [a mod n]; we call this integer a the canonical representative
of α, and denote it by rep(α). For computational purposes, we represent
elements of Zn by their canonical representatives.

Addition and subtraction in Zn can be performed in time O(len(n)):
given α, β ∈ Zn, to compute rep(α + β), we simply compute the integer
sum rep(α) + rep(β), subtracting n if the result is greater than or equal
to n; similarly, to compute rep(α − β), we compute the integer difference
rep(α)− rep(β), adding n if the result is negative. Multiplication in Zn can
be performed in time O(len(n)2): given α, β ∈ Zn, we compute rep(α ·β) as
rep(α)rep(β) rem n, using one integer multiplication and one division with
remainder.

A note on notation: “rep,” “rem,” and “mod.” In describing
algorithms, as well as in other contexts, if α, β are elements of Zn, we
may write, for example, γ ← α + β or γ ← αβ, and it is understood
that elements of Zn are represented by their canonical representatives
as discussed above, and arithmetic on canonical representatives is
done modulo n. Thus, we have in mind a “strongly typed” language
for our pseudo-code that makes a clear distinction between integers
in the set {0, . . . , n − 1} and elements of Zn. If a ∈ Z, we can
convert a to an object α ∈ Zn by writing α ← [a mod n], and if
a ∈ {0, . . . , n−1}, this type conversion is purely conceptual, involving
no actual computation. Conversely, if α ∈ Zn, we can convert α to
an object a ∈ {0, . . . , n− 1}, by writing a← rep(α); again, this type
conversion is purely conceptual, and involves no actual computation.
It is perhaps also worthwhile to stress the distinction between a rem n
and [a mod n] — the former denotes an element of the set {0, . . . , n−
1}, while the latter denotes an element of Zn.
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Another interesting problem is exponentiation in Zn: given α ∈ Zn and
a non-negative integer e, compute αe ∈ Zn. Perhaps the most obvious
way to do this is to iteratively multiply by α a total of e times, requir-
ing time O(e len(n)2). A much faster algorithm, the repeated-squaring
algorithm, computes αe using just O(len(e)) multiplications in Zn, thus
taking time O(len(e) len(n)2).

This method works as follows. Let e = (b`−1 · · · b0)2 be the binary
expansion of e (where b0 is the low-order bit). For i = 0, . . . , `, define
ei := be/2ic; the binary expansion of ei is ei = (b`−1 · · · bi)2. Also define
βi := αei for i = 0, . . . , `, so β` = 1 and β0 = αe. Then we have

ei = 2ei+1 + bi and βi = β2
i+1 · αbi for i = 0, . . . , `− 1.

This idea yields the following algorithm:

β ← [1 mod n]
for i← `− 1 down to 0 do

β ← β2

if bi = 1 then β ← β · α
output β

It is clear that when this algorithm terminates, we have β = αe, and
that the running-time estimate is as claimed above. Indeed, the algorithm
uses ` squarings in Zn, and at most ` additional multiplications in Zn.

The following exercises develop some important efficiency improvements
to the basic repeated-squaring algorithm.

Exercise 3.26. This exercise develops a “2k-ary” method, instead of a
binary method, for exponentiation in Zn.

(a) Show how to modify the repeated squaring so as to compute αe using
at most ` squarings in Zn, and an additional 2k + `/k + O(1) mul-
tiplications in Zn. As above, α ∈ Zn and len(e) = `, while k is a
parameter that we are free to choose. Your algorithm should begin
by building a table of powers 1, α, . . . , α2k−1, and after that, it should
process the bits of e in blocks of length k.

(b) Show that by appropriately choosing the parameter k, we can bound
the number of additional multiplications in Zn by O(`/ len(`)). Thus,
from an asymptotic point of view, the cost of exponentiation is essen-
tially the cost of ` squarings in Zn.

(c) Improve your algorithm from part (a), so that it only uses at most `
squarings in Zn, and an additional 2k−1 + `/k + O(1) multiplications
in Zn. Hint: build a table that contains only the odd powers of α

among 1, α, . . . , α2k−1.
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2

Exercise 3.27. Suppose we are given α1, . . . , αk ∈ Zn, along with non-
negative integers e1, . . . , ek, where len(ei) ≤ ` for i = 1, . . . , k. Show how
to compute

β := αe1
1 · · ·α

ek

k

using at most ` squarings in Zn and an additional `+2k +O(1) multiplica-
tions in Zn. Your algorithm should work in two phases: in the first phase,
the algorithm uses just the values α1, . . . , αk to build a table of all possible
products of subsets of α1, . . . , αk, performing 2k + O(1) multiplications in
Zn; in the second phase, the algorithm computes β, using the exponents
e1, . . . , ek, and the table computed in the first phase. 2

Exercise 3.28. Suppose that we are to compute αe, where α ∈ Zn, for
many `-bit exponents e, but with α fixed. Show that for any positive
integer parameter k, we can make a pre-computation (depending on α,
`, and k) that uses O(` + 2k) multiplications in Zn, so that after the pre-
computation, we can compute αe for any `-bit exponent e using just O(`/k)
multiplications in Zn. Hint: use the previous exercise. 2

Exercise 3.29. Let m1, . . . ,mr be integers, each greater than 1, and let
m := m1 · · ·mr. Also, for i = 1, . . . , r, define m′

i := m/mi. Given α ∈ Zn,
show how to compute all of the quantities

αm′
1 , . . . , αm′

r

using a total of O(len(r) len(m)) multiplications in Zn. Hint: divide and
conquer. 2

3.5 ♣ Faster Integer Arithmetic

The quadratic-time algorithms presented in §3.3 for integer multiplication
and division are by no means the fastest possible. The next exercise devel-
ops a faster multiplication algorithm.

Exercise 3.30. Suppose we have two positive, `-bit integers a and b such
that a = a12k + a0 and b = b12k + b0, where 0 ≤ a0 < 2k and 0 ≤ b0 < 2k.
Then

ab = a1b122k + (a0b1 + a1b0)2k + a0b0.

Show how to compute the product ab in time O(`), given the products a0b0,
a1b1, and (a0 − a1)(b0 − b1). From this, design a recursive algorithm that
computes ab in time O(`log2 3). (Note that log2 3 ≈ 1.58.) 2
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In the following exercises, assume that we have an algorithm that mul-
tiplies two integers of at most ` bits in time M(`). It is convenient (and
reasonable) to assume that M is a well-behaved complexity function.
By this, we mean that M maps non-negative integers to non-negative real
numbers, and

• for all non-negative integers a and b, M(a + b) ≥M(a) + M(b), and

• for all positive integers a, there exists a positive integer b, such that
for all non-negative integers `, M(a`) ≤ bM(`).

The first condition says that M grows at least linearly in `, while the second
says that M does not grow “too fast.” The reader may verify that these
conditions imply that M is a non-decreasing function, that M(0) = 0, and
that if M(`) > 0 for any `, then M(`) > 0 for all ` > 0.

Here are some examples of well-behaved complexity functions:

`2, `log2 3, ` len(`), ` len(`) len(len(`)), ` len(`)2.

Exercise 3.31. Give an algorithm for Exercise 3.22 that runs in time

O(M(len(n)) len(k)).

Hint: divide and conquer. 2

Exercise 3.32. We can represent a “floating point” number ẑ as a pair
(a, e), where a and e are integers — the value of ẑ is the rational number
a2e, and we call len(a) the precision of ẑ. We say that ẑ is a k-bit
approximation of a real number z if ẑ has precision k and ẑ = (1 + ε)z
for some |ε| ≤ 2−k+1. Show how to compute — given positive integers b
and k — a k-bit approximation to 1/b in time O(M(k)).

Hint: using Newton iteration, show how to go from a t-bit approxima-
tion of 1/b to a (2t − 2)-bit approximation of 1/b, making use of just the
high-order O(t) bits of b, in time O(M(t)). Newton iteration is a gen-
eral method of iteratively approximating a root of an equation f(x) = 0
by starting with an initial approximation x0, and computing subsequent
approximations by the formula xi+1 = xi−f(xi)/f ′(xi), where f ′(x) is the
derivative of f(x). For this exercise, apply Newton iteration to the function
f(x) = x−1 − b. 2

Exercise 3.33. Using the result of the previous exercise, given positive
integers a and b of bit length at most `, show how to compute ba/bc and
a rem b in time O(M(`)). From this, we see that up to a constant factor,
division with remainder is no harder that multiplication. 2

Exercise 3.34. Using the result of the previous exercise, give an algo-
rithm for Exercise 3.23 that runs in time O(M(len(n)) len(k)). Hint: divide
and conquer. 2
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Exercise 3.35. Give an algorithm for Exercise 3.24 that runs in time
O(M(len(n))). Hint: Newton iteration. 2

Exercise 3.36. Give algorithms for Exercise 3.25 that run in time
O(M(`) len(`)), where ` := len(n). Hint: divide and conquer. 2

Exercise 3.37. Suppose we have an algorithm that computes the square
of an `-bit integer in time S(`), where S is a well-behaved complexity func-
tion. Show how to use this algorithm to compute the product of two arbi-
trary integers of at most ` bits in time O(S(`)). 2

3.6 Notes

Shamir [80] shows how to factor an integer in polynomial time on a RAM,
but where the numbers stored in the memory cells may have exponentially
many bits. As there is no known polynomial-time factoring algorithm on
any realistic machine, Shamir’s algorithm demonstrates the importance of
restricting the sizes of numbers stored in the memory cells of our RAMs to
keep our formal model realistic.

The most practical implementations of algorithms for arithmetic on
large integers are written in low-level “assembly language,” specific to a
particular machine’s architecture (e.g., the GNU Multi-Precision library
GMP, available at www.swox.com/gmp). Besides the general fact that such
hand-crafted code is more efficient than that produced by a compiler, there
is another, more important reason for using such code. A typical 32-bit ma-
chine often comes with instructions that allow one to compute the 64-bit
product of two 32-bit integers, and similarly, instructions to divide a 64-bit
integer by a 32-bit integer (obtaining both the quotient and remainder).
However, high-level programming languages do not (as a rule) provide any
access to these low-level instructions. Indeed, we suggested in §3.3 using a
value for the base B of about half the word-size of the machine, so as to
avoid overflow. However, if one codes in assembly language, one can take B
to be much closer to, or even equal to, the word-size of the machine. Since
our basic algorithms for multiplication and division run in time quadratic
in the number of base-B digits, the effect of doubling the bit-length of B is
to decrease the running time of these algorithms by a factor of four. This
effect, combined with the improvements one might typically expect from
using assembly-language code, can easily lead to a five- to ten-fold decrease
in the running time, compared to an implementation in a high-level lan-
guage. This is, of course, a significant improvement for those interested in
serious “number crunching.”

The “classical,” quadratic-time algorithms presented here for integer
multiplication and division are by no means the best possible: there

www.swox.com/gmp
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are algorithms whose running times are asymptotically faster than these
quadratic-time algorithms. We saw this in the algorithm in Exercise 3.30,
which was originally invented by Karatsuba [48] (although Karatsuba is
one of two authors on this paper, the paper gives exclusive credit for this
particular result to Karatsuba). That algorithm allows us to multiply two
`-bit integers in time O(`log2 3). The fastest known algorithm for multiply-
ing two `-bit integers on a RAM runs in time O(`). This algorithm is due
to Schönhage, and actually works on a very restricted type of RAM called
a “pointer machine” (see Problem 12, Section 4.3.3 of Knuth [50]).

Another model of computation is that of boolean circuits. In this
model of computation, one considers families of boolean circuits (with, say,
the usual “and,” “or,” and “not” gates) that compute a particular function
— for every input length, there is a different circuit in the family that
computes the function on inputs of that length. One natural notion of
complexity for such circuit families is the size of the circuit (i.e., the number
of gates and wires in the circuit), which is measured as a function of the
input length. The smallest known boolean circuit that multiplies two `-bit
numbers has size O(` len(`) len(len(`))). This result is due to Schönhage
and Strassen [78].

It is hard to say which model of computation, the RAM or circuits, is
“better.” On the one hand, the RAM very naturally models computers as
we know them today: one stores small numbers, like array indices, coun-
ters, and pointers, in individual words of the machine, and processing such
a number typically takes a single “machine cycle.” On the other hand, the
RAM model, as we formally defined it, invites a certain kind of “cheating,”
as it allows one to stuff O(len(`))-bit integers into memory cells. For exam-
ple, even with the simple, quadratic-time algorithms for integer arithmetic
discussed in §3.3, we can choose the base B to have len(`) bits, in which
case these algorithms would run in time O((`/ len(`))2). However, just to
keep things simple, we have chosen to view B as a constant (from a formal,
asymptotic point of view).

In the remainder of this text, unless otherwise specified, we shall always
use the classical O(`2) bounds for integer multiplication and division, which
have the advantage of being both simple and reasonably reliable predictors
of actual performance for small to moderately sized inputs. For relatively
large numbers, experience shows that the classical algorithms are definitely
not the best — Karatsuba’s multiplication algorithm, and related algo-
rithms for division, start to perform significantly better than the classical
algorithms on inputs of a thousand bits or so (the exact crossover depends
on myriad implementation details). The even “faster” algorithms discussed
above are typically not interesting unless the numbers involved are truly
huge, of bit length around 105–106. Thus, the reader should bear in mind
that for serious computations involving very large numbers, the faster al-
gorithms are very important, even though this text does not discuss them
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at great length.
For a good survey of asymptotically fast algorithms for integer arith-

metic, see Chapter 9 of Crandall and Pomerance [26], as well as Chapter 4
of Knuth [50].



Chapter 4

Euclid’s Algorithm

In this chapter, we discuss Euclid’s algorithm for computing greatest com-
mon divisors. It turns out that Euclid’s algorithm has a number of very
nice properties, and has applications far beyond that of just computing
greatest common divisors.

4.1 The Basic Euclidean Algorithm

We consider the following problem: given two non-negative integers a and
b, compute their greatest common divisor, gcd(a, b). We can do this using
the well-known Euclidean algorithm, also called Euclid’s algorithm.

The basic idea of Euclid’s algorithm is the following. Without loss of
generality, we may assume that a ≥ b ≥ 0. If b = 0, then there is nothing to
do, since in this case, gcd(a, 0) = a. Otherwise, if b > 0, we can compute the
integer quotient q := ba/bc and remainder r := a rem b, where 0 ≤ r < b.
From the equation

a = bq + r,

it is easy to see that if an integer d divides both b and r, then it also divides
a; likewise, if an integer d divides a and b, then it also divides r. From this
observation, it follows that gcd(a, b) = gcd(b, r), and so by performing a
division, we reduce the problem of computing gcd(a, b) to the “smaller”
problem of computing gcd(b, r).

The following theorem develops this idea further:

Theorem 4.1. Let a, b be integers, with a ≥ b ≥ 0. Using the division
with remainder property, define the integers r0, r1, . . . , r`+1, and q1, . . . , q`,
where ` ≥ 0, as follows:

55
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a = r0,

b = r1,

r0 = r1q1 + r2 (0 < r2 < r1),
...

ri−1 = riqi + ri+1 (0 < ri+1 < ri),
...

r`−2 = r`−1q`−1 + r` (0 < r` < r`−1),
r`−1 = r`q` (r`+1 = 0).

Note that by definition, ` = 0 if b = 0, and ` > 0, otherwise.
Then we have r` = gcd(a, b). Moreover, if b > 0, then ` ≤ log b/ log φ +

1, where φ := (1 +
√

5)/2 ≈ 1.62.

Proof. For the first statement, one sees that for i = 1, . . . , `, we have
ri−1 = riqi + ri+1, from which it follows that the common divisors of ri−1

and ri are the same as the common divisors of ri and ri+1, and hence
gcd(ri−1, ri) = gcd(ri, ri+1). From this, it follows that

gcd(a, b) = gcd(r0, r1) = gcd(r`, r`+1) = gcd(r`, 0) = r`.

To prove the second statement, assume that b > 0, and hence ` > 0.
If ` = 1, the statement is obviously true, so assume ` > 1. We claim that
for i = 0, . . . , ` − 1, we have r`−i ≥ φi. The statement will then follow by
setting i = `− 1 and taking logarithms.

We now prove the above claim. For i = 0 and i = 1, we have

r` ≥ 1 = φ0 and r`−1 ≥ r` + 1 ≥ 2 ≥ φ1.

For i = 2, . . . , `− 1, using induction and applying the fact the φ2 = φ + 1,
we have

r`−i ≥ r`−(i−1) + r`−(i−2) ≥ φi−1 + φi−2 = φi−2(1 + φ) = φi,

which proves the claim. 2

Example 4.1. Suppose a = 100 and b = 35. Then the numbers appear-
ing in Theorem 4.1 are easily computed as follows:

i 0 1 2 3 4
ri 100 35 30 5 0
qi 2 1 6

So we have gcd(a, b) = r3 = 5. 2
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We can easily turn the scheme described in Theorem 4.1 into a simple
algorithm, taking as input integers a, b, such that a ≥ b ≥ 0, and producing
as output d = gcd(a, b):

d← a, e← b
while e 6= 0 do

r ← d rem e
(d, e)← (e, r)

output d

We now consider the running time of Euclid’s algorithm. Naively, one
could estimate this as follows. Suppose a and b are k-bit numbers. The
algorithm performs O(k) divisions on numbers with at most k-bits. As each
such division takes time O(k2), this leads to a bound on the running time
of O(k3). However, as the following theorem shows, this cubic running time
bound is well off the mark.

Theorem 4.2. Euclid’s algorithm runs in time O(len(a) len(b)).

Proof. We may assume that b > 0. The running time is O(τ), where
τ :=

∑`
i=1 len(ri) len(qi). Since ri ≤ b for i = 1, . . . , `, we have

τ ≤ len(b)
∑̀
i=1

len(qi) ≤ len(b)
∑̀
i=1

(log2 qi + 1) = len(b)(` + log2(
∏̀
i=1

qi)).

Note that

a = r0 ≥ r1q1 ≥ r2q2q1 ≥ · · · ≥ r`q` · · · q1 ≥ q` · · · q1.

We also have ` ≤ log b/ log φ + 1. Combining this with the above, we have

τ ≤ len(b)(log b/ log φ + 1 + log2 a) = O(len(a) len(b)),

which proves the theorem. 2

Exercise 4.1. This exercise looks at an alternative algorithm for com-
puting gcd(a, b), called the binary gcd algorithm, which can be directly
implemented using just additions, subtractions, and “shift” operations,
which on real-world computers, are often very efficiently implemented. In
practice, this algorithm is usually faster than Euclid’s algorithm.

For integer n = 2em, with m odd, let EvenPart(n) := 2e and
OddPart(n) := m. The algorithm takes positive integers a and b as input,
and runs as follows:
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c← min(EvenPart(a),EvenPart(b))
d← OddPart(a), e← OddPart(b)
(d, e)← (max(d, e),min(d, e))
v ← d− e
while v 6= 0 do

v ← OddPart(v)
(d, e)← (max(v, e),min(v, e))
v ← d− e

output c · d

Show that this algorithm correctly computes gcd(a, b), and runs in time
O(`2), where ` := max(len(a), len(b)). 2

4.2 The Extended Euclidean Algorithm

Let a and b be non-negative integers, and let d := gcd(a, b). We know by
Theorem 1.6 that there exist integers s and t such that as + bt = d. The
extended Euclidean algorithm allows us to efficiently compute s and t.
The following theorem describes the algorithm, and also states a number
of important facts about the relative sizes of the numbers that arise during
the computation — these size estimates will play a crucial role, both in the
analysis of the running time of the algorithm, as well as in applications of
the algorithm that we will discuss later.

Theorem 4.3. Let a, b, r0, r1, . . . , r`+1 and q1, . . . , q` be as in Theo-
rem 4.1. Define integers s0, s1, . . . , s`+1 and t0, t1, . . . , t`+1 as follows:

s0 := 1, t0 := 0,

s1 := 0, t1 := 1,

and for i = 1, . . . , `,

si+1 := si−1 − siqi, ti+1 := ti−1 − tiqi.

Then

(i) for i = 0, . . . , ` + 1, we have sia + tib = ri; in particular, s`a + t`b =
gcd(a, b);

(ii) for i = 0, . . . , `, we have siti+1 − tisi+1 = (−1)i;

(iii) for i = 0, . . . , ` + 1, we have gcd(si, ti) = 1;

(iv) for i = 0, . . . , `, we have titi+1 ≤ 0 and |ti| ≤ |ti+1|; for i = 1, . . . , `,
we have sisi+1 ≤ 0 and |si| ≤ |si+1|;
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(v) for i = 1, . . . , ` + 1, we have ri−1|ti| ≤ a and ri−1|si| ≤ b.

Proof. (i) is easily proved by induction on i. For i = 0, 1, the statement is
clear. For i = 1, . . . , `, we have

si+1a + ti+1b = (si−1 − siqi)a + (ti−1 − tiqi)b
= (si−1a + ti−1b)− (sia + tib)qi

= ri−1 − riqi (by induction)
= ri+1.

(ii) is also easily proved by induction on i. For i = 0, the statement is
clear. For i = 1, . . . , `, we have

siti+1 − tisi+1 = si(ti−1 − tiqi)− ti(si−1 − siqi)
= −(si−1ti − ti−1si) (after expanding and simplifying)
= −(−1)i−1 = (−1)i (by induction).

(iii) follows directly from (ii).
For (iv), one can easily prove both statements by induction on i. The

statement involving the ti is clearly true for i = 0; for i = 1, . . . , `, we have
ti+1 = ti−1 − tiqi, and since by the induction hypothesis ti−1 and ti have
opposite sign and |ti| ≥ |ti−1|, it follows that |ti+1| = |ti−1| + |ti|qi ≥ |ti|,
and that the sign of ti+1 is the opposite of that of ti. The proof of the
statement involving the si is the same, except that we start the induction
at i = 1.

For (v), one considers the two equations:

si−1a + ti−1b = ri−1,

sia + tib = ri.

Subtracting ti−1 times the second equation from ti times the first, applying
(ii), and using the fact that ti and ti−1 have opposite sign, we obtain

a = |tiri−1 − ti−1ri| ≥ |ti|ri−1,

from which the inequality involving ti follows. The inequality involving si

follows similarly, subtracting si−1 times the second equation from si times
the first. 2

Suppose that a > 0 in the above theorem. Then for i = 1, . . . , `+1, the
value ri−1 is a positive integer, and so part (v) of the theorem implies that
|ti| ≤ a/ri−1 ≤ a and |si| ≤ b/ri−1 ≤ b. Moreover, if a > 1 and b > 0, then
` > 0 and r`−1 ≥ 2, and hence |t`| ≤ a/2 and |s`| ≤ b/2.

Example 4.2. We continue with Example 4.1. The numbers si and ti
are easily computed from the qi:
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i 0 1 2 3 4
ri 100 35 30 5 0
qi 2 1 6
si 1 0 1 -1 7
ti 0 1 -2 3 -20

So we have gcd(a, b) = 5 = −a + 3b. 2

We can easily turn the scheme described in Theorem 4.3 into a simple
algorithm, taking as input integers a, b, such that a ≥ b ≥ 0, and producing
as output integers d, s, and t, such that d = gcd(a, b) and as + bt = d:

d← a, e← b
s← 1, t← 0
s′ ← 0, t′ ← 1
while e 6= 0 do

q ← bd/ec, r ← d rem e
(s, t, s′, t′)← (s′, t′, s− s′q, t− t′q)
(d, e)← (e, r)

output d, s, t

Theorem 4.4. The extended Euclidean algorithm runs in time

O(len(a) len(b)).

Proof. We may assume that b > 0. It suffices to analyze the cost of
computing the sequences {si} and {ti}. Consider first the cost of computing
all of the ti, which is O(τ), where τ :=

∑`
i=1 len(ti) len(qi). We have t1 = 1

and, by part (v) of Theorem 4.3, we have |ti| ≤ a for i = 2, . . . , `. Arguing
as in the proof of Theorem 4.2, we have

τ ≤ len(q1) + len(a)
∑̀
i=2

len(qi) ≤ len(q1) + len(a)(`− 1 + log2(
∏̀
i=2

qi))

= O(len(a) len(b)),

where we have used the fact that
∏`

i=2 qi ≤ b. An analogous argument
shows that one can also compute all of the si in time O(len(a) len(b)), and
in fact, in time O(len(b)2). 2

Another, instructive way to view Theorem 4.3 is as follows. For i =
1, . . . , `, we have (

ri

ri+1

)
=

(
0 1
1 −qi

) (
ri−1

ri

)
.
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Recursively expanding the right-hand side of this equation, we have for
i = 0, . . . , `, (

ri

ri+1

)
= Mi

(
a
b

)
,

where for i = 1, . . . , `, the matrix Mi is defined as

Mi :=
(

0 1
1 −qi

)
· · ·

(
0 1
1 −q1

)
.

If we define M0 to be the 2× 2 identity matrix, then it is easy to see that

Mi =
(

si ti
si+1 ti+1

)
,

for i = 0, . . . , `. From this observation, part (i) of Theorem 4.3 is immediate,
and part (ii) follows from the fact that Mi is the product of i matrices, each
of determinant −1, and the determinant of Mi is evidently siti+1 − tisi+1.

Exercise 4.2. Develop an “extended” binary gcd algorithm, that is, a
variation of the binary gcd algorithm in Exercise 4.1 that efficiently com-
putes d = gcd(a, b), along with integers s and t such that as + bt = d, and
which uses only addition, subtraction, and “shift” operations. 2

4.3 Computing Modular Inverses and Chi-
nese Remaindering

One application of the extended Euclidean algorithm is to the problem of
computing multiplicative inverses in Zn, where n > 1.

Given y ∈ {0, . . . , n − 1}, in time O(len(n)2), we can determine if y is
relatively prime to n, and if so, compute y−1 rem n, as follows. We run
the extended Euclidean algorithm on inputs a := n and b := y, obtaining
integers d, s, and t, such that d = gcd(n, y) and ns + yt = d. If d 6= 1, then
y does not have a multiplicative inverse modulo n. Otherwise, if d = 1,
then t is a multiplicative inverse of y modulo n; however, it may not lie
in the range {0, . . . , n − 1}, as required. Based on Theorem 4.3 (and the
discussion immediately following it), we know that |t| ≤ n/2 < n; therefore,
either t ∈ {0, . . . , n−1}, or t < 0 and t+n ∈ {0, . . . , n−1}. Thus, y−1 rem n
is equal to either t or t + n.

We also observe that the Chinese remainder theorem (Theorem 2.8) can
be made computationally effective:
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Theorem 4.5. Given integers n1, . . . , nk and a1, . . . , ak, where
n1, . . . , nk are pairwise relatively prime, and where ni > 1 and 0 ≤ ai < ni

for i = 1, . . . , k, we can compute the integer z, such that 0 ≤ z < n and
z ≡ ai (mod ni) for i = 1, . . . , k, where n :=

∏
i ni, in time O(len(n)2).

Proof. Exercise (just use the formulas in the proof of Theorem 2.8, and
see Exercises 3.22 and 3.23). 2

Exercise 4.3. In this exercise and the next, you are to analyze an “incre-
mental Chinese remaindering algorithm.” Consider the following algorithm,
which takes as input integers z, n, z′, n′, such that

n′ > 1, gcd(n, n′) = 1, 0 ≤ z < n, and 0 ≤ z′ < n′.

It outputs integers z′′, n′′, such that

n′′ = nn′, 0 ≤ z′′ < n′′, z′′ ≡ z (mod n), and z′′ ≡ z′ (mod n′).

It runs as follows:

1. Set ñ← n−1 rem n′.

2. Set h← ((z′ − z)ñ) rem n′.

3. Set z′′ ← z + nh.

4. Set n′′ ← nn′.

5. Output z′′, n′′.

Show that the output z′′, n′′ of the algorithm satisfies the conditions stated
above, and estimate the running time of the algorithm. 2

Exercise 4.4. Using the algorithm in the previous exercise as a sub-
routine, give a simple O(len(n)2) algorithm that takes as input integers
n1, . . . , nk and a1, . . . , ak, where n1, . . . , nk are pairwise relatively prime,
and where ni > 1 and 0 ≤ ai < ni for i = 1, . . . , k, and outputs inte-
gers z and n such that 0 ≤ z < n, n =

∏
i ni, and z ≡ ai (mod ni) for

i = 1, . . . , k. The algorithm should be “incremental,” in that it processes
the pairs (ni, ai) one at a time, using time O(len(n) len(ni)) to process each
such pair. 2

4.4 Speeding up Algorithms via Modular
Computation

An important practical application of the above “computational” version
(Theorem 4.5) of the Chinese remainder theorem is a general algorithmic
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technique that can significantly speed up certain types of computations
involving long integers. Instead of trying to describe the technique in some
general form, we simply illustrate the technique by means of a specific
example: integer matrix multiplication.

Suppose we have two m×m matrices A and B whose entries are large
integers, and we want to compute the product matrix C := AB. If the
entries of A are (ars) and the entries of B are (bst), then the entries (crt)
of C are given by the usual rule for matrix multiplication:

crt =
m∑

s=1

arsbst.

Suppose further that H is the maximum absolute value of the entries in A
and B, so that the entries in C are bounded in absolute value by H ′ :=
H2m. Then by just applying the above formula, we can compute the entries
of C using m3 multiplications of numbers of length at most len(H), and m3

additions of numbers of length at most len(H ′), where len(H ′) ≤ 2 len(H)+
len(m). This yields a running time of

O(m3 len(H)2 + m3 len(m)). (4.1)

If the entries of A and B are large relative to m, specifically, if len(m) =
O(len(H)2), then the running time is dominated by the first term above,
namely

O(m3 len(H)2).

Using the Chinese remainder theorem, we can actually do much better
than this, as follows.

For any integer n > 1, and for all r, t = 1, . . . ,m, we have

crt ≡
m∑

s=1

arsbst (mod n). (4.2)

Moreover, if we compute integers c′rt such that

c′rt ≡
m∑

s=1

arsbst (mod n) (4.3)

and if we also have

− n/2 ≤ c′rt < n/2 and n > 2H ′, (4.4)

then we must have
crt = c′rt. (4.5)
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To see why (4.5) follows from (4.3) and (4.4), observe that (4.2) and (4.3)
imply that crt ≡ c′rt (mod n), which means that n divides (crt− c′rt). Then
from the bound |crt| ≤ H ′ and from (4.4), we obtain

|crt − c′rt| ≤ |crt|+ |c′rt| ≤ H ′ + n/2 < n/2 + n/2 = n.

So we see that the quantity (crt − c′rt) is a multiple of n, while at the
same time this quantity is strictly less than n in absolute value; hence, this
quantity must be zero. That proves (4.5).

So from the above discussion, to compute C, it suffices to compute
the entries of C modulo n, where we have to make sure that we compute
“balanced” remainders in the interval [−n/2, n/2), rather than the more
usual “least non-negative” remainders.

To compute C modulo n, we choose a number of small integers
n1, . . . , nk, relatively prime in pairs, and such that the product n :=
n1 · · ·nk is just a bit larger than 2H ′. In practice, one would choose the ni

to be small primes, and a table of such primes could easily be computed
in advance, so that all problems up to a given size could be handled. For
example, the product of all primes of at most 16 bits is a number that has
more than 90, 000 bits. Thus, by simply pre-computing and storing such a
table of small primes, we can handle input matrices with quite large entries
(up to about 45, 000 bits).

Let us assume that we have pre-computed appropriate small primes
n1, . . . , nk. Further, we shall assume that addition and multiplication mod-
ulo any of the ni’s can be done in constant time. This is reasonable, both
from a practical and theoretical point of view, since such primes easily
“fit” into a memory cell. Finally, we assume that we do not use more
of the numbers ni than are necessary, so that len(n) = O(len(H ′)) and
k = O(len(H ′)).

To compute C, we execute the following steps:

1. For each i = 1, . . . , k, do the following:

(a) compute â
(i)
rs ← ars rem ni for r, s = 1, . . . ,m,

(b) compute b̂
(i)
st ← bst rem ni for s, t = 1, . . . ,m,

(c) For r, t = 1, . . . ,m, compute

ĉ
(i)
rt ←

m∑
s=1

â(i)
rs b̂

(i)
st rem ni.

2. For each r, t = 1, . . . ,m, apply the Chinese remainder theorem to
ĉ
(1)
rt , ĉ

(2)
rt , . . . , ĉ

(k)
rt , obtaining an integer crt, which should be computed

as a balanced remainder modulo n, so that n/2 ≤ crt < n/2.

3. Output (crt : r, t = 1, . . . ,m).
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Note that in Step 2, if our Chinese remainder algorithm happens to be
implemented to return an integer z with 0 ≤ z < n, we can easily get a
balanced remainder by just subtracting n from z if z ≥ n/2.

The correctness of the above algorithm has already been established.
Let us now analyze its running time. The running time of Steps 1a and 1b is
easily seen (see Exercise 3.23) to be O(m2 len(H ′)2). Under our assumption
about the cost of arithmetic modulo small primes, the cost of Step 1c is
O(m3k), and since k = O(len(H ′)) = O(len(H) + len(m)), the cost of this
step is O(m3(len(H)+len(m))). Finally, by Theorem 4.5, the cost of Step 2
is O(m2 len(H ′)2). Thus, the total running time of this algorithm is easily
calculated (discarding terms that are dominated by others) as

O(m2 len(H)2 + m3 len(H) + m3 len(m)).

Compared to (4.1), we have essentially replaced the term m3 len(H)2 by
m2 len(H)2 + m3 len(H). This is a significant improvement: for example,
if len(H) ≈ m, then the running time of the original algorithm is O(m5),
while the running time of the modular algorithm is O(m4).

Exercise 4.5. Apply the ideas above to the problem of computing the
product of two polynomials whose coefficients are large integers. First,
determine the running time of the “obvious” algorithm for multiplying two
such polynomials, then design and analyze a “modular” algorithm. 2

Exercise 4.6. Suppose that we are given two distinct k-bit primes, p and
q, an element α ∈ Zn, where n := pq, and an integer e, where 1 ≤ e < φ(n).
Using the algorithm from Exercise 3.26, we can compute αe at a cost of
essentially 2k squarings in Zn. Show how this can be improved, making
use of the factorization of n, so that the total cost is essentially that of
k squarings in Zp and k squarings in Zq, leading to a roughly four-fold
speed-up in the running time. Hint: in addition to the Chinese remainder
theorem, you will want to use Fermat’s little theorem. 2

4.5 Rational Reconstruction and Applica-
tions

We next state a theorem whose immediate utility may not be entirely ob-
vious, but we quickly follow up with several very neat applications. The
general problem we consider here, called rational reconstruction, is as
follows. Suppose that there is some rational number ŷ that we would like to
get our hands on, but the only information we have about ŷ is the following:

• First, suppose that we know that ŷ may be expressed as r/t for inte-
gers r, t, with |r| ≤ r∗ and |t| ≤ t∗ — we do not know r or t, but we
do know the bounds r∗ and t∗.
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• Second, suppose that we know integers y and n such that n is rela-
tively prime to t, and y = rt−1 rem n.

It turns out that if n is sufficiently large relative to the bounds r∗ and t∗,
then we can virtually “pluck” ŷ out of the extended Euclidean algorithm
applied to n and y. Moreover, the restriction that n is relatively prime to
t is not really necessary; if we drop this restriction, then our assumption is
that r ≡ ty (mod n), or equivalently, r = sn + ty for some integer s.

Theorem 4.6. Let r∗, t∗, n, y be integers such that r∗ > 0, t∗ > 0,
n ≥ 4r∗t∗, and 0 ≤ y < n. Suppose we run the extended Euclidean al-
gorithm with inputs a := n and b := y. Then, adopting the notation of
Theorem 4.3, the following hold:

1. There exists a unique index i = 1, . . . , `+1 such that ri ≤ 2r∗ < ri−1;
note that ti 6= 0 for this i.

Let r′ := ri, s′ := si, and t′ := ti.

2. Furthermore, for any integers r, s, t such that

r = sn + ty, |r| ≤ r∗, and 0 < |t| ≤ t∗, (4.6)

we have
r = r′α, s = s′α, and t = t′α,

for some non-zero integer α.

Proof. By hypothesis, 2r∗ < n = r0. Moreover, since r0, . . . , r`, r`+1 = 0
is a decreasing sequence, and 1 = |t1|, |t2|, . . . , |t`+1| is a non-decreasing
sequence, the first statement of the theorem is clear.

Now let i be defined as in the first statement of the theorem. Also, let
r, s, t be as in (4.6).

From part (v) of Theorem 4.3, we have

|ti| ≤
n

ri−1
<

n

2r∗
.

From the equalities ri = sin + tiy and r = sn + ty, we have the two
congruences:

r ≡ ty (mod n),
ri ≡ tiy (mod n).

Subtracting ti times the first from t times the second, we obtain

rti ≡ rit (mod n).
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This says that n divides rti − rit; however, using the bounds |r| ≤ r∗,
|ti| < n/(2r∗), |ri| ≤ 2r∗, |t| ≤ t∗, and 4r∗t∗ ≤ n, we obtain (verify)

|rti − rit| ≤ |rti|+ |rit| < n.

Since n divides rti − rit and |rti − rit| < n, the only possibility is that

rti − rit = 0. (4.7)

Now consider the two equations:

r = sn + ty

ri = sin + tiy.

Subtracting ti times the first from t times the second, and using the identity
(4.7), we obtain n(sti − sit) = 0, and hence

sti − sit = 0. (4.8)

From (4.8), we see that ti | sit, and since from part (iii) of Theorem 4.3,
we know that gcd(si, ti) = 1, we must have ti | t. So t = tiα for some α, and
we must have α 6= 0 since t 6= 0. Substituting tiα for t in equations (4.7)
and (4.8) yields r = riα and s = siα. That proves the second statement of
the theorem. 2

4.5.1 Application: Chinese remaindering with errors

One interpretation of the Chinese remainder theorem is that if we “encode”
an integer z, with 0 ≤ z < n, as the sequence (a1, . . . , ak), where ai = z rem
ni for i = 1, . . . , k, then we can efficiently recover z from this encoding.
Here, of course, n = n1 · · ·nk, and the integers n1, . . . , nk are pairwise
relatively prime.

But now suppose that Alice encodes z as (a1, . . . , ak), and sends this
encoding to Bob; however, during the transmission of the encoding, some
(but hopefully not too many) of the values a1, . . . , ak may be corrupted.
The question is, can Bob still efficiently recover the original z from its
corrupted encoding?

To make the problem more precise, suppose that the original, correct
encoding of z is (a1, . . . , ak), and the corrupted encoding is (ã1, . . . , ãk). Let
us define G ⊆ {1, . . . , k} to be the set of “good” positions i with ãi = ai,
and B ⊆ {1, . . . , k} to be the set of “bad” positions i with ãi 6= ai. We
shall assume that |B| ≤ `, where ` is some specified parameter.

Of course, if Bob hopes to recover z, we need to build some redundancy
into the system; that is, we must require that 0 ≤ z ≤ Z for some Z that is
somewhat smaller than n. Now, if Bob knew the location of bad positions,
and if the product of the integers ni at the good positions exceeds Z, then
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Bob could simply discard the errors, and reconstruct z by applying the
Chinese remainder theorem to the values ai and ni at the good positions.
However, in general, Bob will not know a priori the location of the bad
positions, and so this approach will not work.

Despite these apparent difficulties, Theorem 4.6 may be used to solve
the problem quite easily, as follows. Let P be an upper bound on the
product of any ` of the integers n1, . . . , nk (e.g., we could take P to be the
product of the ` largest ni). Further, let us assume that n ≥ 4P 2Z.

Now, suppose Bob obtains the corrupted encoding (ã1, . . . , ãk). Here is
what Bob does to recover z:

1. Apply the Chinese remainder theorem, obtaining an integer y, with
0 ≤ y < n and y ≡ ãi (mod ni) for i = 1, . . . , k.

2. Run the extended Euclidean algorithm on a := n and b := y, and let
r′, t′ be the values obtained from Theorem 4.6 applied with r∗ := ZP
and t∗ := P .

3. If t′ | r′, output r′/t′; otherwise, output “error.”

We claim that the above procedure outputs z, under our assumption
that the set B of bad positions is of size at most `. To see this, let t :=∏

i∈B ni. By construction, we have 1 ≤ t ≤ P . Also, let r := tz, and note
that 0 ≤ r ≤ r∗ and 0 < t ≤ t∗. We claim that

r ≡ ty (mod n). (4.9)

To show that (4.9) holds, it suffices to show that

tz ≡ ty (mod ni) (4.10)

for all i = 1, . . . , k. To show this, for each index i we consider two cases:

Case 1: i ∈ G. In this case, we have ai = ãi, and therefore,

tz ≡ tai ≡ tãi ≡ ty (mod ni).

Case 2: i ∈ B. In this case, we have ni | t, and therefore,

tz ≡ 0 ≡ ty (mod ni).

Thus, (4.10) holds for all i = 1, . . . , k, and so it follows that (4.9) holds.
Therefore, the values r′, t′ obtained from Theorem 4.6 satisfy

r′

t′
=

r

t
=

tz

t
= z.

One easily checks that both the procedures to encode and decode a
value z run in time O(len(n)2). If one wanted a practical implementation,
one might choose n1, . . . , nk to be, say, 16-bit primes, so that the encoding
of a value z consisted of a sequence of k 16-bit words.

The above scheme is an example of an error correcting code, and is
actually the integer analog of a Reed-Solomon code.
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4.5.2 Application: recovering fractions from their dec-
imal expansion

Suppose Alice knows a rational number z := s/t, where s and t are integers
with 0 ≤ s < t, and tells Bob some of the high-order digits in the decimal
expansion of z. Can Bob determine z? The answer is yes, provided Bob
knows an upper bound T on t, and provided Alice gives Bob enough digits.
Of course, from grade school, Bob probably remembers that the decimal
expansion of z is ultimately periodic, and that given enough digits of z so
as to include the periodic part, he can recover z; however, this technique is
quite useless in practice, as the length of the period can be huge — Θ(T )
in the worst case (see Exercises 4.8–4.10 below). The method we discuss
here requires only O(len(T )) digits.

To be a bit more general, suppose that Alice gives Bob the high-order
k digits in the d-ary expansion of z, for some base d > 1. Now, we can
express z in base d as

z = z1d
−1 + z2d

−2 + z3d
−3 + · · · ,

and the sequence of digits z1, z2, z3, . . . is uniquely determined if we require
that the sequence does not terminate with an infinite run of (d− 1)-digits.
Suppose Alice gives Bob the first k digits z1, . . . , zk. Define

y := z1d
k−1 + · · ·+ zk−1d + zk = bzdkc.

Let us also define n := dk, so that y = bznc.
Now, if n is much smaller than T 2, the number z is not even uniquely

determined by y, since there are Ω(T 2) distinct rational numbers of the
form s/t, with 0 ≤ s < t ≤ T (see Exercise 1.17). However, if n ≥ 4T 2,
then not only is z uniquely determined by y, but using Theorem 4.6, we
can compute it as follows:

1. Run the extended Euclidean algorithm on inputs a := n and b := y,
and let s′, t′ be as in Theorem 4.6, using r∗ := t∗ := T .

2. Output s′, t′.

We claim that z = −s′/t′. To prove this, observe that since y = bznc =
b(ns)/tc, if we set r := (ns) rem t, then we have

r = sn− ty and 0 ≤ r < t ≤ t∗.

It follows that the integers s′, t′ from Theorem 4.6 satisfy s = s′α and
−t = t′α for some non-zero integer α. Thus, s′/t′ = −s/t, which proves the
claim.

We may further observe that since the extended Euclidean algorithm
guarantees that gcd(s′, t′) = 1, not only do we obtain z, but we obtain z
expressed as a fraction in lowest terms.

It is clear that the running time of this algorithm is O(len(n)2).
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Example 4.3. Alice chooses numbers 0 ≤ s < t ≤ 1000, and tells Bob
the high-order 7 digits y in the decimal expansion of z := s/t, from which
Bob should be able to compute z. Suppose s = 511 and t = 710. Then
s/t ≈ 0.71971830985915492957, and so y = 7197183 and n = 107. Running
the extended Euclidean algorithm on inputs a := n and b := y, Bob
obtains the following data:

i ri qi si ti
0 10000000 1 0
1 7197183 1 0 1
2 2802817 2 1 -1
3 1591549 1 -2 3
4 1211268 1 3 -4
5 380281 3 -5 7
6 70425 5 18 -25
7 28156 2 -95 132
8 14113 1 208 -289
9 14043 1 -303 421

10 70 200 511 -710
11 43 1 -102503 142421
12 27 1 103014 -143131
13 16 1 -205517 285552
14 11 1 308531 -428683
15 5 2 -514048 714235
16 1 5 1336627 -1857153
17 0 -7197183 10000000

The first ri that meets or falls below the threshold 2r∗ = 2000 is at
i = 10, and Bob reads off s′ = 511 and t′ = −710, from which he obtains
z = −s′/t′ = 511/710. 2

Exercise 4.7. Show that given integers s, t, k, with 0 ≤ s < t, and k > 0,
we can compute the kth digit in the decimal expansion of s/t in time
O(len(k) len(t)2). 2

For the following exercises, we need a definition: a sequence S :=
(z1, z2, z3, . . .) of elements drawn from some arbitrary set is called (k, `)-
periodic for integers k ≥ 0 and ` ≥ 1 if zi = zi+` for all i > k. S is called
ultimately periodic if it is (k, `)-periodic for some (k, `).

Exercise 4.8. Show that if a sequence S is ultimately periodic, then it
is (k∗, `∗)-periodic for some uniquely determined pair (k∗, `∗) for which the
following holds: for any pair (k, `) such that S is (k, `)-periodic, we have
k∗ ≤ k and `∗ ≤ `. 2
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The value `∗ in the above exercise is called the period of S, and k∗

is called the pre-period of S. If its pre-period is zero, then S is called
purely periodic.

Exercise 4.9. Let z be a real number whose base-d expansion is an ul-
timately periodic sequence. Show that z is rational. 2

Exercise 4.10. Let z = s/t ∈ Q, where s and t are relatively prime
integers with 0 ≤ s < t, and let d > 1 be an integer.

(a) Show that there exist integers k, k′ such that 0 ≤ k < k′ and sdk ≡
sdk′ (mod t).

(b) Show that for integers k, k′ with 0 ≤ k < k′, the base-d expansion of
z is (k, k′ − k)-periodic if and only if sdk ≡ sdk′ (mod t).

(c) Show that if gcd(t, d) = 1, then the base-d expansion of z is purely
periodic with period equal to the multiplicative order of d modulo t.

(d) More generally, show that if k is the smallest non-negative integer
such that d and t′ := t/ gcd(dk, t) are relatively prime, then the
base-d expansion of z is ultimately periodic with pre-period k and
period equal to the multiplicative order of d modulo t′.

2

A famous conjecture of Artin postulates that for any integer d, not equal
to −1 or to the square of an integer, there are infinitely many primes t such
that d has multiplicative order t− 1 modulo t. If Artin’s conjecture is true,
then by part (c) of the previous exercise, for any d > 1 that is not a square,
there are infinitely many primes t such that the base-d expansion of s/t,
for any 0 < s < t, is a purely periodic sequence of period t − 1. In light
of these observations, the “grade school” method of computing a fraction
from its decimal expansion using the period is hopelessly impractical.

4.5.3 Applications to symbolic algebra

Rational reconstruction also has a number of applications in symbolic al-
gebra. We briefly sketch one such application here. Suppose that we want
to find the solution v to the equation

vA = w,

where we are given as input a non-singular square integer matrix A and
an integer vector w. The solution vector v will, in general, have ratio-
nal entries. We stress that we want to compute the exact solution v, and
not some floating point approximation to it. Now, we could solve for v
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directly using Gaussian elimination; however, the intermediate quantities
computed by that algorithm would be rational numbers whose numerators
and denominators might get quite large, leading to a rather lengthy com-
putation (however, it is possible to show that the overall running time is
still polynomial in the input length).

Another approach is to compute a solution vector modulo n, where n
is a power of a prime that does not divide the determinant of A. Provided
n is large enough, one can then recover the solution vector v using rational
reconstruction. With this approach, all of the computations can be carried
out using arithmetic on integers not too much larger than n, leading to a
more efficient algorithm. More of the details of this procedure are developed
later, in Exercise 15.11.

4.6 Notes

The Euclidean algorithm as we have presented it here is not the fastest
known algorithm for computing greatest common divisors. The asymptot-
ically fastest known algorithm for computing the greatest common divisor
of two numbers of bit length at most ` runs in time O(` len(`)) on a RAM,
and the smallest boolean circuits are of size O(` len(`)2 len(len(`))). This
algorithm is due to Schönhage [77]. The same complexity results also hold
for the extended Euclidean algorithm, as well as Chinese remaindering and
rational reconstruction.

Experience suggests that such fast algorithms for greatest common di-
visors are not of much practical value, unless the integers involved are very
large — at least several tens of thousands of bits in length. The extra “log”
factor and the rather large multiplicative constants seem to slow things
down too much.

Our exposition of Theorem 4.6 is loosely based on Bach [10]. A some-
what “tighter” result is proved, with significantly more effort, by Wang,
Guy, and Davenport [92]. However, for most practical purposes, the re-
sult proved here is just as good. The application of Euclid’s algorithm to
computing a rational number from the first digits of its decimal expansion
was observed by Blum, Blum, and Shub [16], where they considered the
possibility of using such sequences of digits as a pseudo-random number
generator — the conclusion, of course, is that this is not such a good idea.



Chapter 5

The Distribution of Primes

This chapter concerns itself with the question: how many primes are there?
In Chapter 1, we proved that there are infinitely many primes; however, we
are interested in a more quantitative answer to this question; that is, we
want to know how “dense” the prime numbers are.

This chapter has a bit more of an “analytical” flavor than other chapters
in this text. However, we shall not make use of any mathematics beyond
that of elementary calculus.

5.1 Chebyshev’s Theorem on the Density of
Primes

The natural way of measuring the density of primes is to count the number
of primes up to a bound x, where x is a real number. For a real number
x ≥ 0, the function π(x) is defined to be the number of primes up to x.
Thus, π(1) = 0, π(2) = 1, π(7.5) = 4, and so on. The function π is an
example of a “step function,” that is, a function that changes values only
at a discrete set of points. It might seem more natural to define π only on
the integers, but it is the tradition to define it over the real numbers (and
there are some technical benefits in doing so).

Let us first take a look at some values of π(x). Table 5.1 shows values of
π(x) for x = 103i and i = 1, . . . , 6. The third column of this table shows the
value of x/π(x) (to five decimal places). One can see that the differences
between successive rows of this third column are roughly the same — about
6.9 — which suggests that the function x/π(x) grows logarithmically in x.
Indeed, as log(103) ≈ 6.9, it would not be unreasonable to guess that
x/π(x) ≈ log x, or equivalently, π(x) ≈ x/ log x.

The following theorem is a first — and important — step towards mak-
ing the above guess-work more rigorous:

73
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x π(x) x/π(x)
103 168 5.95238
106 78498 12.73918
109 50847534 19.66664

1012 37607912018 26.59015
1015 29844570422669 33.50693
1018 24739954287740860 40.42045

Table 5.1: Some values of π(x)

Theorem 5.1 (Chebyshev’s Theorem). We have

π(x) = Θ(x/ log x).

It is not too difficult to prove this theorem, which we now proceed to do
in several steps. Recalling that νp(n) denotes the power to which a prime
p divides an integer n, we begin with the following observation:

Theorem 5.2. Let n be a positive integer. For any prime p, we have

νp(n!) =
∑
k≥1

bn/pkc.

Proof. This follows immediately from the observation that the numbers
1, 2, . . . , n include exactly bn/pc multiplies of p, bn/p2c multiplies of p2,
and so on (see Exercise 1.5). 2

The following theorem gives a lower bound on π(x).

Theorem 5.3. π(n) ≥ 1
2 (log 2)n/ log n for all integers n ≥ 2.

Proof. For positive integer m, consider the binomial coefficient

N :=
(

2m

m

)
=

(2m)!
(m!)2

.

Note that

N =
(

m + 1
1

)(
m + 2

2

)
· · ·

(
m + m

m

)
,

from which it is clear that N ≥ 2m and that N is divisible only by primes p
not exceeding 2m. Applying Theorem 5.2 to the identity N = (2m)!/(m!)2,
we have

νp(N) =
∑
k≥1

(b2m/pkc − 2bm/pkc).
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Each term in this sum is either 0 or 1 (see Exercise 1.4), and for k >
log(2m)/ log p, each term is zero. Thus, νp(N) ≤ log(2m)/ log p.

So we have

π(2m) log(2m) =
∑

p≤2m

log(2m)
log p

log p

≥
∑

p≤2m

νp(N) log p = log N ≥ m log 2,

where the summations are over the primes p up to 2m. Therefore,

π(2m) ≥ 1
2 (log 2)(2m)/ log(2m).

That proves the theorem for even n. Now consider odd n ≥ 3, so
n = 2m − 1 for m ≥ 2. Since the function x/ log x is increasing for x ≥ 3
(verify), and since π(2m− 1) = π(2m) for m ≥ 2, we have

π(2m− 1) = π(2m)
≥ 1

2 (log 2)(2m)/ log(2m)
≥ 1

2 (log 2)(2m− 1)/ log(2m− 1).

That proves the theorem for odd n. 2

As a consequence of the above theorem, we have π(x) = Ω(x/ log x) for
real x→∞. Indeed, for real x ≥ 2, setting c := 1

2 (log 2), we have

π(x) = π(bxc) ≥ cbxc/ logbxc ≥ c(x− 1)/ log x = Ω(x/ log x).

To obtain a corresponding upper bound for π(x), we introduce an aux-
iliary function, called Chebyshev’s theta function:

ϑ(x) :=
∑
p≤x

log p,

where the sum is over all primes p up to x.
Chebyshev’s theta function is an example of a summation over primes,

and in this chapter, we will be considering a number of functions that
are defined in terms of sums or products over primes. To avoid excessive
tedium, we adopt the usual convention used by number theorists: if not
explicitly stated, summations and products over the variable p are always
understood to be over primes. For example, we may write π(x) =

∑
p≤x 1.

The next theorem relates π(x) and ϑ(x).

Theorem 5.4. We have

π(x) ∼ ϑ(x)
log x

.
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Proof. On the one hand, we have

ϑ(x) =
∑
p≤x

log p ≤ log x
∑
p≤x

1 = π(x) log x.

So we have

π(x) ≥ ϑ(x)
log x

.

On the other hand, for every x > 1 and ε with 0 < ε < 1, we have

ϑ(x) ≥
∑

x1−ε<p≤x

log p

≥ (1− ε) log x
∑

x1−ε<p≤x

1

= (1− ε) log x (π(x)− π(x1−ε))
≥ (1− ε) log x (π(x)− x1−ε).

Hence,

π(x) ≤ x1−ε +
ϑ(x)

(1− ε) log x
.

Since by the previous theorem, the term x1−ε is o(π(x)), we have for all
sufficiently large x (depending on ε), x1−ε ≤ επ(x), and so

π(x) ≤ ϑ(x)
(1− ε)2 log x

.

By making ε sufficiently small, we can make 1/(1− ε)2 arbitrarily close to
1, and the theorem follows. 2

Theorem 5.5. ϑ(x) < 2x log 2 for all real numbers x ≥ 1.

Proof. It suffices to prove that ϑ(n) < 2n log 2 for integers n ≥ 1, since
then ϑ(x) = ϑ(bxc) < 2bxc log 2 ≤ 2x log 2.

For positive integer m, consider the binomial coefficient

M :=
(

2m + 1
m

)
=

(2m + 1)!
m!(m + 1)!

.

One sees that M is divisible by all primes p with m + 1 < p ≤ 2m + 1.
As M occurs twice in the binomial expansion of (1 + 1)2m+1, one sees that
M < 22m+1/2 = 22m. It follows that

ϑ(2m + 1)− ϑ(m + 1) =
∑

m+1<p≤2m+1

log p ≤ log M < 2m log 2.
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We now prove the theorem by induction. For n = 1 and n = 2, the
theorem is trivial. Now let n > 2. If n is even, then we have

ϑ(n) = ϑ(n− 1) < 2(n− 1) log 2 < 2n log 2.

If n = 2m + 1 is odd, then we have

ϑ(n) = ϑ(2m+1)−ϑ(m+1)+ϑ(m+1) < 2m log 2+2(m+1) log 2 = 2n log 2.

2

Another way of stating the above theorem is:∏
p≤x

p < 4x.

Theorem 5.1 follows immediately from Theorems 5.3, 5.4 and 5.5. Note
that we have also proved:

Theorem 5.6. We have

ϑ(x) = Θ(x).

Exercise 5.1. If pn denotes the nth prime, show that pn = Θ(n log n).
2

Exercise 5.2. For integer n > 1, let ω(n) denote the number of distinct
primes dividing n. Show that ω(n) = O(log n/ log log n). 2

Exercise 5.3. Show that for positive integers a and b,(
a + b

b

)
≥ 2min(a,b).

2

5.2 Bertrand’s Postulate

Suppose we want to know how many primes there are of a given bit length,
or more generally, how many primes there are between m and 2m for a
given integer m. Neither the statement, nor the proof, of Chebyshev’s
theorem imply that there are any primes between m and 2m, let alone a
useful density estimate of such primes.

Bertrand’s postulate is the assertion that for all positive integers m,
there exists a prime between m and 2m. We shall in fact prove a stronger
result, namely, that not only is there one prime, but the number of primes
between m and 2m is Ω(m/ log m).
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Theorem 5.7 (Bertrand’s Postulate). For any positive integer m, we
have

π(2m)− π(m) >
m

3 log(2m)
.

The proof uses Theorem 5.5, along with a more careful re-working of
the proof of Theorem 5.3. The theorem is clearly true for m ≤ 2, so we may
assume that m ≥ 3. As in the proof of the Theorem 5.3, define N :=

(
2m
m

)
,

and recall that N is divisible only by primes strictly less than 2m, and that
we have the identity

νp(N) =
∑
k≥1

(b2m/pkc − 2bm/pkc), (5.1)

where each term in the sum is either 0 or 1. We can characterize the values
νp(N) a bit more precisely, as follows:

Lemma 5.8. With m and N as above, for all primes p, we have

pνp(N) ≤ 2m; (5.2)
if p >

√
2m, then νp(N) ≤ 1; (5.3)

if 2m/3 < p ≤ m, then νp(N) = 0; (5.4)
if m < p < 2m, then νp(N) = 1. (5.5)

Proof. For (5.2), all terms with k > log(2m)/ log p in (5.1) vanish, and
hence νp(N) ≤ log(2m)/ log p, from which it follows that pνp(N) ≤ 2m.

(5.3) follows immediately from (5.2).
For (5.4), if 2m/3 < p ≤ m, then 2m/p < 3, and we must also have

p ≥ 3, since p = 2 implies m < 3. We have p2 > p(2m/3) = 2m(p/3) ≥ 2m,
and hence all terms with k > 1 in (5.1) vanish. The term with k = 1 also
vanishes, since 1 ≤ m/p < 3/2, from which it follows that 2 ≤ 2m/p < 3,
and hence bm/pc = 1 and b2m/pc = 2.

For (5.5), if m < p < 2m, it follows that 1 < 2m/p < 2, so b2m/pc = 1.
Also, m/p < 1, so bm/pc = 0. It follows that the term with k = 1 in (5.1)
is 1, and it is clear that 2m/pk < 1 for all k > 1, and so all the other terms
vanish. 2

We need one more technical fact, namely, a somewhat better lower
bound on N than that used in the proof of Theorem 5.3:

Lemma 5.9. With m and N as above, we have

N > 4m/(2m). (5.6)
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Proof. We prove this for all m ≥ 2 by induction on m. One checks by
direct calculation that it holds for m = 2. For m > 2, by induction we have(

2(m + 1)
m + 1

)
= 2

2m + 1
m + 1

(
2m

m

)
>

(2m + 1)4m

m(m + 1)

=
2m + 1

2m

4m+1

2(m + 1)
>

4m+1

2(m + 1)
.

2

We now have the necessary technical ingredients to prove Theorem 5.7.
Define

Pm :=
∏

m<p<2m

p,

and define Qm so that
N = QmPm.

By (5.4) and (5.5), we see that

Qm =
∏

p≤2m/3

pνp(N).

Moreover, by (5.3), νp(N) > 1 for at most those p ≤
√

2m, so there are at
most

√
2m such primes, and by (5.2), the contribution of each such prime

to the above product is at most 2m. Combining this with Theorem 5.5, we
obtain

Qm < (2m)
√

2m · 42m/3.

We now apply (5.6), obtaining

Pm = NQ−1
m > 4m(2m)−1Q−1

m > 4m/3(2m)−(1+
√

2m).

It follows that

π(2m)− π(m) ≥ log Pm/ log(2m) >
m log 4

3 log(2m)
− (1 +

√
2m)

=
m

3 log(2m)
+

m(log 4− 1)
3 log(2m)

− (1 +
√

2m). (5.7)

Clearly, the term (m(log 4 − 1))/(3 log(2m)) in (5.7) dominates the term
1 +
√

2m, and so Theorem 5.7 holds for all sufficiently large m. Indeed, a
simple calculation shows that (5.7) implies the theorem for m ≥ 13, 000,
and one can verify by brute force (with the aid of a computer) that the
theorem holds for m < 13, 000.
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5.3 Mertens’ Theorem

Our next goal is to prove the following theorem, which turns out to have a
number of applications.

Theorem 5.10. We have∑
p≤x

1
p

= log log x + O(1).

The proof of this theorem, while not difficult, is a bit technical, and we
proceed in several steps.

Theorem 5.11. We have∑
p≤x

log p

p
= log x + O(1).

Proof. Let n := bxc. By Theorem 5.2, we have

log(n!) =
∑
p≤n

∑
k≥1

bn/pkc log p =
∑
p≤n

bn/pc log p +
∑
k≥2

∑
p≤n

bn/pkc log p.

We next show that the last sum is O(n). We have∑
p≤n

log p
∑
k≥2

bn/pkc ≤ n
∑
p≤n

log p
∑
k≥2

p−k

= n
∑
p≤n

log p

p2
· 1
1− 1/p

= n
∑
p≤n

log p

p(p− 1)

≤ n
∑
k≥2

log k

k(k − 1)
= O(n).

Thus, we have shown that

log(n!) =
∑
p≤n

bn/pc log p + O(n).

Further, since bn/pc = n/p + O(1), applying Theorem 5.5, we have

log(n!) =
∑
p≤n

(n/p) log p+O(
∑
p≤n

log p)+O(n) = n
∑
p≤n

log p

p
+O(n). (5.8)

We can also estimate log(n!) using a little calculus (see §A.2). We have

log(n!) =
n∑

k=1

log k =
∫ n

1

log t dt+O(log n) = n log n−n+O(log n). (5.9)
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Combining (5.8) and (5.9), and noting that log x− log n = o(1), we obtain∑
p≤x

log p

p
= log n + O(1) = log x + O(1),

which proves the theorem. 2

We shall also need the following theorem, which is a very useful tool in
its own right:

Theorem 5.12 (Abel’s Identity). Suppose that ck, ck+1, . . . is a se-
quence of numbers, that

C(t) :=
∑

k≤i≤t

ci,

and that f(t) has a continuous derivative f ′(t) on the interval [k, x]. Then∑
k≤i≤x

cif(i) = C(x)f(x)−
∫ x

k

C(t)f ′(t) dt.

Note that since C(t) is a step function, the integrand C(t)f ′(t) is piece-
wise continuous on [k, x], and hence the integral is well defined (see §A.3).

Proof. Let n := bxc. We have

n∑
i=k

cif(i) = C(k)f(k) + [C(k + 1)− C(k)]f(k + 1) + · · ·
+ [C(n)− C(n− 1)]f(n)

= C(k)[f(k)− f(k + 1)] + · · ·+ C(n− 1)[f(n− 1)− f(n)]
+ C(n)f(n)

= C(k)[f(k)− f(k + 1)] + · · ·+ C(n− 1)[f(n− 1)− f(n)]
+ C(n)[f(n)− f(x)] + C(x)f(x).

Observe that for i = k, . . . , n− 1, we have C(t) = C(i) for t ∈ [i, i+1), and
so

C(i)[f(i)− f(i + 1)] = −
∫ i+1

i

C(t)f ′(t) dt;

likewise,

C(n)[f(n)− f(x)] = −
∫ x

n

C(t)f ′(t) dt,

from which the theorem directly follows. 2

Proof of Theorem 5.10. For i ≥ 2, set

ci :=
{

(log i)/i if i is prime,
0 otherwise.
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By Theorem 5.11, we have

C(t) :=
∑

2≤i≤t

ci =
∑
p≤t

log p

p
= log t + O(1).

Applying Theorem 5.12 with f(t) = 1/ log t, we obtain∑
p≤x

1
p

=
C(x)
log x

+
∫ x

2

C(t)
t(log t)2

dt

=
(

1 + O(1/ log x)
)

+
( ∫ x

2

dt

t log t
+ O(

∫ x

2

dt

t(log t)2
)
)

= 1 + O(1/ log x) + (log log x− log log 2) + O(1/ log 2− 1/ log x)
= log log x + O(1).

2

Using Theorem 5.10, we can easily show the following:

Theorem 5.13 (Mertens’ Theorem). We have∏
p≤x

(1− 1/p) = Θ(1/ log x).

Proof. Using parts (i) and (iii) of §A.1, for any fixed prime p, we have

− 1
p2
≤ 1

p
+ log(1− 1/p) ≤ 0. (5.10)

Moreover, since ∑
p≤x

1
p2
≤

∑
i≥2

1
i2

<∞,

summing the inequality (5.10) over all primes p ≤ x yields

−C ≤
∑
p≤x

1
p

+ log U(x) ≤ 0,

where C is a positive constant, and U(x) :=
∏

p≤x(1 − 1/p). From this,
and from Theorem 5.10, we obtain

log log x + log U(x) = O(1).

Now exponentiate both sides, and the theorem follows. 2

Exercise 5.4. Let ω(n) be the number of distinct prime factors of n,
and define ω(x) =

∑
n≤x ω(n), so that ω(x)/x represents the “average”

value of ω. First, show that ω(x) =
∑

p≤xbx/pc. From this, show that
ω(x) ∼ x log log x. 2
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Exercise 5.5. Analogously to the previous exercise, show that∑
n≤x τ(n) ∼ x log x, where τ(n) is the number of positive divisors of n. 2

Exercise 5.6. Define the sequence of numbers n1, n2, . . ., where nk is
the product of all the primes up to k. Show that as k → ∞, φ(nk) =
Θ(nk/ log log nk). Hint: you will want to use Mertens’ theorem, and also
Theorem 5.6. 2

Exercise 5.7. The previous exercise showed that φ(n) could be as small
as (about) n/ log log n for infinitely many n. Show that this is the “worst
case,” in the sense that φ(n) = Ω(n/ log log n) as n→∞. 2

Exercise 5.8. Show that for any positive integer constant k,∫ x

2

dt

(log t)k
=

x

(log x)k
+ O

(
x

(log x)k+1

)
.

2

Exercise 5.9. Use Chebyshev’s theorem and Abel’s identity to show that∑
p≤x

1
log p

=
π(x)
log x

+ O(x/(log x)3).

2

Exercise 5.10. Use Chebyshev’s theorem and Abel’s identity to prove a
stronger version of Theorem 5.4:

ϑ(x) = π(x) log x + O(x/ log x).

2

Exercise 5.11. Show that∏
2<p≤x

(1− 2/p) = Θ(1/(log x)2).

2

Exercise 5.12. Show that if π(x) ∼ cx/ log x for some constant c, then
we must have c = 1. Hint: use either Theorem 5.10 or 5.11. 2

Exercise 5.13. Strengthen Theorem 5.10, showing that
∑

p≤x 1/p ∼
log log x + A for some constant A. (Note: A ≈ 0.261497212847643.) 2

Exercise 5.14. Strengthen Mertens’ theorem, showing that
∏

p≤x(1 −
1/p) ∼ B1/(log x) for some constant B1. Hint: use the result from the
previous exercise. (Note: B1 ≈ 0.561459483566885.) 2

Exercise 5.15. Strengthen the result of Exercise 5.11, showing that∏
2<p≤x

(1− 2/p) ∼ B2/(log x)2

for some constant B2. (Note: B2 ≈ 0.832429065662.) 2
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5.4 The Sieve of Eratosthenes

As an application of Theorem 5.10, consider the sieve of Eratosthenes.
This is an algorithm for generating all the primes up to a given bound k.
It uses an array A[2 . . . k], and runs as follows.

for n← 2 to k do A[n]← 1
for n← 2 to b

√
kc do

if A[n] = 1 then
i← 2n; while i ≤ k do { A[i]← 0; i← i + n }

When the algorithm finishes, we have A[n] = 1 if and only if n is prime,
for n = 2, . . . , k. This can easily be proven using the fact (see Exercise 1.1)
that a composite number n between 2 and k must be divisible by a prime
that is at most

√
k, and by proving by induction on n that at the beginning

of the nth iteration of the main loop, A[i] = 0 iff i is divisible by a prime
less than n, for i = n, . . . , k. We leave the details of this to the reader.

We are more interested in the running time of the algorithm. To analyze
the running time, we assume that all arithmetic operations take constant
time; this is reasonable, since all the quantities computed in the algorithm
are bounded by k, and we need to at least be able to index all entries of
the array A, which has size k.

Every time we execute the inner loop of the algorithm, we perform
O(k/n) steps to clear the entries of A indexed by multiples of n. Naively,
we could bound the running time by a constant times∑

n≤
√

k

k/n,

which is O(k len(k)), where we have used a little calculus (see §A.2) to
derive that ∑̀

n=1

1/n =
∫ `

1

dy

y
+ O(1) ∼ log `.

However, the inner loop is executed only for prime values of n; thus, the
running time is proportional to ∑

p≤
√

k

k/p,

and so by Theorem 5.10 is Θ(k len(len(k))).

Exercise 5.16. Give a detailed proof of the correctness of the above
algorithm. 2
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Exercise 5.17. One drawback of the above algorithm is its use of space:
it requires an array of size k. Show how to modify the algorithm, without
substantially increasing its running time, so that one can enumerate all the
primes up to k, using an auxiliary array of size just O(

√
k). 2

Exercise 5.18. Design and analyze an algorithm that on input k outputs
the table of values τ(n) for n = 1, . . . , k, where τ(n) is the number of
positive divisors of n. Your algorithm should run in time O(k len(k)). 2

5.5 The Prime Number Theorem . . . and Be-
yond

In this section, we survey a number of theorems and conjectures related to
the distribution of primes. This is a vast area of mathematical research,
with a number of very deep results. We shall be stating a number of
theorems from the literature in this section without proof; while our intent
is to keep the text as self contained as possible, and to avoid degenerating
into “mathematical tourism,” it nevertheless is a good idea to occasionally
have a somewhat broader perspective. In the following chapters, we shall
not make any critical use of the theorems in this section.

5.5.1 The Prime Number Theorem

The main theorem in the theory of the density of primes is the following.

Theorem 5.14 (Prime Number Theorem). We have

π(x) ∼ x/ log x.

Proof. Literature — see §5.6. 2

As we saw in Exercise 5.12, if π(x)/(x/ log x) tends to a limit as x→∞,
then the limit must be 1, so in fact the hard part of proving the prime
number theorem is to show that π(x)/(x/ log x) does indeed tend to some
limit.

One simple consequence of the prime number theorem, together with
Theorem 5.4, is the following:

Theorem 5.15. We have
ϑ(x) ∼ x.
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Exercise 5.19. Using the prime number theorem, show that pn ∼
n log n, where pn denotes the nth prime. 2

Exercise 5.20. Using the prime number theorem, show that Bertrand’s
postulate can be strengthened (asymptotically) as follows: for all ε > 0,
there exist positive constants c and x0, such that for all x ≥ x0, we have

π((1 + ε)x)− π(x) ≥ c
x

log x
.

2

5.5.2 The Error Term in the Prime Number Theorem

The prime number theorem says that

|π(x)− x/ log x| ≤ δ(x),

where δ(x) = o(x/ log x). A natural question is: how small is the “error
term” δ(x)? It turns out that:

Theorem 5.16. We have

π(x) = x/ log x + O(x/(log x)2).

This bound on the error term is not very impressive. The reason is that
x/ log x is not really the best “simple” function that approximates π(x). It
turns out that a better approximation to π(x) is the logarithmic integral,
defined for real x ≥ 2 by

li(x) :=
∫ x

2

dt

log t
.

It is not hard to show (see Exercise 5.8) that

li(x) = x/ log x + O(x/(log x)2).

Thus, li(x) ∼ x/ log x ∼ π(x). However, the error term in the approxi-
mation of π(x) by li(x) is much better. This is illustrated numerically in
Table 5.2 — notice how much better li(x) approximates π(x) than does
x/ log x; for example, at x = 1018, li(x) approximates π(x) with a relative
error just under 10−9, while x/ log x approximates π(x) with a relative error
of about 0.025.

The sharpest proven result is the following:

Theorem 5.17. Let κ(x) := (log x)3/5(log log x)−1/5. Then for some
c > 0, we have

π(x) = li(x) + O(xe−cκ(x)).
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x π(x) li(x) x/ log x

103 168 176.6 144.8
106 78498 78626.5 72382.4
109 50847534 50849233.9 48254942.4

1012 37607912018 37607950279.8 36191206825.3
1015 29844570422669 29844571475286.5 28952965460216.8
1018 24739954287740860 24739954309690414.0 24127471216847323.8

Table 5.2: Values of π(x), li(x), and x/ log x

Proof. Literature — see §5.6. 2

Note that the error term xe−cκ(x) is o(x/(log x)k) for every fixed k ≥ 0.
Also note that Theorem 5.16 follows directly from the above theorem and
Exercise 5.8.

Although the above estimate on the error term in the approximation of
π(x) by li(x) is pretty good, it is conjectured that the actual error term is
much smaller:

Conjecture 5.18. For all x ≥ 2.01, we have

|π(x)− li(x)| < x1/2 log x.

Conjecture 5.18 is equivalent to a famous conjecture called the Rie-
mann hypothesis, which is an assumption about the location of the zeros
of a certain function, called Riemann’s zeta function. We give a very
brief, high-level account of this conjecture, and its connection to the theory
of the distribution of primes.

For real s > 1, the zeta function is defined as

ζ(s) :=
∞∑

n=1

1
ns

. (5.11)

Note that because s > 1, the infinite series defining ζ(s) converges. A
simple, but important, connection between the zeta function and the theory
of prime numbers is the following:

Theorem 5.19 (Euler’s Identity). For real s > 1, we have

ζ(s) =
∏
p

(1− p−s)−1, (5.12)

where the product is over all primes p.
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Proof. The rigorous interpretation of the infinite product on the right-
hand side of (5.12) is as a limit of finite products. Thus, if p1, p2, . . . is the
list of primes, we are really proving that

ζ(s) = lim
r→∞

r∏
i=1

(1− p−s
i )−1.

Now, from the identity

(1− p−s
i )−1 =

∞∑
e=0

p−es
i ,

we have
r∏

i=1

(1− p−s
i )−1 =

(
1 + p−s

1 + p−2s
1 + · · ·

)
· · ·

(
1 + p−s

r + p−2s
r + · · ·

)

=
∞∑

e1=0

· · ·
∞∑

er=0

(pe1
1 · · · per

r )s

=
∞∑

n=1

gr(n)
ns

,

where

gr(n) :=
{

1 if n is divisible only by the primes p1, . . . , pr;
0 otherwise.

Here, we have made use of the fact (see §A.5) that we can multiply term-
wise infinite series with non-negative terms.

Now, for any ε > 0, there exists n0 such that
∑∞

n=n0
n−s < ε (because

the series defining ζ(s) converges). Moreover, there exists an r0 such that
gr(n) = 1 for all n < n0 and r ≥ r0. Therefore, for r ≥ r0, we have∣∣∣∣ ∞∑

n=1

gr(n)
ns

− ζ(s)
∣∣∣∣ ≤ ∞∑

n=n0

n−s < ε.

It follows that

lim
r→∞

∞∑
n=1

gr(n)
ns

= ζ(s),

which proves the theorem. 2

While Theorem 5.19 is nice, things become much more interesting if one
extends the domain of definition of the zeta function to the complex plane.
For the reader who is familiar with just a little complex analysis, it is easy
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to see that the infinite series defining the zeta function in (5.11) converges
absolutely for complex numbers s whose real part is greater than 1, and
that (5.12) holds as well for such s. However, it is possible to extend the
domain of definition of ζ even further. For example, we may define ζ(s) for
all complex numbers s 6= 1 with real part greater than zero by the following
formula:

ζ(s) :=
1

s− 1
+ 1− s

∫ ∞

1

x− bxc
xs+1

dx. (5.13)

One can show that this definition of the zeta function agrees with the
definition (5.11) for those s whose real part is greater than 1, and that the
zeta function is analytic everywhere in its domain of definition (and has a
simple pole at s = 1). It is even possible to extend the domain of definition
of the zeta function to the entire complex plane (except s = 1), obtaining
a function that is analytic everywhere.

We can now state the Riemann hypothesis:

Conjecture 5.20 (Riemann Hypothesis). For any complex number
s = x + yi, where x and y are real numbers with 0 < x < 1 and x 6= 1/2,
we have ζ(s) 6= 0.

A lot is known about the zeros of the zeta function in the “critical strip,”
consisting of those points s whose real part is greater than zero and less
than one: it is known that there are infinitely many of them, and there
are even good estimates about their density. It turns out that one can
apply standard tools in complex analysis, like contour integration, to the
zeta function (and functions derived from it) to answer various questions
about the distribution of primes. Indeed, such techniques may be used to
prove the prime number theorem. However, if one assumes the Riemann
hypothesis, then these techniques yield much sharper results, such as the
bound in Conjecture 5.18.

Exercise 5.21. For any arithmetic function a, we can form the Dirich-
let series

Fa(s) :=
∞∑

n=1

a(n)
ns

.

For simplicity we assume that s takes only real values, even though such
series are usually studied for complex values of s.

(a) Show that if the Dirichlet series Fa(s) converges absolutely for some
real s, then it converges absolutely for all real s′ ≥ s.

(b) From part (a), conclude that for any given arithmetic function a,
there is an interval of absolute convergence of the form (s0,∞),
where we allow s0 = −∞ and s0 = ∞, such that Fa(s) converges
absolutely for s > s0, and does not converge absolutely for s < s0.
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(c) Let a and b be arithmetic functions such that Fa(s) has an interval
of absolute convergence (s0,∞) and Fb(s) has an interval of absolute
convergence (s′0,∞), and assume that s0 < ∞ and s′0 < ∞. Let
c := a ? b be the Dirichlet product of a and b, as defined in §2.6.
Show that for all s ∈ (max(s0, s

′
0),∞), the series Fc(s) converges

absolutely and, moreover, that Fa(s)Fb(s) = Fc(s).

2

5.5.3 Explicit Estimates

Sometimes, it is useful to have explicit estimates for π(x), as well as related
functions, like ϑ(x) and the nth prime function pn. The following theorem
presents a number of bounds that have been proved without relying on any
unproved conjectures.

Theorem 5.21. We have:

(i)
x

log x

(
1 +

1
2 log x

)
< π(x) <

x

log x

(
1 +

3
2 log x

)
for x ≥ 59;

(ii) n(log n+log log n−3/2) < pn < n(log n+log log n−1/2), for n ≥ 20;

(iii) x(1− 1/(2 log x)) < ϑ(x) < x(1 + 1/(2 log x)), for x ≥ 563;

(iv) log log x + A− 1
2(log x)2

<
∑
p≤x

1/p < log log x + A +
1

2(log x)2
,

for x ≥ 286, where A ≈ 0.261497212847643;

(v)
B1

log x

(
1− 1

2(log x)2

)
<

∏
p≤x

(
1− 1

p

)
<

B1

log x

(
1 +

1
2(log x)2

)
,

for x ≥ 285, where B1 ≈ 0.561459483566885.

Proof. Literature — see §5.6. 2

5.5.4 Primes in Arithmetic Progressions

The arithmetic progression of odd numbers 1, 3, 5, . . . contains infinitely
many primes, and it is natural to ask if other arithmetic progressions do as
well. An arithmetic progression with first term a and common difference d
consists of all integers of the form

md + a, m = 0, 1, 2, . . . .

If d and a have a common factor c > 1, then every term in the progres-
sion is divisible by c, and so there can be no more than one prime in the
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progression. So a necessary condition for the existence of infinitely many
primes p with p ≡ a (mod d) is that gcd(d, a) = 1. A famous theorem due
to Dirichlet states that this is a sufficient condition as well.

Theorem 5.22 (Dirichlet’s Theorem). For any positive integer d and
any integer a relatively prime to d, there are infinitely many primes p with
p ≡ a (mod d).

Proof. Literature — see §5.6. 2

We can also ask about the density of primes in arithmetic progressions.
One might expect that for a fixed value of d, the primes are distributed in
roughly equal measure among the φ(d) different residue classes [a mod d]
with gcd(a, d) = 1. This is in fact the case. To formulate such assertions, we
define π(x; d, a) to be the number of primes p up to x with p ≡ a (mod d).

Theorem 5.23. Let d > 0 be a fixed integer, and let a ∈ Z be relatively
prime to d. Then

π(x; d, a) ∼ x

φ(d) log x
.

Proof. Literature — see §5.6. 2

The above theorem is only applicable in the case where d is fixed and
x→∞. But what if we want an estimate on the number of primes p up to
x with p ≡ a (mod d), where x is, say, a fixed power of d? Theorem 5.23
does not help us here. The following conjecture does, however:

Conjecture 5.24. For any real x ≥ 2, integer d ≥ 2, and a ∈ Z relatively
prime to d, we have∣∣∣∣π(x; d, a)− li(x)

φ(d)

∣∣∣∣ ≤ x1/2(log x + 2 log d).

The above conjecture is in fact a consequence of a generalization of the
Riemann hypothesis — see §5.6.

Exercise 5.22. Assuming Conjecture 5.24, show that for all α with 0 <
α < 1/2, there exists an x0, such that for all x > x0, for all integer d with
2 ≤ d ≤ xα, and for all a ∈ Z relatively prime to d, there are at least
li(x)/(2φ(d)) primes p ≤ x such that p ≡ a (mod d). 2

It is an open problem to prove an unconditional density result analogous
to Exercise 5.22 for any positive exponent α. The following, however, is
known:
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Theorem 5.25. There exists a constant c such that for all integer d ≥ 2
and a ∈ Z relatively prime to d, the least prime p with p ≡ a (mod d) is at
most cd11/2.

Proof. Literature — see §5.6. 2

5.5.5 Sophie Germain Primes

A Sophie Germain prime is a prime p such that 2p + 1 is also prime.
Such primes are actually useful in a number of practical applications, and
so we discuss them briefly here.

It is an open problem to prove (or disprove) that there are infinitely
many Sophie Germain primes. However, numerical evidence, and heuristic
arguments, strongly suggest not only that there are infinitely many such
primes, but also a fairly precise estimate on the density of such primes.

Let π∗(x) denote the number of Sophie Germain primes up to x.

Conjecture 5.26. We have

π∗(x) ∼ C
x

(log x)2
,

where C is the constant

C := 2
∏
q>2

q(q − 2)
(q − 1)2

≈ 1.32032,

and the product is over all primes q > 2.

The above conjecture is a special case of a more general conjecture,
known as Hypothesis H. We can formulate a special case of Hypothesis
H (which includes Conjecture 5.26), as follows:

Conjecture 5.27. Let (a1, b1), . . . , (ak, bk) be distinct pairs of integers
such that ai > 0, and for all primes p, there exists an integer m such that

k∏
i=1

(mai + bi) 6≡ 0 (mod p).

Let P (x) be the number of integers m up to x such that mai + bi are simul-
taneously prime for i = 1, . . . , k. Then

P (x) ∼ D
x

(log x)k
,

where

D :=
∏
p

{(
1− 1

p

)−k(
1− ω(p)

p

)}
,
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the product being over all primes p, and ω(p) being the number of distinct
solutions m modulo p to the congruence

k∏
i=1

(mai + bi) ≡ 0 (mod p).

The above conjecture also includes (a strong version of) the famous
twin primes conjecture as a special case: the number of primes p up
to x such that p + 2 is also prime is ∼ Cx/(log x)2, where C is the same
constant as in Conjecture 5.26.

Exercise 5.23. Show that the constant C appearing in Conjecture 5.26
satisfies

2C = B2/B2
1 ,

where B1 and B2 are the constants from Exercises 5.14 and 5.15. 2

Exercise 5.24. Show that the quantity D appearing in Conjecture 5.27
is well defined, and satisfies 0 < D <∞. 2

5.6 Notes

The prime number theorem was conjectured by Gauss in 1791. It was
proven independently in 1896 by Hadamard and de la Vallée Poussin. A
proof of the prime number theorem may be found, for example, in the book
by Hardy and Wright [39]. A more accessible exposition of a proof of the
prime number theorem may be found in the book by Jameson [45].

Theorem 5.21, as well as the estimates for the constants A, B1, and
B2 mentioned in that theorem and Exercises 5.13, 5.14, and 5.15, are from
Rosser and Schoenfeld [75].

Theorem 5.17 is from Walfisz [91].
Theorem 5.19, which made the first connection between the theory of

prime numbers and the zeta function, was discovered in the 18th century by
Euler. The Riemann hypothesis was made by Riemann in 1859, and to this
day, remains one of the most vexing conjectures in mathematics. Riemann
in fact showed that his conjecture about the zeros of the zeta function
is equivalent to the conjecture that for each fixed ε > 0, π(x) = li(x) +
O(x1/2+ε). This was strengthened by von Koch in 1901, who showed that
the Riemann hypothesis is true if and only if π(x) = li(x) + O(x1/2 log x).
See Chapter 1 of the book by Crandall and Pomerance [26] for more on
the connection between the Riemann hypothesis and the theory of prime
numbers; in particular, see Exercise 1.36 in that book for an outline of a
proof that Conjecture 5.18 follows from the Riemann hypothesis. There are
a number of different, but equivalent, formulas that may be used to extend
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the domain of definition of the zeta function; the formula in (5.13) is from
Section 3.1 of Jameson [45].

A warning: some authors (and software packages) define the logarithmic
integral using the interval of integration (0, x), rather than (2, x), which
increases its value by a constant c ≈ 1.0452.

Theorem 5.22 was proved by Dirichlet in 1837, while Theorem 5.23
was proved by de la Vallée Poussin in 1896. Conjecture 5.24 was proved by
Oesterlé [65] to be a consequence of an assumption about the location of the
zeros of certain generalizations of Riemann’s zeta function. Theorem 5.25
is from Heath-Brown [40].

Hypothesis H is from Hardy and Littlewood [38].
For the reader who is interested in learning more on the topics discussed

in this chapter, we recommend the books by Apostol [7] and Hardy and
Wright [39]; indeed, many of the proofs presented in this chapter are minor
variations on proofs from these two books. Our proof of Bertrand’s postu-
late is based on the presentation in Section 9.2 of Redmond [72]. See also
Bach and Shallit [11] (especially Chapter 8), Crandall and Pomerance [26]
(especially Chapter 1) for a more detailed overview of these topics.

The data in Tables 5.1 and 5.2 was obtained using the computer program
Maple.



Chapter 6

Finite and Discrete Probability
Distributions

This chapter introduces concepts from discrete probability theory. We be-
gin with a discussion of finite probability distributions, and then towards
the end of the chapter we discuss the more general notion of a discrete
probability distribution.

6.1 Finite Probability Distributions: Basic
Definitions

A finite probability distribution D = (U ,P) is a finite, non-empty set
U , together with a function P that maps u ∈ U to P[u] ∈ [0, 1], such that∑

u∈U
P[u] = 1. (6.1)

The set U is called the sample space and the function P is called the
probability function.

Intuitively, the elements of U represent the possible outcomes of a ran-
dom experiment, where the probability of outcome u ∈ U is P[u].

Up until §6.9, we shall use the phrase “probability distribution” to mean
“finite probability distribution.”

Example 6.1. If we think of rolling a fair die, then U := {1, 2, 3, 4, 5, 6},
and P[u] := 1/6 for all u ∈ U gives a probability distribution describing
the possible outcomes of the experiment. 2

Example 6.2. More generally, if U is a finite set, and P[u] = 1/|U| for
all u ∈ U , then D is called the uniform distribution on U . 2

95
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Example 6.3. A coin flip is an example of a Bernoulli trial, which is
in general an experiment with only two possible outcomes: success, which
occurs with probability p, and failure, which occurs with probability q :=
1− p. 2

An event is a subset A of U , and the probability of A is defined to
be

P[A] :=
∑
u∈A

P[u]. (6.2)

Thus, we extend the domain of definition of P from outcomes u ∈ U to
events A ⊆ U .

For an event A ⊆ U , let A denote the complement of A in U . We have
P[∅] = 0, P[U ] = 1, P[A] = 1− P[A].

For any events A,B ⊆ U , if A ⊆ B, then P[A] ≤ P[B]. Also, for any
events A,B ⊆ U , we have

P[A ∪ B] = P[A] + P[B]− P[A ∩ B] ≤ P[A] + P[B]; (6.3)

in particular, if A and B are disjoint, then

P[A ∪ B] = P[A] + P[B]. (6.4)

More generally, for any events A1, . . . ,An ⊆ U we have

P[A1 ∪ · · · ∪ An] ≤ P[A1] + · · ·+ P[An], (6.5)

and if the Ai are pairwise disjoint, then

P[A1 ∪ · · · ∪ An] = P[A1] + · · ·+ P[An]. (6.6)

In working with events, one makes frequent use of the usual rules of
boolean logic. DeMorgan’s law says that for events A and B, we have

A ∪ B = A ∩ B and A ∩ B = A ∪ B.

We also have the distributive law: for events A,B, C, we have

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

In some applications and examples, it is more natural to use the logical
“or” connective “∨” in place of “∪,” and the logical “and” connective “∧”
in place of “∩.”

Example 6.4. Continuing with Example 6.1, the probability of an “odd
roll” A = {1, 3, 5} is 1/2. 2

Example 6.5. More generally, if D is the uniform distribution of a set U
of cardinality n, and A is a subset of U of cardinality k, then P[A] = k/n.
2
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Example 6.6. Alice rolls two dice, and asks Bob to guess a value that
appears on either of the two dice (without looking). Let us model this sit-
uation by considering the uniform distribution on {(x, y) : x, y = 1, . . . , 6},
where x represents the value of the first die, and y the value of the second.

For x = 1, . . . , 6, let Ax be the event that the first die is x, and Bx

the event that the second die is x, Let Cx = Ax ∪ Bx be the event that x
appears on either of the two dice. No matter what value x Bob chooses,
the probability that this choice is correct is

P[Cx] = P[Ax∪Bx] = P[Ax]+P[Bx]−P[Ax∩Bx] = 1/6+1/6−1/36 = 11/36.

2

If D1 = (U1,P1) and D2 = (U2,P2) are probability distributions, we
can form the product distribution D = (U ,P), where U := U1 × U2,
and P[(u1, u2)] := P1[u1]P2[u2]. It is easy to verify that the product distri-
bution is also a probability distribution. Intuitively, the elements (u1, u2)
of U1 × U2 denote the possible outcomes of two separate and independent
experiments.

More generally, if Di = (Ui,Pi) for i = 1, . . . , n, we can define
the product distribution D = (U ,P), where U := U1 × · · · × Un, and
P[(u1, . . . , un)] := P[u1] . . .P[un].

Example 6.7. We can view the probability distribution in Example 6.6
as the product of two copies of the uniform distribution on {1, . . . , 6}. 2

Example 6.8. Consider the product distribution of n copies of a
Bernoulli trial (see Example 6.3), with associated success probability p and
failure probability q := 1−p. An element of the sample space is an n-tuple
of success/failure values. Any such tuple that contains, say, k successes and
n− k failures, occurs with probability pkqn−k, regardless of the particular
positions of the successes and failures. 2

Exercise 6.1. Suppose A,B, C are events such that A∩C = B∩C. Show
that |P[A]− P[B]| ≤ P[C]. 2

Exercise 6.2. Using Equation (6.3), prove the inclusion/exclusion
principle: for events A1, . . . ,An, we have

P[A1 ∪ · · · ∪ An] =
n∑

`=1

(−1)`−1
∑

i1,...,i`

P[Ai1 ∩ · · · ∩ Ai`
],

where the inner sum is over all subsets of ` distinct indices between 1 and
n. 2
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Exercise 6.3. Let k ≥ 2 be an integer, and suppose an integer n is chosen
at random from among all k-bit integers. Show that the probability that n
is prime is Θ(1/k). 2

Exercise 6.4. Let n be a positive integer, and suppose that a and b are
chosen at random from the set {1, . . . , n}. Show that the probability that
gcd(a, b) = 1 is at least 1/4. 2

Exercise 6.5. Let n be a positive integer, and suppose that a is chosen at
random from the set {1, . . . , n}. Show that the probability that gcd(a, n) =
1 is Ω(1/ log log n). 2

6.2 Conditional Probability and Indepen-
dence

Let D = (U ,P) be a probability distribution.
For any event B ⊆ U with P[B] 6= 0 and any u ∈ U , let us define

P[u | B] :=
{

P[u]/P[B] if u ∈ B,
0 otherwise.

Viewing B as fixed, we may view the function P[· | B] as a new probability
function on the sample space U , and this gives rise a new probability dis-
tribution DB := (P[· | B],U), called the conditional distribution given
B.

Intuitively, DB has the following interpretation: if a random experiment
produces an outcome according to the distribution D, and we learn that the
event B has occurred, then the distribution DB assigns new probabilities
to all possible outcomes, reflecting the partial knowledge that the event B
has occurred.

As usual, we extend the domain of definition of P[· | B] from outcomes
to events. For any event A ⊆ U , we have

P[A | B] =
∑
u∈A

P[u | B] =
P[A ∩ B]

P[B]
.

The value P[A | B] is called the conditional probability of A given B.
Again, the intuition is that this is the probability that the event A occurs,
given the partial knowledge that the event B has occurred.

For events A and B, if P[A ∩ B] = P[A] · P[B], then A and B are called
independent events. If P[B] 6= 0, a simple calculation shows that A and
B are independent if and only if P[A | B] = P[A].

A collection A1, . . . ,An of events is called pairwise independent if
P[Ai∩Aj ] = P[Ai]P[Aj ] for all i 6= j, and is called mutually independent
if every subset Ai1 , . . . ,Aik

of the collection satisfies

P[Ai1 ∩ · · · ∩ Aik
] = P[Ai1 ] · · ·P[Aik

].
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Example 6.9. In Example 6.6, suppose that Alice tells Bob the sum of
the two dice before Bob makes his guess. For example, suppose Alice tells
Bob the sum is 4. Then what is Bob’s best strategy in this case? Let Sz be
the event that the sum is z, for z = 2, . . . , 12, and consider the conditional
probability distribution given S4. This is the uniform distribution on the
three pairs (1, 3), (2, 2), (3, 1). The numbers 1 and 3 both appear in two
pairs, while the number 2 appears in just one pair. Therefore,

P[C1 | S4] = P[C3 | S4] = 2/3,

while
P[C2 | S4] = 1/3

and
P[C4 | S4] = P[C5 | S4] = P[C6 | S4] = 0.

Thus, if the sum is 4, Bob’s best strategy is to guess either 1 or 3.
Note that the events A1 and B2 are independent, while the events A1

and S4 are not. 2

Example 6.10. Suppose we toss three fair coins. Let A1 be the event
that the first coin is “heads,” let A2 be the event that the second coin is
“heads,” and let A3 be the event that the third coin is “heads.” Then the
collection of events {A1,A2,A3} is mutually independent.

Now let B12 be the event that the first and second coins agree (i.e., both
“heads” or both “tails”), let B13 be the event that the first and third coins
agree, and let B23 be the event that the second and third coins agree. Then
the collection of events {B12,B13,B23} is pairwise independent, but not
mutually independent. Indeed, the probability that any one of the events
occurs is 1/2, and the probability that any two of the three events occurs is
1/4; however, the probability that all three occurs is also 1/4, since if any
two events occur, then so does the third. 2

Suppose we have a collection B1, . . . ,Bn of events that partitions U ,
such that each event Bi occurs with non-zero probability. Then it is easy
to see that for any event A,

P[A] =
n∑

i=1

P[A ∩ Bi] =
n∑

i=1

P[A | Bi] · P[Bi]. (6.7)

Furthermore, if P[A] 6= 0, then for any j = 1, . . . , n, we have

P[Bj | A] =
P[A ∩ Bj ]

P[A]
=

P[A | Bj ]P[Bj ]∑n
i=1 P[A | Bi]P[Bi]

. (6.8)

This equality, known as Bayes’ theorem, allows us to compute the con-
ditional probability P[Bj | A] in terms of the conditional probabilities
P[A | Bi].
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The equation (6.7) is useful for computing or estimating probabilities
by conditioning on specific events Bi (i.e., by considering the conditional
probability distribution given Bi) in such a way that the conditional prob-
abilities P[A | Bi] are easy to compute or estimate. Also, if we want to
compute a conditional probability P[A | C], we can do so by partitioning
C into events B1, . . . ,Bn, where each Bi occurs with non-zero probability,
and use the following simple fact:

P[A | C] =
n∑

i=1

P[A | Bi]P[Bi]/P[C]. (6.9)

Example 6.11. This example is based on the TV game show “Let’s make
a deal,” which was popular in the 1970’s. In this game, a contestant chooses
one of three doors. Behind two doors is a “zonk,” that is, something amus-
ing but of little or no value, such as a goat, and behind one of the doors is
a “grand prize,” such as a car or vacation package. We may assume that
the door behind which the grand prize is placed is chosen at random from
among the three doors, with equal probability. After the contestant chooses
a door, the host of the show, Monty Hall, always reveals a zonk behind one
of the two doors not chosen by the contestant. The contestant is then given
a choice: either stay with his initial choice of door, or switch to the other
unopened door. After the contestant finalizes his decision on which door
to choose, that door is opened and he wins whatever is behind the chosen
door. The question is, which strategy is better for the contestant: to stay
or to switch?

Let us evaluate the two strategies. If the contestant always stays with
his initial selection, then it is clear that his probability of success is exactly
1/3.

Now consider the strategy of always switching. Let B be the event that
the contestant’s initial choice was correct, and let A be the event that the
contestant wins the grand prize. On the one hand, if the contestant’s initial
choice was correct, then switching will certainly lead to failure. That is,
P[A | B] = 0. On the other hand, suppose that the contestant’s initial
choice was incorrect, so that one of the zonks is behind the initially chosen
door. Since Monty reveals the other zonk, switching will lead with certainty
to success. That is, P[A | B] = 1. Furthermore, it is clear that P[B] = 1/3.
So we compute

P[A] = P[A | B]P[B] + P[A | B]P[B] = 0 · (1/3) + 1 · (2/3) = 2/3.

Thus, the “stay” strategy has a success probability of 1/3, while the
“switch” strategy has a success probability of 2/3. So it is better to switch
than to stay.

Of course, real life is a bit more complicated. Monty did not always
reveal a zonk and offer a choice to switch. Indeed, if Monty only revealed
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a zonk when the contestant had chosen the correct door, then switching
would certainly be the wrong strategy. However, if Monty’s choice itself
was a random decision made independent of the contestant’s initial choice,
then switching is again the preferred strategy. 2

Example 6.12. Suppose that the rate of incidence of disease X in the
overall population is 1%. Also suppose that there is a test for disease X;
however, the test is not perfect: it has a 5% false positive rate (i.e., 5% of
healthy patients test positive for the disease), and a 2% false negative rate
(i.e., 2% of sick patients test negative for the disease). A doctor gives the
test to a patient and it comes out positive. How should the doctor advise
his patient? In particular, what is the probability that the patient actually
has disease X, given a positive test result?

Amazingly, many trained doctors will say the probability is 95%, since
the test has a false positive rate of 5%. However, this conclusion is com-
pletely wrong.

Let A be the event that the test is positive and let B be the event that
the patient has disease X. The relevant quantity that we need to estimate
is P[B | A]; that is, the probability that the patient has disease X, given a
positive test result. We use Bayes’ theorem to do this:

P[B | A] =
P[A | B]P[B]

P[A | B]P[B] + P[A | B]P[B]
=

0.98 · 0.01
0.98 · 0.01 + 0.05 · 0.99

≈ 0.17.

Thus, the chances that the patient has disease X given a positive test result
is just 17%. The correct intuition here is that it is much more likely to get
a false positive than it is to actually have the disease.

Of course, the real world is a bit more complicated than this example
suggests: the doctor may be giving the patient the test because other risk
factors or symptoms may suggest that the patient is more likely to have the
disease than a random member of the population, in which case the above
analysis does not apply. 2

Exercise 6.6. Consider again the situation in Example 6.12, but now
suppose that the patient is visiting the doctor because he has symptom
Y . Furthermore, it is known that everyone who has disease X exhibits
symptom Y , while 10% of the population overall exhibits symptom Y .
Assuming that the accuracy of the test is not affected by the presence of
symptom Y , how should the doctor advise his patient should the test come
out positive? 2

Exercise 6.7. Suppose we roll two dice, and let (x, y) denote the out-
come (as in Example 6.6). For each of the following pairs of events A and
B, determine if they are independent or not:
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(a) A: x = y; B: y = 1.

(b) A: x ≥ y; B: y = 1.

(c) A: x ≥ y; B: y2 = 7y − 6.

(d) A: xy = 6; B: y = 3.

2

Exercise 6.8. Let C be an event that occurs with non-zero probability,
and let B1, . . . ,Bn be a partition of C, such that each event Bi occurs with
non-zero probability. Let A be an event and let p be a real number with
0 ≤ p ≤ 1. Suppose that for each i = 1, . . . , n, the conditional probability
of A given Bi is at most p. Show that the conditional probability of A given
C is also at most p. 2

Exercise 6.9. Show that if two events A and B are independent, then
so are A and B. More generally, show that if A1, . . . ,An are mutually
independent, then so are A′1, . . . ,A′n, where each A′i denotes either Ai or
Ai. 2

Exercise 6.10. This exercise develops an alternative proof, based on
probability theory, of Theorem 2.14. Let n > 1 be an integer and consider
an experiment in which a number a is chosen at random from {0, . . . , n−1}.
If n = pe1

1 · · · per
r is the prime factorization of n, let Ai be the event that a

is divisible by pi, for i = 1, . . . , r.

(a) Show that
φ(n)/n = P[A1 ∩ · · · ∩ Ar],

where φ is Euler’s phi function.

(b) Show that if i1, . . . , i` are distinct indices between 1 and r, then

P[Ai1 ∩ · · · ∩ Ai`
] =

1
pi1 · · · pi`

.

Conclude that the events Ai are mutually independent, and P[Ai] =
1/pi.

(c) Using part (b) and the result of the previous exercise, show that

P[A1 ∩ · · · ∩ Ar] =
r∏

i=1

(1− 1/pi).

(d) Combine parts (a) and (c) to derive the result of Theorem 2.14 that

φ(n) = n
r∏

i=1

(1− 1/pi).

2
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6.3 Random Variables

Let D = (U ,P) be a probability distribution.
It is sometimes convenient to associate a real number, or other mathe-

matical object, with each outcome u ∈ U . Such an association is called a
random variable; more formally, a random variable X is a function from
U into a set X . If X is a subset of the real numbers, then X is called
a real random variable. When we speak of the image of X, we sim-
ply mean its image in the usual function-theoretic sense, that is, the set
X(U) = {X(u) : u ∈ U}.

One may define any number of random variables on a given probability
distribution. If X : U → X is a random variable, and f : X → Y is a
function, then f(X) := f ◦X is also a random variable.

Example 6.13. Suppose we flip n fair coins. Then we may define a
random variable X that maps each outcome to a bit string of length n,
where a “head” is encoded as a 1-bit, and a “tail” is encoded as a 0-bit.
We may define another random variable Y that is the number of “heads.”
The variable Y is a real random variable. 2

Example 6.14. If A is an event, we may define a random variable X
as follows: X := 1 if the event A occurs, and X := 0 otherwise. The
variable X is called the indicator variable for A. Conversely, if Y is any
0/1-valued random variable, we can define the event B to be the subset of
all possible outcomes that lead to Y = 1, and Y is the indicator variable for
the event B. Thus, we can work with either or events or indicator variables,
whichever is more natural and convenient. 2

Let X : U → X be a random variable. For x ∈ X , we write “X = x”
as shorthand for the event {u ∈ U : X(u) = x}. More generally, for
and any predicate φ, we may write “φ(X)” as shorthand for the event
{u ∈ U : φ(X(u))}.

A random variable X defines a probability distribution on its image
X , where the probability associated with x ∈ X is P[X = x]. We call
this the distribution of X. For two random variables X, Y defined on
a probability distribution, Z := (X, Y ) is also a random variable whose
distribution is called the joint distribution of X and Y .

If X is a random variable, and A is an event with non-zero probability,
then the conditional distribution of X given A is a probability distri-
bution on the image X of X, where the probability associated with x ∈ X
is P[X = x | A].

We say two random variables X, Y are independent if for all x in the
image of X and all y in the image of Y , the events X = x and Y = y are
independent, which is to say,

P[X = x ∧ Y = y] = P[X = x]P[Y = y].
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Equivalently, X and Y are independent if and only if their joint distribution
is equal to the product of their individual distributions. Alternatively, X
and Y are independent if and only if for all values x taken by X with non-
zero probability, the conditional distribution of Y given the event X = x is
the same as the distribution of Y .

Let X1, . . . , Xn be a collection of random variables, and let Xi be the
image of Xi for i = 1, . . . , n. We say X1, . . . , Xn are pairwise indepen-
dent if for all i, j = 1, . . . , n with i 6= j, the variables Xi and Xj are
independent. We say that X1, . . . , Xn are mutually independent if for
all x1 ∈ X1, . . . , xn ∈ Xn, we have

P[X1 = x1 ∧ · · · ∧Xn = xn] = P[X1 = x1] · · ·P[Xn = xn].

More generally, for k = 2, . . . , n, we say that X1, . . . , Xn are k-wise inde-
pendent if any k of them are mutually independent.

Example 6.15. We toss 3 coins, and set Xi := 0 if the ith coin is
“tails,” and Xi := 1 otherwise. The variables X1, X2, X3 are mutually
independent. Let us set Y12 := X1 ⊕ X2, Y13 := X1 ⊕ X3, and Y23 :=
X2 ⊕ X3, where “⊕” denotes “exclusive or,” that is, addition modulo 2.
Then the variables Y12, Y13, Y23 are pairwise independent, but not mutually
independent — observe that Y12 ⊕ Y13 = Y23. 2

The following is a simple but useful fact:

Theorem 6.1. Let Xi : U → Xi be random variables, for i = 1, . . . , n,
and suppose that there exist functions fi : Xi → [0, 1], for i = 1, . . . , n, such
that ∑

xi∈Xi

fi(xi) = 1 (i = 1 . . . n),

and
P[X1 = x1 ∧ · · · ∧Xn = xn] = f1(x1) · · · fn(xn)

for all x1 ∈ X1, . . . , xn ∈ Xn. Then for any subset of distinct indices
i1, . . . , i` ∈ {1, . . . , n}, we have

P[Xi1 = xi1 ∧ · · · ∧Xi`
= xi`

] = fi1(xi1) · · · fi`
(xi`

)

for all xi1 ∈ Xi1 , . . . , xi`
∈ Xi`

.

Proof. To prove the theorem, it will suffice to show that we can “eliminate”
a single variable, say Xn, meaning that for all x1, . . . , xn−1, we have

P[X1 = x1 ∧ · · · ∧Xn−1 = xn−1] = f1(x1) · · · fn−1(xn−1).

Having established this, we may then proceed to eliminate any number of
variables (the ordering of the variables is clearly irrelevant).
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We have

P[X1 = x1 ∧ · · · ∧Xn−1 = xn−1]

=
∑

xn∈Xn

P[X1 = x1 ∧ · · · ∧Xn−1 = xn−1 ∧Xn = xn]

=
∑

xn∈Xn

f1(x1) · · · fn−1(xn−1)fn(xn)

= f1(x2) · · · fn−1(xn−1)
∑

xn∈Xn

fn(xn)

= f1(x1) · · · fn−1(xn−1).

2

The following three theorems are immediate consequences of the above
theorem:

Theorem 6.2. Let Xi : U → Xi be random variables, for i = 1, . . . , n,
such that

P[X1 = x1∧· · ·∧Xn = xn] =
1
|X1|

· · · 1
|Xn|

(for all x1 ∈ X1, . . . , xn ∈ Xn).

Then the variables Xi are mutually independent with each Xi uniformly
distributed over Xi.

Theorem 6.3. If X1, . . . , Xn are mutually independent random vari-
ables, then they are k-wise independent for all k = 2, . . . , n.

Theorem 6.4. If Di = (Ui,Pi) are probability distributions for i =
1, . . . , n, then the projection functions πi : U1 × · · · × Un → Ui, where
πi(u1, . . . , un) = ui, are mutually independent random variables on the
product distribution D1 × · · · ×Dn.

We also have:

Theorem 6.5. If X1, . . . , Xn are mutually independent random vari-
ables, and g1, . . . , gn are functions, then g1(X1), . . . , gn(Xn) are also mu-
tually independent random variables.

Proof. The proof is a straightforward, if somewhat tedious, calculation.
For i = 1, . . . , n, let yi be some value in the image of gi(Xi), and let
Xi := g−1

i ({yi}). We have

P[g1(X1) = y1 ∧ · · · ∧ gn(Xn) = yn]

= P

[
(

∨
x1∈X1

X1 = x1) ∧ · · · ∧ (
∨

xn∈Xn

Xn = xn)
]
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= P

[ ∨
x1∈X1

· · ·
∨

xn∈Xn

(X1 = x1 ∧ · · · ∧Xn = xn)
]

=
∑

x1∈X1

· · ·
∑

xn∈Xn

P[X1 = x1 ∧ · · · ∧Xn = xn]

=
∑

x1∈X1

· · ·
∑

xn∈Xn

P[X1 = x1] · · ·P[Xn = xn]

=
( ∑

x1∈X1

P[X1 = x1]
)
· · ·

( ∑
xn∈Xn

P[Xn = xn]
)

= P

[ ∨
x1∈X1

X1 = x1

]
· · ·P

[ ∨
xn∈Xn

Xn = xn

]
= P[g1(X1) = y1] · · ·P[gn(Xn) = yn].

2

Example 6.16. If we toss n dice, and let Xi denote the value of the
ith die for i = 1, . . . , n, then the Xi are mutually independent random
variables. If we set Yi := X2

i for i = 1, . . . , n, then the Yi are also mutually
independent random variables. 2

Example 6.17. This example again illustrates the notion of pairwise in-
dependence. Let X and Y be independent and uniformly distributed over
Zp, where p is a prime. For a ∈ Zp, let Za := aX +Y . Then we claim that
each Za is uniformly distributed over Zp, and that the collection of random
variables {Za : a ∈ Zp} is pairwise independent.

To prove this claim, let a, b ∈ Zp with a 6= b, and consider the map
fa,b : Zp × Zp → Zp × Zp that sends (x, y) to (ax + y, bx + y). It is easy to
see that fa,b is injective; indeed, if ax + y = ax′ + y′ and bx + y = bx′ + y′,
then subtracting these two equations, we obtain (a − b)x = (a − b)x′, and
since a − b 6= [0 mod p], it follows that x = x′, which also implies y = y′.
Since fa,b is injective, it must be a bijection from Zp × Zp onto itself.
Thus, since (X, Y ) is uniformly distributed over Zp × Zp, so is (Za, Zb) =
(aX + Y, bX + Y ). So for all z, z′ ∈ Zp, we have

P[Za = z ∧ Zb = z′] = 1/p2,

and so the claim follows from Theorem 6.2.
Note that the variables Za are not 3-wise independent, since the value

of any two determines the value of all the rest (verify). 2

Example 6.18. We can generalize the previous example as follows. Let
X1, . . . , Xt, Y be mutually independent and uniformly distributed over Zp,
where p is prime, and for a1, . . . , at ∈ Zp, let Za1,...,at

:= a1X1 + · · · +
atXt +Y . We leave it to the reader to verify that each Za1,...,at

is uniformly
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distributed over Zp, and that the collection of all such Za1,...,at is pairwise
independent. 2

Example 6.19. Let W,X, Y be mutually independent and uniformly dis-
tributed over Zp, where p is prime. For any a ∈ Zp, let Za := a2W+aX+Y .
We leave it to the reader to verify that each Za is uniformly distributed
over Zp, and that the collection of all Za is 3-wise independent. 2

Using other algebraic techniques, there are many ways to construct
families of pairwise and k-wise independent random variables. Such families
play an important role in many areas of computer science.

Example 6.20. Suppose we perform an experiment by executing n
Bernoulli trials (see Example 6.3), where each trial succeeds with the same
probability p, and fails with probability q := 1 − p, independently of the
outcomes of all the other trials. Let X denote the total number of successes.
For k = 0, . . . , n, let us calculate the probability that X = k.

To do this, let us introduce indicator variables X1, . . . , Xn, where for
i = 1, . . . , n, we have Xi = 1 if the ith trial succeeds, and Xi = 0, otherwise.
By assumption, the Xi are mutually independent. Then we see that X =
X1 + · · ·+ Xn. Now, consider a fixed value k = 0, . . . , n. Let Ck denote the
collection of all subsets of {1, . . . , n} of size k. For I ∈ Ck, let AI be the
event that Xi = 1 for all i ∈ I and Xi = 0 for all i /∈ I. Since the Xi are
mutually independent, we see that P[AI ] = pkqn−k (as in Example 6.8).
Evidently, the collection of events {AI}I∈Ck

is a partition of the event that
X = k. Therefore,

P[X = k] =
∑
I∈Ck

P[AI ] =
∑
I∈Ck

pkqn−k = |Ck|pkqn−k.

Finally, since

|Ck| =
(

n

k

)
,

we conclude that

P[X = k] =
(

n

k

)
pkqn−k.

The distribution of the random variable X is called a binomial distri-
bution. 2

Exercise 6.11. Let X1, . . . , Xn be random variables, and let Xi be the
image of Xi for i = 1, . . . , n. Show that X1, . . . , Xn are mutually indepen-
dent if and only if for all i = 2, . . . , n, and all x1 ∈ X1, . . . , xi ∈ Xi, we
have

P[Xi = xi | Xi−1 = xi−1 ∧ · · · ∧X1 = x1] = P[Xi = xi].

2
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Exercise 6.12. Let A1, . . . ,An be events with corresponding indicator
variables X1, . . . , Xn. Show that the events A1, . . . ,An are mutually inde-
pendent if and only if the random variables X1, . . . , Xn are mutually inde-
pendent. Note: there is actually something non-trivial to prove here, since
our definitions for independent events and independent random variables
superficially look quite different. 2

Exercise 6.13. Let C be an event that occurs with non-zero probability,
and let B1, . . . ,Bn be a partition of C, such that each event Bi occurs with
non-zero probability. Let X be a random variable whose image is X , and let
D′ be a probability distribution on X . Suppose that for each i = 1, . . . , n,
the conditional distribution of X given Bi is equal to D′. Show that the
conditional distribution of X given C is also equal to D′. 2

Exercise 6.14. Let n be a positive integer, and let X be a random vari-
able whose distribution is uniform over {0, . . . , n − 1}. For each positive
divisor d of n, let use define the random variable Xd := X rem d. Show that
for any positive divisors d1, . . . , dk of n, the random variables Xd1 , . . . , Xdk

are mutually independent if and only if d1, . . . , dk are pairwise relatively
prime. 2

Exercise 6.15. With notation as in the previous exercise, let n := 30,
and describe the conditional distribution of X15 given that X6 = 1. 2

Exercise 6.16. Let Xib, for i = 1, . . . , k and b ∈ {0, 1}, be mutually
independent random variables, each with a uniform distribution on {0, 1}.
For b1, . . . , bk ∈ {0, 1}, let us define the random variable

Yb1···bk
:= X1b1 ⊕ · · · ⊕Xkbk

,

where “⊕” denotes “exclusive or.” Show that the 2k variables Yb1···bk
are

pairwise independent, each with a uniform distribution over {0, 1}. 2

6.4 Expectation and Variance

Let D = (U ,P) be a probability distribution. If X is a real random variable,
then its expected value is

E[X] :=
∑
u∈U

X(u) · P[u]. (6.10)

If X is the image of X, we have

E[X] =
∑
x∈X

∑
u∈X−1({x})

xP[u] =
∑
x∈X

x · P[X = x]. (6.11)
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From (6.11), it is clear that E[X] depends only on the distribution of X
(and not on any other properties of the underlying distribution D). More
generally, by a similar calculation, one sees that if X is any random variable
with image X , and f is a real-valued function on X , then

E[f(X)] =
∑
x∈X

f(x)P[X = x]. (6.12)

We make a few trivial observations about expectation, which the reader
may easily verify. First, if X is equal to a constant c (i.e., X(u) = c for
all u ∈ U), then E[X] = E[c] = c. Second, if X takes only non-negative
values (i.e., X(u) ≥ 0 all u ∈ U), then E[X] ≥ 0. Similarly, if X takes only
positive values, then E[X] > 0.

A crucial property about expectation is the following:

Theorem 6.6 (Linearity of Expectation). For real random variables
X and Y , and real number a, we have

E[X + Y ] = E[X] + E[Y ]

and
E[aX] = aE[X].

Proof. It is easiest to prove this using the defining equation (6.10) for
expectation. For u ∈ U , the value of the random variable X + Y at u is by
definition X(u) + Y (u), and so we have

E[X + Y ] =
∑
u∈U

(X(u) + Y (u))P[u]

=
∑
u∈U

X(u)P[u] +
∑
u∈U

Y (u)P[u]

= E[X] + E[Y ].

For the second part of the theorem, by a similar calculation, we have

E[aX] =
∑

u

(aX(u))P[u] = a
∑

u

X(u)P[u] = aE[X].

2

More generally, the above theorem implies (using a simple induction
argument) that for any real random variables X1, . . . , Xn, we have

E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn].

So we see that expectation is linear; however, expectation is not in
general multiplicative, except in the case of independent random variables:
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Theorem 6.7. If X and Y are independent real random variables, then
E[XY ] = E[X]E[Y ].

Proof. It is easiest to prove this using (6.12). We have

E[XY ] =
∑
x,y

xyP[X = x ∧ Y = y]

=
∑
x,y

xyP[X = x]P[Y = y]

=
( ∑

x

xP[X = x]
)( ∑

y

yP[Y = y]
)

= E[X] · E[Y ].

2

More generally, the above theorem implies (using a simple induction
argument) that if X1, . . . , Xn are mutually independent real random vari-
ables, then

E[X1 · · ·Xn] = E[X1] · · ·E[Xn].

The following fact is sometimes quite useful:

Theorem 6.8. If X is a random variable that takes values in the set
{0, 1, . . . , n}, then

E[X] =
n∑

i=1

P[X ≥ i].

Proof. For i = 1, . . . , n, define the random variable Xi so that Xi = 1 if
X ≥ i and Xi = 0 if X < i. Observe that E[Xi] = 1 · P[X ≥ i] + 0 · P[X <
i] = P[X ≥ i]. Moreover, X = X1 + · · ·+ Xn, and hence

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

P[X ≥ i].

2

The variance of a real random variable X is Var[X] := E[(X−E[X])2].
The variance provides a measure of the spread or dispersion of the distri-
bution of X around its expected value E[X]. Note that since (X − E[X])2

takes only non-negative values, variance is always non-negative.

Theorem 6.9. Let X be a real random variable, and let a and b be real
numbers. Then we have

(i) Var[X] = E[X2]− (E[X])2,
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(ii) Var[aX] = a2Var[X], and

(iii) Var[X + b] = Var[X].

Proof. Let µ := E[X]. For part (i), observe that

Var[X] = E[(X − µ)2] = E[X2 − 2µX + µ2]
= E[X2]− 2µE[X] + E[µ2] = E[X2]− 2µ2 + µ2

= E[X2]− µ2,

where in the third equality, we used the fact that expectation is linear, and
in the fourth equality, we used the fact that that E[c] = c for constant c (in
this case, c = µ2).

For part (ii), observe that

Var[aX] = E[a2X2]− (E[aX])2 = a2E[X2]− (aµ)2

= a2(E[X2]− µ2) = a2Var[X],

where we used part (i) in the first and fourth equality, and the linearity of
expectation in the second.

Part (iii) follows by a similar calculation (verify):

Var[X + b] = E[(X + b)2]− (µ + b)2

= (E[X2] + 2bµ + b2)− (µ2 + 2bµ + b2)
= E[X2]− µ2 = Var[X].

2

A simple consequence of part (i) of Theorem 6.9 is that E[X2] ≥ (E[X])2.
Unlike expectation, the variance of a sum of random variables is not

equal to the sum of the variances, unless the variables are pairwise inde-
pendent :

Theorem 6.10. If X1, . . . , Xn is a collection of pairwise independent real
random variables, then

Var

[ n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi].

Proof. We have

Var

[∑
i

Xi

]
= E

[
(
∑

i

Xi)2
]
−

(
E[

∑
i

Xi]
)2

=
∑

i

E[X2
i ] + 2

∑
i,j
j<i

(E[XiXj ]− E[Xi]E[Xj ])−
∑

i

E[Xi]2
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(by Theorem 6.6 and rearranging terms)

=
∑

i

E[X2
i ]−

∑
i

E[Xi]2

(by pairwise independence and Theorem 6.7)

=
∑

i

Var[Xi].

2

For any random variable X and event B, with P[B] 6= 0, we can define
the conditional expectation of X given B, denoted E[X | B], to be the
expected value of X in the conditional probability distribution given B. We
have

E[X | B] =
∑
u∈U

X(u) · P[u | B] =
∑
x∈X

xP[X = x | B], (6.13)

where X is the image of X.
If B1, . . . ,Bn is a collection of events that partitions U , where each Bi

occurs with non-zero probability, then it follows from the definitions that

E[X] =
n∑

i=1

E[X | Bi]P[Bi]. (6.14)

Example 6.21. Let X be uniformly distributed over {1, . . . , n}. Let us
compute E[X] and Var[X]. We have

E[X] =
n∑

x=1

x · 1
n

=
n(n + 1)

2
· 1
n

=
n + 1

2
.

We also have

E[X2] =
n∑

x=1

x2 · 1
n

=
n(n + 1)(2n + 1)

6
· 1
n

=
(n + 1)(2n + 1)

6
.

Therefore,

Var[X] = E[X2]− (E[X])2 =
n2 − 1

12
.

2

Example 6.22. Let X denote the value of a die toss. Let A be the event
that X is even. Then in the conditional probability space given A, we see
that X is uniformly distributed over {2, 4, 6}, and hence

E[X | A] =
2 + 4 + 6

3
= 4.



6.4 Expectation and Variance 113

Similarly, in the conditional probability space given A, we see that X is
uniformly distributed over {1, 3, 5}, and hence

E[X | A] =
1 + 3 + 5

3
= 3.

We can compute the expected value of X using these conditional expecta-
tions; indeed, we have

E[X] = E[X | A]P[A] + E[X | A]P[A] = 4 · 1
2

+ 3 · 1
2

=
7
2
,

which agrees with the calculation in previous example. 2

Example 6.23. Suppose that a random variable X takes the value 1
with probability p, and 0 with probability q := 1− p. The distribution of
X is that of a Bernoulli trial, as discussed in Example 6.3. Let us compute
E[X] and Var[X]. We have

E[X] = 1 · p + 0 · q = p.

We also have
E[X2] = 12 · p + 02 · q = p.

Therefore,
Var[X] = E[X2]− (E[X])2 = p− p2 = pq.

2

Example 6.24. Suppose that X1, . . . , Xn are mutually independent ran-
dom variables such that each Xi takes the value 1 with probability p and 0
with probability q := 1− p. Let us set X := X1 + · · ·+Xn. Note that the
distribution of each Xi is that of a Bernoulli trial, as in Example 6.3, and
the distribution of X is a binomial distribution, as in Example 6.20. By
the previous example, we have E[Xi] = p and Var[Xi] = pq for i = 1, . . . , n.
Let us compute E[X] and Var[X]. By Theorem 6.6, we have

E[X] =
n∑

i=1

E[Xi] = np,

and by Theorem 6.10, and the fact that the Xi are mutually independent,
we have

Var[X] =
n∑

i=1

Var[Xi] = npq.

2
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Exercise 6.17. A casino offers you the following four dice games. In
each game, you pay 15 dollars to play, and two dice are rolled. In the first
game, the house pays out four times the value of the first die (in dollars).
In the second, the house pays out twice the sum of the two dice. In the
third, the house pays the square of the first. In the fourth, the house pays
the product of the two dice. Which game should you play? That is, which
game maximizes your expected winnings? 2

Exercise 6.18. Suppose X and Y are independent real random variables
such that E[X] = E[Y ]. Show that

E[(X − Y )2] = Var[X] + Var[Y ].

2

Exercise 6.19. A die is tossed repeatedly until it comes up “1,” or until
it is tossed n times (whichever comes first). What is the expected number
of tosses of the die? 2

Exercise 6.20. Suppose that 20 percent of the students who took a cer-
tain test were from school A and the average of their scores on the test was
65. Also, suppose that 30 percent of the students were from school B and
the average of their scores was 85. Finally, suppose that the remaining 50
percent of the students were from school C and the average of their scores
was 72. If a student is selected at random from the entire group that took
the test, what is the expected value of his score? 2

Exercise 6.21. An urn contains r ≥ 0 red balls and b ≥ 1 black balls.
Consider the following experiment. At each step in the experiment, a single
ball is removed from the urn, randomly chosen from among all balls that
remain in the urn: if a black ball is removed, the experiment halts, and
if a red ball is removed, the experiment continues (without returning the
red ball to the urn). Show that the expected number of steps performed is
(r + b + 1)/(b + 1). 2

6.5 Some Useful Bounds

In this section, we present several theorems that can be used to bound
the probability that a random variable deviates from its expected value by
some specified amount.

Theorem 6.11 (Markov’s Inequality). Let X be a random variable
that takes only non-negative real values. Then for any t > 0, we have

P[X ≥ t] ≤ E[X]/t.
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Proof. We have

E[X] =
∑

x

xP[X = x] =
∑
x<t

xP[X = x] +
∑
x≥t

xP[X = x].

Since X takes only non-negative values, all of the terms in the summation
are non-negative. Therefore,

E[X] ≥
∑
x≥t

xP[X = x] ≥
∑
x≥t

tP[X = x] = tP[X ≥ t].

2

Markov’s inequality may be the only game in town when nothing more
about the distribution of X is known besides its expected value. However,
if the variance of X is also known, then one can get a better bound.

Theorem 6.12 (Chebyshev’s Inequality). Let X be a real random
variable. Then for any t > 0, we have

P[|X − E[X]| ≥ t] ≤ Var[X]/t2.

Proof. Let Y := (X − E[X])2. Then Y is always non-negative, and
E[Y ] = Var[X]. Applying Markov’s inequality to Y , we have

P[|X − E[X]| ≥ t] = P[Y ≥ t2] ≤ Var[X]/t2.

2

An important special case of Chebyshev’s inequality is the following.
Suppose that X1, . . . , Xn are pairwise independent real random variables,
each with the same distribution. Let µ be the common value of E[Xi] and
ν the common value of Var[Xi]. Set

X :=
1
n

(X1 + · · ·+ Xn).

The variable X is called the sample mean of X1, . . . , Xn. By the linearity
of expectation, we have E[X] = µ, and since the Xi are pairwise indepen-
dent, it follows from Theorem 6.10 (along with part (ii) of Theorem 6.9)
that Var[X] = ν/n. Applying Chebyshev’s inequality, for any ε > 0, we
have

P[|X − µ| ≥ ε] ≤ ν

nε2
. (6.15)

The inequality (6.15) says that for all ε > 0, and for all δ > 0, there exists
n0 (depending on ε and δ, as well as the variance ν) such that n ≥ n0

implies
P[|X − µ| ≥ ε] ≤ δ. (6.16)

In words:
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As n gets large, the sample mean closely approximates the ex-
pected value µ with high probability.

This fact, known as the law of large numbers, justifies the usual intuitive
interpretation given to expectation.

Let us now examine an even more specialized case of the above situation.
Suppose that X1, . . . , Xn are pairwise independent random variables, each
of which takes the value 1 with probability p, and 0 with probability q :=
1−p. As before, let X be the sample mean of X1, . . . , Xn. As we calculated
in Example 6.23, the Xi have a common expected value p and variance pq.
Therefore, by (6.15), for any ε > 0, we have

P[|X − p| ≥ ε] ≤ pq

nε2
. (6.17)

The bound on the right-hand side of (6.17) decreases linearly in n. If one
makes the stronger assumption that the Xi are mutually independent (so
that X := X1 + · · · + Xn has a binomial distribution), one can obtain a
much better bound that decreases exponentially in n:

Theorem 6.13 (Chernoff Bound). Let X1, . . . , Xn be mutually inde-
pendent random variables, such that each Xi is 1 with probability p and 0
with probability q := 1 − p. Assume that 0 < p < 1. Also, let X be the
sample mean of X1, . . . , Xn. Then for any ε > 0, we have:

(i) P[X − p ≥ ε] ≤ e−nε2/2q;

(ii) P[X − p ≤ −ε] ≤ e−nε2/2p;

(iii) P[|X − p| ≥ ε] ≤ 2 · e−nε2/2.

Proof. First, we observe that (ii) follows directly from (i) by replacing Xi

by 1 − Xi and exchanging the roles of p and q. Second, we observe that
(iii) follows directly from (i) and (ii). Thus, it suffices to prove (i).

Let α > 0 be a parameter, whose value will be determined later. Define
the random variable Z := eαn(X−p). Since the function x 7→ eαnx is
strictly increasing, we have X−p ≥ ε if and only if Z ≥ eαnε. By Markov’s
inequality, it follows that

P[X − p ≥ ε] = P[Z ≥ eαnε] ≤ E[Z]e−αnε. (6.18)

So our goal is to bound E[Z] from above.
For i = 1, . . . , n, define the random variable Zi := eα(Xi−p). Note that

Z =
∏n

i=1 Zi, that the Zi are mutually independent random variables (see
Theorem 6.5), and that

E[Zi] = eα(1−p)p + eα(0−p)q = peαq + qe−αp.
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It follows that

E[Z] = E[
∏

i

Zi] =
∏

i

E[Zi] = (peαq + qe−αp)n.

We will prove below that

peαq + qe−αp ≤ eα2q/2. (6.19)

From this, it follows that

E[Z] ≤ eα2qn/2. (6.20)

Combining (6.20) with (6.18), we obtain

P[X − p ≥ ε] ≤ eα2qn/2−αnε. (6.21)

Now we choose the parameter α so as to minimize the quantity α2qn/2 −
αnε. The optimal value of α is easily seen to be α = ε/q, and substituting
this value of α into (6.21) yields (i).

To finish the proof of the theorem, it remains to prove the inequality
(6.19). Let

β := peαq + qe−αp.

We want to show that β ≤ eα2q/2, or equivalently, that log β ≤ α2q/2. We
have

β = eαq(p + qe−α) = eαq(1− q(1− e−α)),

and taking logarithms and applying parts (i) and (ii) of §A.1, we obtain

log β = αq+log(1−q(1−e−α)) ≤ αq−q(1−e−α) = q(e−α+α−1) ≤ qα2/2.

This establishes (6.19) and completes the proof of the theorem. 2

Thus, the Chernoff bound is a quantitatively superior version of the law
of large numbers, although its range of application is clearly more limited.

Example 6.25. Suppose we toss 10,000 coins. The expected number of
heads is 5,000. What is an upper bound on the probability α that we get
6,000 or more heads? Using Markov’s inequality, we get α ≤ 5/6. Using
Chebyshev’s inequality, and in particular, the inequality (6.17), we get

α ≤ 1/4
10410−2

=
1

400
.

Finally, using the Chernoff bound, we obtain

α ≤ e−10410−2/2(0.5) = e−100 ≈ 10−43.4.

2
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6.6 The Birthday Paradox

This section discusses a number of problems related to the following ques-
tion: how many people must be in a room before there is a good chance
that two of them were born on the same day of the year? The answer is
surprisingly few, whence the “paradox.”

To answer this question, we index the people in the room with integers
1, . . . , k, where k is the number of people in the room. We abstract the
problem a bit, and assume that all years have the same number of days,
say n — setting n = 365 corresponds to the original problem, except that
leap years are not handled correctly, but we shall ignore this detail. For
i = 1, . . . , k, let Xi denote the day of the year on which i’s birthday falls.
Let us assume that birthdays are uniformly distributed over {0, . . . , n− 1};
this assumption is actually not entirely realistic, as it is well known that
people are somewhat more likely to be born in some months than in others.

So for any i = 1, . . . , k and x = 0, . . . , n− 1, we have P[Xi = x] = 1/n.
Let α be the probability that no two persons share the same birthday,

so that 1− α is the probability that there is a pair of matching birthdays.
We would like to know, how big k must be relative to n so that α is not
too large, say, at most 1/2.

We can compute α as follows, assuming the Xi are mutually indepen-
dent.

There are a total of nk sequences of integers (x1, . . . , xk), with each
xi ∈ {0, . . . , n−1}. Among these, there are a total of n(n−1) · · · (n−k+1)
that contain no repetitions: there are n choices for x1, and for any fixed
value of x1, there are n− 1 choices for x2, and so on. Therefore

α = n(n−1) · · · (n−k+1)/nk =
(

1− 1
n

)(
1− 2

n

)
· · ·

(
1− k − 1

n

)
. (6.22)

Using the part (i) of §A.1, we obtain

α ≤ e−
Pk−1

i=1 i/n = e−k(k−1)/2n.

So if k(k − 1) ≥ (2 log 2)n, we have α ≤ 1/2. Thus, when k is at least a
small constant times n1/2, we have α ≤ 1/2, so the probability that two
people share the same birthday is at least 1/2. For n = 365, k ≥ 23 suffices.
Indeed, one can simply calculate α in this case numerically from equation
(6.22), obtaining α ≈ 0.493. Thus, if there are 23 people in the room, there
is about a 50-50 chance that two people have the same birthday.

The above analysis assumed the Xi are mutually independent. How-
ever, we can still obtain useful upper bounds for α under much weaker
independence assumptions.

For i = 1, . . . , k and j = i + 1, . . . , k, let us define the indicator variable

Wij :=
{

1 if Xi = Xj ,
0 if Xi 6= Xj .
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If we assume that the Xi are pairwise independent, then

P[Wij = 1] = P[Xi = Xj ] =
n−1∑
x=0

P[Xi = x ∧Xj = x]

=
n−1∑
x=0

P[Xi = x]P[Xj = x] =
n−1∑
x=0

1/n2 = 1/n.

We can compute the expectation and variance (see Example 6.23):

E[Wij ] =
1
n

, Var[Wij ] =
1
n

(1− 1
n

).

Now consider the random variable

W :=
k∑

i=1

k∑
j=i+1

Wij ,

which represents the number of distinct pairs of people with the same birth-
day. There are k(k − 1)/2 terms in this sum, so by the linearity of expec-
tation, we have

E[W ] =
k(k − 1)

2n
.

Thus, for k(k − 1) ≥ 2n, we “expect” there to be at least one pair of
matching birthdays. However, this does not guarantee that the probability
of a matching pair of birthdays is very high, assuming just pairwise inde-
pendence of the Xi. For example, suppose that n is prime and the Xi are
a subset of the family of pairwise independent random variables defined
in Example 6.17. That is, each Xi is of the form aiX + Y , where X and
Y are uniformly and independently distributed modulo n. Then in fact,
either all the Xi are distinct, or they are all equal, where the latter event
occurs exactly when X = [0 mod n], and so with probability 1/n — “‘when
it rains, it pours.”

To get a useful upper bound on the probability α that there are no
matching birthdays, it suffices to assume that the Xi are 4-wise indepen-
dent. In this case, it is easy to verify that the variables Wij are pairwise
independent, since any two of the Wij are determined by at most 4 of the
Xi. Therefore, in this case, the variance of the sum is equal to the sum of
the variances, and so

Var[W ] =
k(k − 1)

2n
(1− 1

n
) ≤ E[W ].

Furthermore, by Chebyshev’s inequality,

α = P[W = 0] ≤ P[|W − E[W ]| ≥ E[W ]]

≤ Var[W ]/E[W ]2 ≤ 1/E[W ] =
2n

k(k − 1)
.

Thus, if k(k − 1) ≥ 4n, then α ≤ 1/2.
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In many practical applications, it is more important to bound α from
below, rather than from above; that is, to bound from above the probability
1 − α that there are any collisions. For this, pairwise independence of the
Xi suffices, since than we have P[Wij = 1] = 1/n, and by (6.5), we have

1− α ≤
k∑

i=1

k∑
j=i+1

P[Wij = 1] =
k(k − 1)

2n
,

which is at most 1/2 provided k(k − 1) ≤ n.

Hash functions

The above considerations have numerous applications in computer science.
One particularly important application is to the theory and practice of
hashing.

The scenario is as follows. We have finite sets A and Z, with |A| = k
and |Z| = n, and a finite set H of “hash functions” which map elements
of A into Z. More precisely, each h ∈ H defines a function that maps
a ∈ A to an element z ∈ Z, and we write z = h(a). Note that two distinct
elements of H may happen to define the same function. Let H be a random
variable whose distribution is uniform on H. For any a ∈ A, H(a) denotes
the random variable whose value is z = h(a) when H = h.

For any ` = 1, . . . , k, we say that H is an `-wise independent family
of hash functions (from A to Z) if each H(a) is uniformly distributed
over Z, and the collection of all H(a) is `-wise independent; in case ` = 2,
we say that H is a pairwise independent family of hash functions.
Pairwise independence is equivalent to saying that for all a, a′ ∈ A, with
a 6= a′, and all z, z′ ∈ Z,

P[H(a) = z ∧H(a′) = z′] = 1/n2.

Example 6.26. Examples 6.17 and 6.18 provide explicit constructions
for pairwise independent families of hash functions. In particular, from
the discussion in Example 6.17, if n is prime, and we take A = Z = Zn,
and H = Zn × Zn, and for h = (x, y) ∈ H and a ∈ A we define h(a) :=
ax + y, then H is a pairwise independent family of hash functions from
Zn to Zn. Similarly, Example 6.18 yields a pairwise independent family of
hash functions from Z×t

n to Zn, with H = Z×(t+1)
n . In practice, the inputs

to such a hash function may be long bit strings, which we chop into small
pieces so that each piece can be viewed as an element of Zn. 2

Such families of hash functions may be used to implement a “hash ta-
ble,” which in turn may be used to implement a “dictionary.” A random
hash function is chosen, and elements of A are stored in a “bin” indexed
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by its hash value; likewise, to see if a particular value is stored in the table,
one must search in the corresponding bin.

We do not discuss any more detailed implementation issues here. How-
ever, one typically wants the elements stored in the table to be distributed
in roughly equal proportions among all the bins.

If H is a pairwise independent family, then one can easily derive some
useful results from the above discussion of the birthday paradox.

• For example, if the hash table actually stores some number q ≤ k of
values, then for any a ∈ A, the expected number of values that are
in the bin indexed by a’s hash value is 1 + (q− 1)/n if a is already in
the hash table, and q/n if it is not in the table. This result bounds
the expected amount of “work” we have to do to search for a value in
its corresponding bin. In particular, if q = O(n), then the expected
amount of work is constant.

• If q(q−1) ≤ n, then with probability at least 1/2, a randomly chosen
hash function assigns each of q distinct values to distinct bins. This
result is useful if one wants to find a “perfect” hash function that
hashes q fixed values to distinct bins: if n is sufficiently large, we can
just choose hash functions at random until we find one that works.

We leave it as an exercise for the reader to verify the above claims.
There are numerous other interesting questions regarding pairwise inde-

pendent hash functions and hash tables, but we shall not pursue this matter
any further. However, results such as the ones mentioned above, and oth-
ers, can be obtained using a broader notion of hashing called universal
hashing. We call H a universal family of hash functions (from A to
Z) if for all a, a′ ∈ A, with a 6= a′,

P[H(a) = H(a′)] = 1/n.

Note that the pairwise independence property implies the universal prop-
erty. There are even weaker notions that are relevant in practice; for exam-
ple, one could just require that P[H(a) = H(a′)] ≤ c/n for some constant
c.

Example 6.27. If we drop the y-value from the first family of hash func-
tions discussed in Example 6.26 so that H = Zn, and x ∈ Zn defines the
function that sends a ∈ Zn to ax ∈ Zn, then we get a universal family
of hash functions that is not pairwise independent. The second family of
hash functions can be similarly modified to get a universal family of hash
functions from Z×t

n to Zn that is not pairwise independent. 2

Exercise 6.22. Let X be a set of size n ≥ 1, and let x0 be an arbitrary,
fixed element of X . Consider a random experiment in which a function f
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is chosen uniformly from among all nn functions from X into X . Let us
define random variables Xi, for i = 0, 1, 2, . . . , as follows:

X0 := x0, Xi+1 := f(Xi) (i = 0, 1, 2, . . .).

Thus, the value of Xi is obtained by applying the function f a total of i
times to the starting value x0. Since X has size n, the sequence {Xi} must
repeat at some point; that is, there exists a positive integer k (with k ≤ n)
such that Xk = Xi for some i = 0, . . . , k − 1. Define the random variable
K to be the smallest such value k.

(a) Show that for any i ≥ 0 and any fixed values of x1, . . . , xi ∈ X such
that x0, x1, . . . , xi are distinct, the conditional distribution of Xi+1

given that X1 = x1, . . . , Xi = xi is uniform over X .

(b) Show that for any integer k ≥ 1, we have K ≥ k if and only if
X0, X1, . . . , Xk−1 take on distinct values.

(c) From parts (a) and (b), show that for any k = 1, . . . , n, we have

P[K ≥ k | K ≥ k − 1] = 1− (k − 1)/n,

and conclude that

P[K ≥ k] =
k−1∏
i=1

(1− i/n) ≤ e−k(k−1)/2n.

(d) Show that
∞∑

k=1

e−k(k−1)/2n = O(n1/2)

and then conclude from part (c) that

E[K] =
n∑

k=1

P[K ≥ k] ≤
∞∑

k=1

e−k(k−1)/2n = O(n1/2).

(e) Modify the above argument to show that E[K] = Ω(n1/2).

2

Exercise 6.23. The setup for this exercise is identical to that of the
previous exercise, except that now, the function f is chosen uniformly from
among all n! permutations of X .

(a) Show that if K = k, then Xk = X0.
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(b) Show that for any i ≥ 0 and any fixed values of x1, . . . , xi ∈ X such
that x0, x1, . . . , xi are distinct, the conditional distribution of Xi+1

given that X1 = x1, . . . , Xi = xi is uniform over X \ {x1, . . . , xi}.

(c) Show that for any k = 2, . . . , n, we have

P[K ≥ k | K ≥ k − 1] = 1− 1
n− k + 2

,

and conclude that for all k = 1, . . . , n, we have

P[K ≥ k] =
k−2∏
i=0

(1− 1
n− i

) = 1− k − 1
n

.

(d) From part (c), show that K is uniformly distributed over {1, . . . , n},
and in particular,

E[K] =
n + 1

2
.

2

Exercise 6.24. Suppose n distinct items are hashed into n bins using a
hash function chosen at random from a pairwise independent family of hash
functions. Let M denote the maximum number of items that are stored in
any bin. Show that E[M ] = O(n1/2). 2

6.7 Statistical Distance

This section discusses a useful measure “distance” between two random
variables. Although important in many applications, the results of this
section (and the next) will play only a very minor role in the remainder of
the text.

Let X and Y be random variables which both take values on a (finite)
set V. We define the statistical distance between X and Y as

∆[X;Y ] :=
1
2

∑
v∈V
|P[X = v]− P[Y = v]|.

Theorem 6.14. For random variables X, Y, Z, we have

(i) 0 ≤ ∆[X;Y ] ≤ 1,

(ii) ∆[X;X] = 0,

(iii) ∆[X;Y ] = ∆[Y ;X], and

(iv) ∆[X;Z] ≤ ∆[X;Y ] + ∆[Y ;Z].
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Proof. Exercise. 2

Note that ∆[X;Y ] depends only on the individual distributions of X and
Y , and not on the joint distribution of X and Y . As such, one may speak
of the statistical distance between two distributions, rather than between
two random variables.

Example 6.28. Suppose X has the uniform distribution on {1, . . . , n},
and Y has the uniform distribution on {1, . . . , n−k}, where 0 ≤ k ≤ n− 1.
Let us compute ∆[X;Y ]. We could apply the definition directly; however,
consider the following graph of the distributions of X and Y :

B

A

C

0 n− k n

1/n

1/(n− k)

The statistical distance between X and Y is just 1/2 times the area of
regions A and C in the diagram. Moreover, because probability distribu-
tions sum to 1, it must be the case the areas of region A and region C are
the same. Therefore,

∆[X;Y ] = area of A = area of C = k/n

2

The following characterization of statistical distance is quite useful:

Theorem 6.15. Let X and Y be random variables taking values on a set
V. For any W ⊆ V, we have

∆[X;Y ] ≥ |P[X ∈ W]− P[Y ∈ W]|,

and equality holds if W is either the set of all v ∈ V such that P[X = v] <
P[Y = v], or the complement of this set.

Proof. Suppose we partition the set V into two sets: the set V0 consisting
of those v ∈ V such that P[X = v] < P[Y = v], and the set V1 consisting of
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those v ∈ V such that P[X = v] ≥ P[Y = v]. Consider the following rough
graph of the distributions of X and Y , where X is shaded with vertical
lines, Y is shaded with horizontal lines, and the elements of V0 are placed
to the left of the elements of V1:

B

A

C

� -V0 � -V1

Now, as in Example 6.28,

∆[X;Y ] = area of A = area of C.

Further, consider any subsetW of V. The quantity |P[X ∈ W]−P[Y ∈ W]|
is equal to the absolute value of the difference of the area of the subregion
of A that lies above W and the are of the subregion of C that lies above
W. This quantity is maximized when W = V0 or W = V1, in which case it
is equal to ∆[X;Y ]. 2

This theorem says that when ∆[X;Y ] is very small, then for any predi-
cate φ, the events φ(X) and φ(Y ) occur with almost the same probability.
Put another way, there is no “statistical test” that can effectively distin-
guish between the distributions of X and Y . For many applications, this
means that the distribution of X is “for all practical purposes” equivalent
to that of Y , and hence in analyzing the behavior of X, we can instead
analyze the behavior of Y , if that is more convenient.

Theorem 6.16. Let X, Y be random variables taking values on a set V,
and let f be a function from V into a set W. Then ∆[f(X); f(Y )] ≤
∆[X;Y ].

Proof. By Theorem 6.15, for any subset W ′ of W, we have

|P[f(X) ∈ W ′]− P[f(Y ) ∈ W ′]| =
|P[X ∈ f−1(W ′)]− P[Y ∈ f−1(W ′)]| ≤ ∆[X;Y ].
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In particular, again by Theorem 6.15,

∆[f(X); f(Y )] = |P[f(X) ∈ W ′]− P[f(Y ) ∈ W ′]|

for some W ′. 2

Example 6.29. Let X be uniformly distributed on the set {0, . . . , n−1},
and let Y be uniformly distributed on the set {0, . . . ,m−1}, for m ≥ n. Let
f(y) := y rem n. We want to compute an upper bound on the statistical
distance between X and f(Y ). We can do this as follows. Let m = qn− r,
where 0 ≤ r < n, so that q = dm/ne. Also, let Z be uniformly distributed
over {0, . . . , qn−1}. Then f(Z) is uniformly distributed over {0, . . . , n−1},
since every element of {0, . . . , n − 1} has the same number (namely, q) of
pre-images under f which lie in the set {0, . . . , qn − 1}. Therefore, by the
previous theorem,

∆[X; f(Y )] = ∆[f(Z); f(Y )] ≤ ∆[Z;Y ],

and as we saw in Example 6.28,

∆[Z;Y ] = r/qn < 1/q ≤ n/m.

Therefore,
∆[X; f(Y )] < n/m.

2

Another useful fact is the following:

Theorem 6.17. Let X and Y be random variables taking values on a
set V, and let W be a random variable taking values on a set W. Further,
suppose that X and W are independent, and that Y and W are independent.
Then the statistical distance between (X, W ) and (Y, W ) is equal to the
statistical distance between X and Y ; that is,

∆[X, W ;Y,W ] = ∆[X, Y ].

Proof. From the definition of statistical distance,

2∆[X, W ;Y,W ] =
∑
v,w

|P[X = v ∧W = w]− P[Y = v ∧W = w]|

=
∑
v,w

|P[X = v]P[W = w]− P[Y = v]P[W = w]|

(by independence)

=
∑
v,w

P[W = w]|P[X = v]− P[Y = v]|

= (
∑
w

P[W = w])(
∑

v

|P[X = v]− P[Y = v]|)

= 1 · 2∆[X;Y ].
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2

Exercise 6.25. Let X, Y , and Z be uniformly and independently dis-
tributed over Zp, where p is prime. Calculate ∆[X, Z;X, XY ]. 2

Exercise 6.26. Let X, Y be random variables on a probability distribu-
tion, and let B1, . . . ,Bn be events that partition of the underlying sample
space, where each Bi occurs with non-zero probability. For i = 1, . . . , n,
let Xi and Yi denote the random variables X and Y in the conditional
probability distribution given Bi; that is, P[Xi = v] = P[X = v | Bi], and
P[Yi = v] = P[Y = v | Bi]. Show that

∆[X;Y ] ≤
n∑

i=1

∆[Xi;Yi]P[Bi].

2

Exercise 6.27. Let n be a large integer that is the product of two distinct
primes of roughly the same bit length. Let X be uniformly distributed over
{0, . . . , φ(n) − 1}, where φ is Euler’s phi function. Let Y be uniformly
distributed over {0, . . . , n− 1}. Show that ∆[X;Y ] = O(n−1/2). 2

Exercise 6.28. Let M be a large integer. Consider two random experi-
ments. In the first, we generate a random integer n between 3 and M , and
then a random integer w between 1 and n. In the second, we generate a
random integer n between 2 and M , and then a random integer w between
2 and n− 1. Let X denote the outcome (n, w) of the first experiment, and
Y the outcome (n, w) of the second. Show that ∆[X;Y ] = O(log M/M).
2

6.8 ♣Measures of Randomness and the Left-
over Hash Lemma

In this section, we discuss different ways to measure “how random” a prob-
ability distribution is, and relations among them. Consider a distribution
defined on a finite sample space V. In some sense, the “most random” dis-
tribution on V is the uniform distribution, while the least random would be
a “point mass” distribution, that is, a distribution where one point v ∈ V
in the sample space has probability 1, and all other points have probability
0.

We define three measures of randomness. Let X be a random variable
taking values on a set V of size N .
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1. We say X is δ-uniform on V if the statistical distance between X
and the uniform distribution on V is equal to δ; that is,

δ =
1
2

∑
v∈V
|P[X = v]− 1/N |.

2. The guessing probability γ(X) of X is defined to be

γ(X) := max{P[X = v] : v ∈ V}.

3. The collision probability κ(X) of X is defined to be

κ(X) :=
∑
v∈V

P[X = v]2.

Observe that if X is uniformly distributed on V, then it is 0-uniform
on V, and γ(X) = κ(X) = 1/N. Also, if X has a point mass distribution,
then it is (1 − 1/N)-uniform on V, and γ(X) = κ(X) = 1. The quantity
log2(1/γ(X)) is sometimes called the min entropy of X, and the quantity
log2(1/κ(X)) is sometimes called the Renyi entropy of X. The collision
probability κ(X) has the following interpretation: if X and X ′ are identi-
cally distributed independent random variables, then κ(X) = P[X = X ′].

Before going further, we need the following technical fact:

Theorem 6.18. If x1, . . . , xN are real numbers with
∑N

i=1 xi = 1, then

0 ≤
N∑

i=1

(xi − 1/N)2 =
N∑

i=1

x2
i − 1/N.

In particular,
N∑

i=1

x2
i ≥ 1/N.

Proof. This follows from a simple calculation:

0 ≤
∑

i

(xi − 1/N)2 =
∑

i

(x2
i − 2xi/N + 1/N2)

=
∑

i

x2
i − (2/N)(

∑
i

xi) +
∑

i

1/N2

=
∑

i

x2
i − 2/N + 1/N =

∑
i

x2
i − 1/N.

2

We now state some easy inequalities:
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Theorem 6.19. Let X be a random variable taking values on a set V of
size N , such that X is δ-uniform on V, γ := γ(X), and κ := κ(X). Then
we have:

(i) κ ≥ 1/N ;

(ii) γ2 ≤ κ ≤ γ ≤ 1/N + δ.

Proof. Part (i) is immediate from Theorem 6.18. The proof of part (ii) is
left as an easy exercise. 2

This theorem implies that the collision and guessing probabilities are
minimal for the uniform distribution, which perhaps agrees with ones intu-
ition.

While the above theorem implies that γ and κ are close to 1/N when δ
is small, the following theorem provides a converse of sorts:

Theorem 6.20. If X is δ-uniform on V, κ := κ(X), and N := |V|,
then

κ ≥ 1 + 4δ2

N
.

Proof. We may assume that δ > 0, since otherwise the theorem is already
true, simply from the fact that κ ≥ 1/N .

For v ∈ V, let pv := P[X = v]. We have δ = 1
2

∑
v |pv − 1/N |, and

hence 1 =
∑

v qv, where qv := |pv − 1/N |/(2δ). So we have

1
N

≤
∑

v

q2
v (by Theorem 6.18)

=
1

4δ2

∑
v

(pv − 1/N)2

=
1

4δ2
(
∑

v

p2
v − 1/N) (again by Theorem 6.18)

=
1

4δ2
(κ− 1/N),

from which the theorem follows immediately. 2

Theorem 6.21 (Leftover Hash lemma). Let H be a universal family
of hash functions from A to Z, where Z is of size n. Let H denote a random
variable with the uniform distribution on H, and let A denote a random
variable taking values in A, and with H,A independent. Let κ := κ(A).
Then (H,H(A)) is δ-uniform on H×Z, where

δ ≤
√

nκ/2.
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In the statement of this theorem, H(A) denotes the random variable
whose value is h(a) when H = h and A = a.

Proof. Let Z denote a random variable uniformly distributed on Z, with
H,A, Z mutually independent. Let m := |H| and δ := ∆[H,H(A);H,Z].

Let us compute the collision probability κ(H,H(A)). Let H ′ have the
same distribution as H and A′ have the same distribution as A, with
H,H ′, A, A′ mutually independent. Then

κ(H,H(A)) = P[H = H ′ ∧H(A) = H ′(A′)]
= P[H = H ′]P[H(A) = H(A′)]

=
1
m

(
P[H(A) = H(A′) | A = A′]P[A = A′] +

P[H(A) = H(A′) | A 6= A′]P[A 6= A′]
)

≤ 1
m

(P[A = A′] + P[H(A) = H(A′) | A 6= A′])

=
1
m

(κ + 1/n)

=
1

mn
(nκ + 1).

Applying Theorem 6.20 to the random variable (H,H(A)), which takes
values on the set H×Z of size N := mn, we see that 4δ2 ≤ nκ. 2

Example 6.30. The leftover hash lemma allows one to convert “low qual-
ity” sources of randomness into “high quality” sources of randomness. Sup-
pose that to conduct an experiment, we need to sample a random variable
Z whose distribution is uniform on a set Z of size n, or at least δ-uniform
for a small value of δ. However, we may not have direct access to a source
of “real” randomness whose distribution looks anything like that of the
desired uniform distribution, but rather, only to a “low quality” source
of randomness. For example, one could model various characteristics of a
person’s typing at the keyboard, or perhaps various characteristics of the
internal state of a computer (both its software and hardware) as a random
process. We cannot say very much about the probability distributions asso-
ciated with such processes, but perhaps we can conservatively estimate the
collision or guessing probability associated with these distributions. Using
the leftover hash lemma, we can hash the output of this random process,
using a suitably generated random hash function. The hash function acts
like a “magnifying glass”: it “focuses” the randomness inherent in the “low
quality” source distribution onto the set Z, obtaining a “high quality,”
nearly uniform, distribution on Z.

Of course, this approach requires a random hash function, which may
be just as difficult to generate as a random element of Z. The following
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theorem shows, however, that we can at least use the same “magnifying
glass” many times over, with the statistical distance from uniform of the
output distribution increasing linearly in the number of applications of the
hash function. 2

Theorem 6.22. Let H be a universal family of hash functions from
A to Z, where Z is of size n. Let H denote a random variable with
the uniform distribution on H, and let A1, . . . , A` denote random vari-
ables taking values in A, with H,A1, . . . , A` mutually independent. Let
κ := max{κ(A1), . . . , κ(A`)}. Then (H,H(A1), . . . ,H(A`)) is δ̃-uniform
on H×Z×`, where

δ̃ ≤ `
√

nκ/2.

Proof. Let Z1, . . . , Z` denote random variables with the uniform distribu-
tion on Z, with H,A1, . . . , A`, Z1, . . . , Z` mutually independent. We define
random variables W0,W1, . . . ,W` as follows. We let

W0 := (H,H(A1), . . . ,H(A`)),
Wi := (H,Z1, . . . , Zi,H(Ai+1), . . . ,H(A`)) for i = 1, . . . , `− 1, and
W` := (H,Z1, . . . , Z`).

We have

δ̃ = ∆[W0;W`]

≤
∑̀
i=1

∆[Wi−1;Wi] (by part (iv) of Theorem 6.14)

≤
∑̀
i=1

∆[H,Z1, . . . , Zi−1,H(Ai), Ai+1, . . . , A`;
H,Z1, . . . , Zi−1, Zi, Ai+1, . . . , A`]

(by Theorem 6.16)

=
∑̀
i=1

∆[H,H(Ai);H,Zi] (by Theorem 6.17)

≤ `
√

nκ/2 (by Theorem 6.21).

2

The above proof is sometimes called a hybrid argument, as we con-
sider the sequence of “hybrid” variables W0,W1, . . . ,W`, and show that the
distance between each consecutive pair of variables is small.

Example 6.31. Another source of “low quality” randomness arises in
certain cryptographic applications, where we have a “secret” random vari-
able A that is distributed uniformly over a large subset of Zp, but we want
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to extract from A a “secret key” whose distribution is close to that of the
uniform distribution on a specified “key space” Z. The leftover hash lemma
allows us to do this, and in fact, it allows us to use a “public” hash function
H — generated at random once and for all, and published for all to see. 2

Exercise 6.29. Consider again the situation in Theorem 6.21. Suppose
that Z = {0, . . . , n− 1}, but that we would rather have an almost-uniform
distribution over Z ′ = {0, . . . , t − 1}, for some t < n. For example, the
construction of the universal family of hash functions may require than n
is prime, but we would rather have t be, say, a power of 2, or some other
value. While it may be possible to work with a different family of hash
functions, we do not have to if n is large enough with respect to t, in which
case we can just use the value H(A) rem t. If Z ′ is uniformly distributed
over Z ′, show that

∆[H,H(A) rem t;H,Z ′] ≤
√

nκ/2 + t/n.

Hint: use a hybrid argument and Example 6.29. 2

Exercise 6.30. Suppose X and Y are random variables with images X
and Y, respectively, and suppose that for some ε, we have P[X = x | Y =
y] ≤ ε for all x ∈ X and y ∈ Y. Let H be a universal family of hash
functions from X to Z, where Z is of size n. Let H denote a random
variable with the uniform distribution on H, and Z denote a random vari-
able with the uniform distribution on Z, where the three variables H, Z,
and (X, Y ) are mutually independent. Show that the statistical distance
between (Y, H, H(X)) and (Y, H, Z) is at most

√
nε/2. 2

6.9 Discrete Probability Distributions

In addition to working with probability distributions over finite sample
spaces, one can also work with distributions over infinite sample spaces. If
the sample space is countable, that is, either finite or countably infinite,
then the distribution is called a discrete probability distribution. We
shall not consider any other types of probability distributions in this text.
The theory developed in §§6.1–6.7 extends fairly easily to the countably
infinite setting, and in this section, we discuss how this is done.

6.9.1 Basic definitions

To say that the sample space U is countably infinite simply means that
there is a bijection f from the set of positive integers onto U ; thus, we can
enumerate the elements of U as u1, u2, u3, . . . , where ui = f(i).
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As in the finite case, the probability function assigns to each u ∈ U a
value P[u] ∈ [0, 1]. The basic requirement that the probabilities sum to
one (equation (6.1)) is the requirement that the infinite series

∑∞
i=1 P[ui]

converges to one. Luckily, the convergence properties of an infinite series
whose terms are all non-negative is invariant under a re-ordering of terms
(see §A.4), so it does not matter how we enumerate the elements of U .

Example 6.32. Suppose we flip a fair coin repeatedly until it comes up
“heads,” and let the outcome u of the experiment denote the number of
coins flipped. We can model this experiment as a discrete probability dis-
tribution D = (U ,P), where U consists of the set of all positive integers,
and where for u ∈ U , we set P[u] = 2−u. We can check that indeed∑∞

u=1 2−u = 1, as required.
One may be tempted to model this experiment by setting up a probabil-

ity distribution on the sample space of all infinite sequences of coin tosses;
however, this sample space is not countably infinite, and so we cannot con-
struct a discrete probability distribution on this space. While it is possible
to extend the notion a probability distribution to such spaces, this would
take us too far afield. 2

Example 6.33. More generally, suppose we repeatedly execute a
Bernoulli trial until it succeeds, where each execution succeeds with prob-
ability p > 0 independently of the previous trials, and let the outcome u
of the experiment denote the number of trials executed. Then we associate
the probability P[u] = qu−1p with each positive integer u, where q := 1−p,
since we have u − 1 failures before the one success. One can easily check
that these probabilities sum to 1. Such a distribution is called a geometric
distribution. 2

Example 6.34. The series
∑∞

i=1 1/i3 converges to some positive number
c. Therefore, we can define a probability distribution on the set of positive
integers, where we associate with each i ≥ 1 the probability 1/ci3. 2

Example 6.35. More generally, if xi, i = 1, 2, . . . , are non-negative num-
bers, and 0 < c :=

∑∞
i=1 xi < ∞, then we can define a probability distri-

bution on the set of positive integers, assigning the probability xi/c to i.
2

As in the finite case, an event is an arbitrary subset A of U . The
probability P[A] of A is defined as the sum of the probabilities associated
with the elements of A — in the definition (6.2), the sum is treated as an
infinite series when A is infinite. This series is guaranteed to converge, and
its value does not depend on the particular enumeration of the elements of
A.
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Example 6.36. Consider the geometric distribution discussed in Exam-
ple 6.33, where p is the success probability of each Bernoulli trial, and
q := 1 − p. For integer i ≥ 1, consider the event A that the number of
trials executed is at least i. Formally, A is the set of all integers greater
than or equal to i. Intuitively, P[A] should be qi−1, since we perform at
least i trials if and only if the first i− 1 trials fail. Just to be sure, we can
compute

P[A] =
∑
u≥i

P[u] =
∑
u≥i

qu−1p = qi−1p
∑
u≥0

qu = qi−1p · 1
1− q

= qi−1.

2

It is an easy matter to check that all the statements made in §6.1 carry
over verbatim to the case of countably infinite sample spaces. Moreover, it
also makes sense in the countably infinite case to consider events that are
a union or intersection of a countably infinite number of events:

Theorem 6.23. Let A1,A2, . . . be an infinite sequence of events.

(i) If Ai ⊆ Ai+1 for all i ≥ 1, then P[
⋃

i≥1Ai] = limi→∞ P[Ai].

(ii) In general, we have P[
⋃

i≥1Ai] ≤
∑

i≥1 P[Ai].

(iii) If the Ai are pairwise disjoint, then P[
⋃

i≥1Ai] =
∑

i≥1 P[Ai].

(iv) If Ai ⊇ Ai+1 for all i ≥ 1, then P[
⋂

i≥1Ai] = limi→∞ P[Ai].

Proof. For (i), let A :=
⋃

i≥1Ai, and let a1, a2, . . . be an enumeration
of the elements of A. For any ε > 0, there exists a value k0 such that∑k0

i=1 ai > P[A]− ε. Also, there is some k1 such that {a1, . . . , ak0} ⊆ Ak1 .
Therefore, for any k ≥ k1, we have P[A]− ε < P[Ak] ≤ P[A].

(ii) and (iii) follow by applying (i) to the sequence {
⋃i

j=1Aj}i, and
making use of (6.5) and (6.6), respectively.

(iv) follows by applying (i) to the sequence {Ai}, using (the infinite
version of) DeMorgan’s law. 2

6.9.2 Conditional Probability and Independence

All of the definitions and results in §6.2 carry over verbatim to the countably
infinite case. Equation (6.7) as well as Bayes’ theorem (equation 6.8) and
equation (6.9) extend mutatis mutandus to the case of an infinite partition
B1,B2, . . . .

6.9.3 Random variables

All of the definitions and results in §6.3 carry over verbatim to the countably
infinite case (except Theorem 6.2, which of course only makes sense in the
finite setting).
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6.9.4 Expectation and variance

We define the expected value of a real random variable X exactly as before:

E[X] :=
∑
u∈U

X(u) · P[u],

where, of course, the sum is an infinite series. However, if X may take
negative values, then we require that the series converges absolutely ; that
is, we require that

∑
u∈U |X(u)| · P[u] < ∞ (see §A.4). Otherwise, we

say the expected value of X does not exist. Recall from calculus that
a series that converges absolutely will itself converge, and will converge to
the same value under a re-ordering of terms. Thus, if the expectation exists
at all, its value is independent of the ordering on U . For a non-negative
random variable X, if its expectation does not exist, one may express this
as “E[X] =∞.”

All of the results in §6.4 carry over essentially unchanged, except that
one must pay some attention to “convergence issues.”

Equations (6.11) and (6.12) hold, but with the following caveats (verify):

• If X is a real random variable with image X , then its expected value
E[X] exists if and only if the series

∑
x∈X xP[X = x] converges abso-

lutely, in which case E[X] is equal to the value of the latter series.

• If X is a random variable with image X and f a real-valued function
on X , then E[f(X)] exists if and only if the series

∑
x∈X f(x)P[X = x]

converges absolutely, in which case E[f(X)] is equal to the value of
the latter series.

Example 6.37. Let X be a random variable whose distribution is as in
Example 6.34. Since the series

∑
1/n2 converges and the series

∑
1/n

diverges, the expectation E[X] exists, while E[X2] does not. 2

Theorems 6.6 and 6.7 hold under the additional hypothesis that E[X]
and E[Y ] exist.

If X1, X2, . . . is an infinite sequence of real random variables, then
the random variable X :=

∑∞
i=1 Xi is well defined provided the series∑∞

i=1 Xi(u) converges for all u ∈ U . One might hope that E[X] =∑∞
i=1 E[Xi]; however, this is not in general true, even if the individual expec-

tations E[Xi] are non-negative, and even if the series defining X converges
absolutely for all u; nevertheless, it is true when the Xi are non-negative:

Theorem 6.24. Let X :=
∑

i≥1 Xi, where each Xi takes non-negative
values only. Then we have

E[X] =
∑
i≥1

E[Xi].
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Proof. We have∑
i≥1

E[Xi] =
∑
i≥1

∑
u∈U

Xi(u)P[u] =
∑
u∈U

∑
i≥1

Xi(u)P[u]

=
∑
u∈U

P[u]
∑
i≥1

Xi(u) = E[X],

where we use the fact that we may reverse the order of summation in an
infinite double summation of non-negative terms (see §A.5). 2

Using this theorem, one can prove the analog of Theorem 6.8 for count-
ably infinite sample spaces, using exactly the same argument.

Theorem 6.25. If X is a random variable that takes non-negative integer
values, then

E[X] =
∞∑

i=1

P[X ≥ i].

A nice picture to keep in mind with regards to Theorem 6.25 is the
following. Let pi := P[X = i] for i = 0, 1, . . . , and let us arrange the
probabilities pi in a table as follows:

p1

p2 p2

p3 p3 p3

...
. . .

Summing the ith row of this table, we get iP[X = i], and so E[X] is equal
to the sum of all the entries in the table. However, we may compute the
same sum column by column, and the sum of the entries in the ith column
is P[X ≥ i].

Example 6.38. Suppose X is a random variable with a geometric dis-
tribution, as in Example 6.33, with an associated success probability p and
failure probability q := 1 − p. As we saw in Example 6.36, for all integer
i ≥ 1, we have P[X ≥ 1] = qi−1. We may therefore apply Theorem 6.25 to
easily compute the expected value of X:

E[X] =
∞∑

i=1

P[X ≥ i] =
∞∑

i=1

qi−1 =
1

1− q
=

1
p
.

2

Example 6.39. To illustrate that Theorem 6.24 does not hold in general,
consider the geometric distribution on the positive integers, where P[j] =
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2−j for j ≥ 1. For i ≥ 1, define the random variable Xi so that Xi(i) = 2i,
Xi(i + 1) = −2i+1, and Xi(j) = 0 for all j /∈ {i, i + 1}. Then E[Xi] = 0
for all i ≥ 1, and so

∑
i≥1 E[Xi] = 0. Now define X :=

∑
i≥1 Xi. This is

well defined, and in fact X(1) = 2, while X(j) = 0 for all j > 1. Hence
E[X] = 1. 2

The variance Var[X] of X exists if and only if E[X] and E[(X − E[X])2]
exist, which holds if and only if E[X] and E[X2] exist.

Theorem 6.9 holds under the additional hypothesis that E[X] and E[X2]
exist. Similarly, Theorem 6.10 holds under the additional hypothesis that
E[Xi] and E[X2

i ] exist for each i.
The definition of conditional expectation carries over verbatim, as do

equations (6.13) and (6.14). The analog of (6.14) for infinite partitions
B1,B2, . . . does not hold in general, but does hold if X is always non-
negative.

6.9.5 Some useful bounds

Both Theorems 6.11 and 6.12 (Markov’s and Chebyshev’s inequalities) hold,
under the additional hypothesis that the relevant expectations and vari-
ances exist.

6.9.6 Statistical Distance

The definitions and results in §6.7 carry over verbatim. The notions and
results discussed in §6.8 do not have meaningful analogs in the infinite
setting.

Exercise 6.31. A gambler plays a simple game in a casino: with each
play of the game, the gambler may bet any number m of dollars; a coin
is flipped, and if it comes up “heads,” the casino pays m dollars to the
gambler, and otherwise, the gambler pays m dollars to the casino. The
gambler plays the game repeatedly, using the following strategy: he initially
bets a dollar; each time he plays, if he wins, he pockets his winnings and
goes home, and otherwise, he doubles his bet and plays again.

(a) Show that if the gambler has an infinite amount of money (so he can
keep playing no matter how many times he looses), then his expected
winnings are one dollar. Hint: model the gambler’s winnings as a ran-
dom variable on a geometric distribution, and compute its expected
value.

(b) Show that if the gambler has a finite amount of money (so that he
can only afford to loose a certain number of times), then his expected
winnings are zero (regardless of how much money he starts with).



138 Finite and Discrete Probability Distributions

Hint: in this case, you can model the gambler’s winnings as a random
variable on a finite probability distribution.

2

6.10 Notes

Our Chernoff bound (Theorem 6.13) is one of a number of different types of
bounds that appear in the literature under the rubric of “Chernoff bound.”
Our proof of the leftover hash lemma (Theorem 6.21), is loosely based
on Impagliazzo and Zuckermann [42]. That paper also presents further
applications of the leftover hash lemma. A very important application of the
leftover hash lemma to cryptographic theory may be found in Impagliazzo,
Levin, and Luby [41].



Chapter 7

Probabilistic Algorithms

It is sometimes useful to endow our algorithms with the ability to generate
random numbers. To simplify matters, we only consider algorithms that
generate random bits. Where such random bits actually come from will not
be of great concern to us here. In a practical implementation, one would
use a pseudo-random bit generator, which should produce bits that “for
all practical purposes” are “as good as random.” While there is a well-
developed theory of pseudo-random bit generation (some of which builds
on the ideas in §6.8), we will not delve into this here. Moreover, the pseudo-
random bit generators used in practice are not based on this general theory,
and are much more ad hoc in design. So, although we will present a rigorous
formal theory of probabilistic algorithms, the application of this theory to
practice is ultimately a bit heuristic.

7.1 Basic Definitions

Formally speaking, we will add a new type of instruction to our random
access machine (described in §3.2):

random bit This type of instruction is of the form α← RANDOM, where
α takes the same form as in arithmetic instructions. Execution of this
type of instruction assigns to α a value sampled from the uniform
distribution on {0, 1}, independently from the execution of all other
random-bit instructions.

In describing algorithms at a high level, we shall write “b ←R {0, 1}”
to denote the assignment of a random bit to the variable b, and “s ←R

{0, 1}×`” to denote the assignment of a random bit string of length ` to the
variable s.

In describing the behavior of such a probabilistic or randomized
algorithm A, for any input x, we view its running time and output as
random variables, denoted TA(x) and A(x), respectively. The expected
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running time of A on input x is defined as the expected value E[TA(x)]
of the random variable TA(x). Note that in defining expected running
time, we are not considering the input to be drawn from some probability
distribution. One could, of course, define such a notion; however, it is
not always easy to come up with a distribution on the input space that
reasonably models a particular real-world situation. We do not pursue this
issue any more here.

We say that a probabilistic algorithm A runs in expected polynomial
time if there exist constants c, d such that for all n ≥ 0 and all inputs x
of length n, we have E[TA(x)] ≤ nc + d. We say that A runs in strict
polynomial time if there exist constants c, d such that for all n and all
inputs x of length n, A always halts on input x within nc + d, regardless of
its random choices.

Defining the distributions of TA(x) and A(x) is a bit tricky. Things are
quite straightforward if A always halts on input x after a finite number
of steps, regardless of the outcomes of its random choices: in this case,
we can naturally view TA(x) and A(x) as random variables on a uniform
distribution over bit strings of some particular length — such a random bit
string may be used as the source of random bits for the algorithm. However,
if there is no a priori bound on the number of steps, things become more
complicated: think of an algorithm that generates random bits one at a
time until it generates, say, a one-bit — just as in Example 6.32, we do not
attempt to model this as a probability distribution on the uncountable set
of infinite bit strings, but rather, we directly define an appropriate discrete
probability distribution that models the execution of A on input x.

7.1.1 Defining the probability distribution

A warning to the reader: the remainder of this section is a bit technical,
and you might want to skip ahead to §7.2 on first reading, if you are willing
to trust your intuition regarding probabilistic algorithms.

To motivate our definition, which may at first seem a bit strange, con-
sider again Example 6.32. We could view the sample space in that example
to be the set of all bit strings consisting of zero or more zero-bits, followed
by a single one-bit, and to each such bit string σ of this special form, we
assign the probability 2−|σ|, where |σ| denotes the length of σ. The “ran-
dom experiment” we have in mind is to generate random bits one at a time
until one of these special “halting” strings is generated. In developing the
definition of the probability distribution for a probabilistic algorithm, we
simply consider more general sets of “halting” strings, determined by the
algorithm and its input.

To simplify matters just a bit, we assume that the machine produces
a stream of random bits, one with every instruction executed, and if the
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instruction happens to be a random-bit instruction, then this is the bit used
by that instruction. For any bit string σ, we can run A on input x for up to
|σ| steps, using σ for the stream of random bits, and observe the behavior
of the algorithm. The reader may wish to visualize σ as a finite path in an
infinite binary tree, where we start at the root, branching to the left if the
next bit in σ is a zero-bit, and branching to the right if the next bit in σ
is a one-bit. In this context, we call σ an execution path. Some further
terminology will be helpful:

• If A halts in at most |σ| steps, then we call σ a complete execution
path;

• if A halts in exactly |σ| steps, then we call σ an exact execution
path;

• if A does not halt in fewer than fewer than |σ| steps, then we call σ
a partial execution path.

The sample space S of the probability distribution associated with A
on input x consists of all exact execution paths. Clearly, S is prefix free;
that is, no string in S is a proper prefix of another.

Theorem 7.1. If S is a prefix-free set of bit strings, then
∑

σ∈S 2−|σ| ≤ 1.

Proof. We first claim that the theorem holds for any finite prefix-free
set S. We may assume that S is non-empty, since otherwise, the claim is
trivial. We prove the claim by induction on the sum of the lengths of the
elements of S. The base case is when S contains just the empty string,
in which case the claim is clear. If S contains non-empty strings, let τ be
a string in S of maximal length, and let τ ′ be the prefix of length |τ | − 1
of τ . Now remove from S all strings which have τ ′ as a prefix (there are
either one or two such strings), and add to S the string τ ′. It is easy to see
(verify) that the resulting set S ′ is also prefix-free, and that∑

σ∈S
2−|σ| ≤

∑
σ∈S′

2−|σ|.

The claim now follows by induction.
For the general case, let σ1, σ2, . . . be a particular enumeration of S,

and consider the partial sums Si =
∑i

j=1 2−|σj | for i = 1, 2, . . . . From the
above claim, each of these partial sums is at most 1, from which it follows
that limi→∞ Si ≤ 1. 2

From the above theorem, if S is the sample space associated with algo-
rithm A on input x, we have

S :=
∑
σ∈S

2−|σ| ≤ 1.
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Assume that S = 1. Then we say that A halts with probability 1 on
input x, and we define the distribution DA,x associated with A on input
x to be the distribution on S that assigns the probability 2−|σ| to each bit
string σ ∈ S. We also define TA(x) and A(x) as random variables on the
distribution DA,x in the natural way: for each σ ∈ S, we define TA(x) to be
|σ| and A(x) to be the output produced by A on input x using σ to drive
its execution.

All of the above definitions assumed that A halts with probability 1 on
input x, and indeed, we shall only be interested in algorithms that halt with
probability 1 on all inputs. However, to analyze a given algorithm, we still
have to prove that it halts with probability 1 on all inputs before we can
use these definitions and bring to bear all the tools of discrete probability
theory. To this end, it is helpful to study various finite probability distri-
butions associated with the execution of A on input x. For every integer
k ≥ 0, let us consider the uniform distribution on bit strings of length k,
and for each j = 0, . . . , k, define H(k)

j to be the event that such a random
k-bit string causes A on input x to halt within j steps.

A couple of observations are in order. First, if S is the set of all exact
execution paths for A on input x, then we have (verify)

P[H(k)
j ] =

∑
σ∈S
|σ|≤j

2−|σ|.

From this it follows that for all non-negative integers j, k, k′ with j ≤
min{k, k′}, we have

P[H(k)
j ] = P[H(k′)

j ].

Defining Hk := P[H(k)
k ], it also follows that the sequence {Hk}k≥0 is non-

decreasing and bounded above by 1, and that A halts with probability 1
on input x if and only if

lim
k→∞

Hk = 1.

A simple necessary condition for halting with probability 1 on a given
input is that for all partial execution paths, there exists some extension that
is a complete execution path. Intuitively, if this does not hold, then with
some non-zero probability, the algorithm falls into an infinite loop. More
formally, if there exists a partial execution path of length j that cannot be
extended to a complete execution path, then for all k ≥ j we have

Hk ≤ 1− 2−j .

This is not, however, a sufficient condition for halting with probability 1.
A simple sufficient condition is the following:
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there exists a bound ` (possibly depending on the input) such
that for every partial execution path σ, there exists a complete
execution path that extends σ and whose length at most |σ|+ `.

To see why this condition implies that A halts with probability 1, observe
that if A runs for k` steps without halting, then the probability that it
does not halt within (k + 1)` steps is at most 1 − 2−`. More formally, let
us define Hk := 1−Hk, and note that for all k ≥ 0, we have

H(k+1)` = P[H((k+1)`)

(k+1)` | H
((k+1)`)

k` ] · P[H((k+1)`)

k` ]

≤ (1− 2−`)P[H((k+1)`)

k` ]
= (1− 2−`)Hk`,

and hence (by an induction argument on k), we have

Hk` ≤ (1− 2−`)k,

from which it follows that
lim

k→∞
Hk = 1.

It is usually fairly straightforward to verify this property for a particular
algorithm “by inspection.”

Example 7.1. Consider the following algorithm:

repeat
b←R {0, 1}

until b = 1

Since every loop is only a constant number of instructions, and since
there is one chance to terminate with every loop iteration, the algorithm
halts with probability 1. 2

Example 7.2. Consider the following algorithm:

i← 0
repeat

i← i + 1
s←R {0, 1}×i

until s = 0×i

For positive integer n, consider the probability pn of executing at least
n loop iterations (each pn is defined using an appropriate finite probability
distribution). We have

pn =
n−1∏
i=1

(1− 2−i) ≥
n−1∏
i=1

e−2−i+1
= e−

Pn−2
i=0 2−i

≥ e−2,
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where we have made use of the estimate (iii) in §A.1. As pn does not tend
to zero as n→∞, we may conclude that the algorithm does not halt with
probability 1.

Note that every partial execution path can be extended to a complete
execution path, but the length of the extension is not a priori bounded. 2

The following three exercises develop tools which simplify the analysis
of probabilistic algorithms.

Exercise 7.1. Consider a probabilistic algorithm A that halts with prob-
ability 1 on input x, and consider the probability distribution DA,x on the
set S of exact execution paths. Let τ be a fixed, partial execution path,
and let B ⊆ S be the event that consists of all exact execution paths that
extend τ . Show that P[B] = 2−|τ |. 2

Exercise 7.2. Consider a probabilistic algorithm A that halts with prob-
ability 1 on input x, and consider the probability distribution DA,x on the
set S of exact execution paths. For a bit string σ and an integer k ≥ 0, let
[σ]k denote the value of σ truncated to the first k bits. Suppose that B ⊆ S
is an event of the form

B = {σ ∈ S : φ([σ]k)}

for some predicate φ and some integer k ≥ 0. Intuitively, this means that
B is completely determined by the first k bits of the execution path.

Now consider the uniform distribution on {0, 1}×k. Let us define an
event B′ in this distribution as follows. For σ ∈ {0, 1}×k, let us run A on
input x using the execution path σ for k steps or until A halts (whichever
comes first). If the number of steps executed was t (where t ≤ k), then we
put σ in B′ if and only if φ([σ]t).

Show that the probability that the event B occurs (with respect to
the distribution DA,x) is the same as the probability that B′ occurs (with
respect to the uniform distribution on {0, 1}×k). Hint: use Exercise 7.1. 2

The above exercise is very useful in simplifying the analysis of prob-
abilistic algorithms. One can typically reduce the analysis of some event
of interest into the analysis of a collection of events, each of which is de-
termined by the first k bits of the execution path for some fixed k. The
probability of an event that is determined by the first k bits of the execution
path may then be calculated by analyzing the behavior of the algorithm on
a random k-bit execution path.

Exercise 7.3. Suppose algorithm A calls algorithm B as a subroutine.
In the probability distribution DA,x, consider a particular partial execution
path τ that drives A to a point where A invokes algorithm B with a partic-
ular input y (determined by x and τ). Consider the conditional probability



7.1 Basic Definitions 145

distribution given that τ is a prefix of A’s actual execution path. We can
define a random variable X on this conditional distribution whose value is
the subpath traced out by the invocation of subroutine B. Show that the
distribution of X is the same as DB,y. Hint: use Exercise 7.1. 2

The above exercise is also very useful in simplifying the analysis of prob-
abilistic algorithms, in that it allows us to analyze a subroutine in isolation,
and apply the results of that analysis in the analysis of an algorithm that
calls that subroutine.

Exercise 7.4. Let A be a probabilistic algorithm, and for an input x
and integer k ≥ 0, consider the experiment in which we choose a random
execution path of length k, and run A on input x for up to k steps using
the selected execution path. If A halts within k steps, we define Ak(x) to
be the output produced by A, and TAk

(x) to be the actual number of steps
executed by A; otherwise, we define Ak(x) to be the distinguished value
“⊥” and TAk

(x) to be k.

(a) Show that if A halts with probability 1 on input x, then for all possible
outputs y,

P[A(x) = y] = lim
k→∞

P[Ak(x) = y].

(b) Show that if A halts with probability 1 on input x, then

E[TA(x)] = lim
k→∞

E[TAk
(x)].

2

Exercise 7.5. One can generalize the notion of a discrete, probabilistic
process, as follows. Let Γ be a finite or countably infinite set. Let f be
a function mapping sequences of one or more elements of Γ to [0, 1], such
that the following property holds:

for all finite sequences (γ1, . . . , γi−1), where i ≥ 1,
f(γ1, . . . , γi−1, γ) is non-zero for at most a finite number of
γ ∈ Γ, and ∑

γ∈Γ

f(γ1, . . . , γi−1, γ) = 1.

Now consider any prefix-free set S of finite sequences of elements of Γ.
For σ = (γ1, . . . , γn) ∈ S, define

P[σ] :=
n∏

i=1

f(γ1, . . . , γi).

Show that
∑

σ∈S P[σ] ≤ 1, and hence we may define a probability dis-
tribution on S using the probability function P[·] if this sum is 1.
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The intuition is that we are modeling a process in which we start out
in the “empty” configuration; at each step, if we are in configuration
(γ1, . . . , γi−1), we halt if this is a “halting” configuration, that is, an el-
ement of S, and otherwise, we move to configuration (γ1, . . . , γi−1, γ) with
probability f(γ1, . . . , γi−1, γ). 2

7.1.2 Example: Flipping a Coin until a Head Appears

Let us exercise the formal definitions in §7.1.1 by analyzing in more detail
the algorithm in Example 7.1 (which takes no input). As we have already
established, this algorithm halts with probability 1.

Let X be a random variable that represents the number of loop iterations
made by the algorithm. Further, define random variables B1, B2, . . . , where
Bi represents the value of the bit assigned to b in the ith loop iteration, if
X ≥ i, and 0 otherwise. Clearly, exactly one Bi will take the value 1, and
all others the value 0, in which case X takes the value i.

It need not be the case that the values of the Bi are located at pre-
determined positions of the execution path. Perhaps for this particular
algorithm, one could carefully program the algorithm so that this were the
case, but we do not want to make such assumptions in general. Neverthe-
less, for any i ≥ 1, if we condition on any particular partial execution path
τ that drives the algorithm to the point where it is just about to sample
the bit Bi, then in this conditional probability distribution, Bi is uniformly
distributed over {0, 1}. To prove this rigorously in our formal framework,
define the event Aτ to be the event that τ is a prefix of the execution
path. If |τ | = `, then the events Aτ , Aτ ∧ (Bi = 0), and Aτ ∧ (Bi = 1)
are determined by the first ` + 1 bits of the execution path. We can then
consider corresponding events in a probabilistic experiment wherein we ob-
serve the behavior of the algorithm on a random (` + 1)-bit execution path
(see Exercise 7.2). In the latter experiment, it is clear that the conditional
probability distribution of Bi, given that the first ` bits of the actual exe-
cution path σ agree with τ , is uniform over {0, 1}, and thus, the same holds
in the original probability distribution. Since this holds for all relevant τ ,
it follows that it holds conditioned on X ≥ i (see Exercise 6.13).

From the above discussion, it follows that P[B1 = 1] = 1/2, P[B2 =
1] = P[B2 = 1 | B1 = 0]P[B1 = 0] = 1/4, and in general, P[Bi = 1] = 2−i,
for i = 1, 2, . . . . Thus, X has a geometric distribution, with P[X = i] = 2−i

for i = 1, 2, . . . , and so in particular, E[X] = 2 (see Example 6.38).
Let Y denote the total running time of the algorithm. Then Y ≤ cX

for some constant c, and hence

E[Y ] ≤ cE[X] = 2c,

and we conclude that the expected running time of the algorithm is a con-
stant, the exact value of which depends on the details of the implementa-
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tion.
All of these conclusions were perhaps intuitively obvious, but the main

point was to illustrate how we can rigorously prove such statements in our
formal model by reducing the analysis from the infinite setting to the finite
setting. In the following sections, we shall rarely go to this level of detail in
the analysis of an algorithm, but it should be clear to the reader how this
could be done in principle.

7.2 Approximation of Functions

Suppose f is a function mapping bit strings to bit strings. We may have
an algorithm A that approximately computes f in the following sense:
there exists a constant ε, with 0 ≤ ε < 1/2, such that for all inputs x,
P[A(x) = f(x)] ≥ 1− ε. The value ε is a bound on the error probability,
which is defined as P[A(x) 6= f(x)].

7.2.1 Reducing the error probability

There is a standard “trick” by which one can make the error probability
very small; namely, run A on input x some number of times, say t times, and
take the majority output as the answer. Using the Chernoff bound (The-
orem 6.13), the error probability for the iterated version of A is bounded
by exp[−(1/2 − ε)2t/2], and so the error probability decreases exponen-
tially with the number of iterations. This bound is derived as follows. For
i = 1, . . . , t, let Xi be a random variable representing the outcome of the
ith iteration of A; more precisely, Xi = 1 if A(x) 6= f(x) on the ith itera-
tion, and Xi = 0 otherwise. Let εx be the probability that A(x) 6= f(x).
The probability that the majority output is wrong is equal to the proba-
bility that the sample mean of X1, . . . , Xt exceeds the mean εx by at least
1/2 − εx. Part (i) of Theorem 6.13 says that this occurs with probability
at most

exp[−(1/2− εx)2t/2(1− εx)] ≤ exp[−(1/2− ε)2t/2].

7.2.2 Strict polynomial time

If we have an algorithm that runs in expected polynomial time, and which
approximately computes a function f , then we can easily turn it into an
algorithm that runs in strict polynomial time, and also approximates f , as
follows. Suppose that ε < 1/2 is a bound on the error probability, and T (n)
is a polynomial bound on the expected running time for inputs of length
n. The new algorithm simply runs the original algorithm for at most tT (n)
steps, where t is any constant chosen so that ε+1/t < 1/2 — if the original
algorithm does not halt within this time bound, the new algorithm simply
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halts with an arbitrary output. The probability that the new algorithm
errs is at most the probability that the original algorithm errs plus the
probability that the original algorithm runs for more than tT (n) steps. By
Markov’s inequality (Theorem 6.11), the latter probability is at most 1/t,
and hence the new algorithm approximates f as well, but with an error
probability bounded by ε + 1/t.

7.2.3 Language recognition

An important special case of approximately computing a function is when
the output of the function f is either 0 or 1 (or equivalently, false or true).
In this case, f may be viewed as the characteristic function of the language
L := {x : f(x) = 1}. (It is the tradition of computational complexity
theory to call sets of bit strings “languages.”) There are several “flavors”
of probabilistic algorithms for approximately computing the characteristic
function f of a language L that are traditionally considered — for the
purposes of these definitions, we may restrict ourselves to algorithms that
output either 0 or 1:

• We call a probabilistic, expected polynomial time algorithm an At-
lantic City algorithm for recognizing L if it approximately com-
putes f with error probability bounded by a constant ε < 1/2.

• We call a probabilistic, expected polynomial time algorithm A a
Monte Carlo algorithm for recognizing L if for some constant
δ > 0, we have:

– for any x ∈ L, we have P[A(x) = 1] ≥ δ, and
– for any x /∈ L, we have P[A(x) = 1] = 0.

• We call a probabilistic, expected polynomial time algorithm a Las
Vegas algorithm for recognizing L if it computes f correctly on all
inputs x.

One also says an Atlantic City algorithm has two-sided error, a Monte
Carlo algorithm has one-sided error, and a Las Vegas algorithm has zero-
sided error.

Exercise 7.6. Show that any language recognized by a Las Vegas algo-
rithm is also recognized by a Monte Carlo algorithm, and that any language
recognized by a Monte Carlo algorithm is also recognized by an Atlantic
City algorithm. 2

Exercise 7.7. Show that if L is recognized by an Atlantic City algorithm
that runs in expected polynomial time, then it is recognized by an Atlantic
City algorithm that runs in strict polynomial time, and whose error prob-
ability is at most 2−n on inputs of length n. 2
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Exercise 7.8. Show that if L is recognized by a Monte Carlo algorithm
that runs in expected polynomial time, then it is recognized by a Monte
Carlo algorithm that runs in strict polynomial time, and whose error prob-
ability is at most 2−n on inputs of length n. 2

Exercise 7.9. Show that a language is recognized by a Las Vegas algo-
rithm iff the language and its complement are recognized by Monte Carlo
algorithms. 2

Exercise 7.10. Show that if L is recognized by a Las Vegas algorithm
that runs in strict polynomial time, then L may be recognized in determin-
istic polynomial time. 2

Exercise 7.11. Suppose that for a given language L, there exists a prob-
abilistic algorithm A that runs in expected polynomial time, and always
outputs either 0 or 1. Further suppose that for some constants α and c,
where

• α is a rational number with 0 ≤ α < 1, and

• c is a positive integer,

and for all sufficiently large n, and all inputs x of length n, we have

• if x /∈ L, then P[A(x) = 1] ≤ α, and

• if x ∈ L, then P[A(x) = 1] ≥ α + 1/nc.

(a) Show that there exists an Atlantic City algorithm for L.

(b) Show that if α = 0, then there exists a Monte Carlo algorithm for L.

2

7.3 Generating a Random Number from a
Given Interval

In this and subsequent sections of this chapter, we discuss a number of
specific probabilistic algorithms.

Suppose we want to generate a number n uniformly at random from the
interval {0, . . . ,M − 1}, for a given integer M ≥ 1.

If M is a power of 2, say M = 2k, then we can do this directly as follows:
generate a random k-bit string s, and convert s to the integer I(s) whose
base-2 representation is s; that is, if s = bk−1bk−2 · · · b0, where the bi are
bits, then

I(s) :=
k−1∑
i=0

bi2i.
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In the general case, we do not have a direct way to do this, since we can
only directly generate random bits. However, suppose that M is a k-bit
number, so that 2k−1 ≤ M < 2k. Then the following algorithm does the
job:

Algorithm RN:

repeat
s←R {0, 1}×k

n← I(s)
until n < M
output n

In every loop iteration, n is uniformly distributed over {0, . . . , 2k − 1},
and the event n < M occurs with probability M/2k ≥ 1/2; moreover,
conditioning on the latter event, n is uniformly distributed over {0, . . . ,M−
1}. Therefore, if X denotes the number of iterations of the main loop, and if
N denotes the output of the algorithm, we conclude that X has a geometric
distribution with an associated success probability p := M/2k ≥ 1/2, that
N has the uniform distribution over {0, . . . ,M−1}. We have E[X] = 1/p ≤
2 (see Example 6.38). If Y denotes the running time of the algorithm, then
we have Y ≤ ckX for some implementation-dependent constant c. It follows
that

E[Y ] ≤ ckE[X] ≤ 2ck.

Thus, the expected running time of Algorithm RN is O(k).

In the above analysis, we have not gone into all the details as we did
in §7.1.2. [Readers who skipped §§7.1.1–7.1.2 may also want to skip
this paragraph.] Similarly as to what was done in §7.1.2, one would
define random variables Ni representing the value of n in the ith loop
iteration. Then, one would consider various conditional distributions,
conditioning on particular partial execution paths τ that bring the
computation just to the beginning of the ith loop iteration; for any
particular such τ , the ith loop iteration will terminate in at most
` := |τ |+ c steps, for some constant c (which depends on k, but not
τ). Therefore, the conditional distribution of Ni, given the partial
execution path τ , can be analyzed by considering the execution of
the algorithm on a random `-bit execution path. It is then clear
that the conditional distribution of Ni given the partial execution
path τ is uniform over {0, . . . , 2k − 1}, and since this holds for all
relevant τ , it follows that the conditional distribution of Ni, given
that the ith loop is entered, is uniform over {0, . . . , 2k − 1}. The
output distribution is the same as the conditional distribution of
Ni, given that X = i, which is precisely the uniform distribution
on {0, . . . , M − 1}. This sketch of the details again shows how one
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can formally reduce questions regarding the discrete distribution to
questions regarding appropriate finite distributions.

Of course, by adding an appropriate value to the output of Algorithm
RN, we can generate random numbers uniformly in an interval {A, . . . , B},
for given A and B. In what follows, we shall denote the execution of this
algorithm as

n←R {A, . . . , B}.

We also mention the following alternative approach to generating a ran-
dom number from an interval. Given a positive k-bit integer M , and a
parameter t > 0, we do the following:

Algorithm RN′:

s←R {0, 1}×(k+t)

n← I(s) rem M
output n

Compared with Algorithm RN, Algorithm RN′ has the advantage that
there are no loops — it halts in an a priori bounded number of steps;
however, it has the disadvantage that its output is not uniformly distributed
over the interval {0, . . . ,M − 1}. However, the statistical distance between
its output distribution and the uniform distribution on {0, . . . ,M −1} is at
most 2−t (see Example 6.29 in §6.7). Thus, by choosing t suitably large, we
can make the output distribution “as good as uniform” for most practical
purposes.

Exercise 7.12. Prove that no probabilistic algorithm that always halts
in a bounded number of steps can have an output distribution that is uni-
form on {0, . . . ,M − 1}, unless M is a power of 2. 2

Exercise 7.13. Design and analyze an efficient probabilistic algorithm
that takes as input an integer M ≥ 2, and outputs a random element of
Z∗M . 2

7.4 Generating a Random Prime

Suppose we are given an integer M ≥ 2, and want to generate a random
prime between 1 and M . One way to proceed is simply to generate random
numbers until we get a prime. This idea will work, assuming the existence
of an efficient algorithm IsPrime(·) that determines whether or not its input
is prime.
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Now, the most naive method of testing if a number n is prime is to
see if any of the numbers between 2 and n − 1 divide n. Of course, one
can be slightly more clever, and only perform this divisibility check for
prime numbers between 2 and

√
n (see Exercise 1.1). Nevertheless, such an

approach does not give rise to a polynomial-time algorithm. Indeed, the
design and analysis of efficient primality tests has been an active research
area for many years. There is, in fact, a deterministic, polynomial-time
algorithm for testing primality, which we shall discuss in a later chapter.
For the moment, we shall just assume we have such an algorithm, and use
it as a “black box.”

Our algorithm to generate a random prime between 1 and M runs as
follows:

Algorithm RP:

repeat
n←R {1, . . . ,M}

until IsPrime(n)
output n

We now wish to analyze the running time and output distribution of
Algorithm RP on input M . Let k := len(M).

First, consider a single iteration of the main loop of Algorithm RP,
viewed as a stand-alone probabilistic experiment. For any fixed prime p
between 1 and M , the probability that the variable n takes the value p is
precisely 1/M . Thus, every prime is equally likely, and the probability that
n is a prime is precisely π(M)/M .

Let us also consider the expected running time µ of a single loop itera-
tion. To this end, define Wn to be the running time of algorithm IsPrime
on input n. Also, define

W ′
M :=

1
M

M∑
n=1

Wn.

That is, W ′
M is the average value of Wn, for a random choice of n ∈

{1, . . . ,M}. Thus, µ is equal to W ′
M , plus the expected running time of

Algorithm RN, which is O(k), plus any other small overhead, which is also
O(k). So we have µ ≤W ′

M + O(k), and assuming that W ′
M = Ω(k), which

is perfectly reasonable, we have µ = O(W ′
M ).

Next, let us consider the behavior of Algorithm RP as a whole. From the
above discussion, it follows that when this algorithm terminates, its output
will be uniformly distributed over the set of all primes between 1 and M . If
T denotes the number of loop iterations performed by the algorithm, then
E[T ] = M/π(M), which by Chebyshev’s theorem (Theorem 5.1) is Θ(k).
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So we have bounded the expected number of loop iterations. We now
want to bound the expected overall running time. For i ≥ 1, let Xi denote
the amount of time (if any) spent during the ith loop iteration of the al-
gorithm, so that X =

∑
i≥1 Xi is the total running time of Algorithm RP.

Note that

E[Xi] = E[Xi | T ≥ i]P[T ≥ i] + E[Xi | T < i]P[T < i]
= E[Xi | T ≥ i]P[T ≥ i]
= µP[T ≥ i],

because Xi = 0 when T < i and E[Xi | T ≥ i] is by definition equal to µ.
Then we have

E[X] =
∑
i≥1

E[Xi] = µ
∑
i≥1

P[T ≥ i] = µE[T ] = O(kW ′
M ).

7.4.1 Using a probabilistic primality test

In the above analysis, we assumed that IsPrime was a deterministic,
polynomial-time algorithm. While such an algorithm exists, there are in
fact simpler and more efficient algorithms that are probabilistic. We shall
discuss such algorithms in greater depth later. A number of these algo-
rithms have one-sided error in the following sense: if the input n is a prime,
the output is certainly “true”; however, if the input n is composite, the
output will be “false” with high probability, but may be “true” with some
small error probability bounded by ε. The value of ε may be easily “tuned”
by adjusting a parameter of the algorithm — indeed, it will turn out that
we can make ε essentially as small as we like, without too much extra
computational effort.

Let us analyze the behavior of Algorithm RP under the assumption that
IsPrime is implemented by a probabilistic algorithm as described in the
previous paragraph, with an error probability for composite inputs bounded
by ε. Let us define Wn to be the expected running time of IsPrime on input
n, and as before, we define

W ′
M :=

1
M

M∑
n=1

Wn.

Thus, W ′
M is the expected running time of algorithm IsPrime, where the

average is taken with respect to randomly chosen n and the random choices
of the algorithm itself.

Consider a single loop iteration of Algorithm RP. For any fixed prime p
between 1 and M , the probability that n takes the value p is 1/M . Thus,
if the algorithm halts with a prime, every prime is equally likely, and the
probability that it halts at all is at least π(M)/M — the algorithm may also
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halt with a composite value of n if the primality test makes a mistake. So
we see that the expected number of loop iterations should be no more than
in the case where we use a deterministic primality test. Using the same
argument as was used before to estimate the expected total running time
of Algorithm RP, we find that this is O(kW ′

M ). As for the probability that
Algorithm RP mistakenly outputs a composite, one might be tempted to
say that this probability is at most ε, the probability that IsPrime makes a
mistake. However, in drawing such a conclusion, we would be committing
the fallacy of Example 6.12 — to correctly analyze the probability that
Algorithm RP mistakenly outputs a composite, one must take into account
the rate of incidence of the “primality disease,” as well as the error rate of
the test for this disease.

Let us be a bit more precise. Again, consider the probability distribution
defined by a single loop iteration, and let A be the event that IsPrime
outputs true, and B the event that n is composite. Let β := P[B] and
α := P[A | B]. First, observe that, by definition, α ≤ ε. Now, the
probability δ that the algorithm halts and outputs a composite in this loop
iteration is

δ = P[A ∧ B] = αβ.

The probability δ′ that the algorithm halts and outputs either a prime or
composite is

δ′ = P[A] = P[A ∧ B] + P[A ∧ B] = P[A ∧ B] + P[B] = αβ + (1− β).

Now consider the behavior of Algorithm RP as a whole. With T being
the number of loop iterations as before, we have

E[T ] =
1
δ′

=
1

αβ + (1− β)
, (7.1)

and hence
E[T ] ≤ 1

(1− β)
=

M

π(M)
= O(k).

Let us now consider the probability γ that the output of Algorithm RP
is composite. For i ≥ 1, let Ci be the event that the algorithm halts and
outputs a composite number in the ith loop iteration. The events Ci are
pairwise disjoint, and moreover,

P[Ci] = P[Ci ∧ T ≥ i] = P[Ci | T ≥ i]P[T ≥ i] = δP[T ≥ i].

So we have

γ =
∑
i≥1

P[Ci] =
∑
i≥1

δP[T ≥ i] = δE[T ] =
αβ

αβ + (1− β)
, (7.2)
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and hence
γ ≤ α

(1− β)
≤ ε

(1− β)
= ε

M

π(M)
= O(kε).

Another way of analyzing the output distribution of Algorithm RP is
to consider its statistical distance ∆ from the uniform distribution on the
set of primes between 1 and M . As we have already argued, every prime
between 1 and M is equally likely to be output, and in particular, any
fixed prime p is output with probability at most 1/π(M). It follows from
Theorem 6.15 that ∆ = γ.

7.4.2 Generating a random k-bit prime

Instead of generating a random prime between 1 and M , we may instead
want to generate a random k-bit prime, that is, a prime between 2k−1 and
2k − 1. Bertrand’s postulate (Theorem 5.7) tells us that there exist such
primes for every k ≥ 2, and that in fact, there are Ω(2k/k) such primes.
Because of this, we can modify Algorithm RP, so that each candidate n
is chosen at random from the interval {2k−1, . . . , 2k − 1}, and all of the
results of this section carry over essentially without change. In particular,
the expected number of trials until the algorithm halts is O(k), and if a
probabilistic primality test as in §7.4.1 is used, with an error probability of
ε, the probability that the output is not prime is O(kε).

Exercise 7.14. Analyze Algorithm RP assuming that the primality test
is implemented by an “Atlantic City” algorithm with error probability at
most ε. 2

Exercise 7.15. Consider the following probabilistic algorithm that takes
as input a positive integer M :

S ← ∅
repeat

n←R {1, . . . ,M}
S ← S ∪ {n}

until |S| = M

Show that the expected number of iterations of the main loop is ∼
M log M . 2

7.5 Generating a Random Non-Increasing
Sequence

The following algorithm, Algorithm RS, will be used in the next section as
a fundamental subroutine in a beautiful algorithm (Algorithm RFN) that
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generates random numbers in factored form. Algorithm RS takes as input
an integer M ≥ 2, and runs as follows:

Algorithm RS:

n0 ←M
i← 0
repeat

i← i + 1
ni ←R {1, . . . , ni−1}

until ni = 1
t← i
Output (n1, . . . , nt)

We analyze first the output distribution, and then the running time.

7.5.1 Analysis of the output distribution

Let N1, N2, . . . be random variables denoting the choices of n1, n2, . . . (for
completeness, define Ni := 1 if loop i is never entered).

A particular output of the algorithm is a non-increasing chain
(n1, . . . , nt), where n1 ≥ n2 ≥ · · · ≥ nt−1 > nt = 1. For any such chain, we
have

P[N1 = n1 ∧ · · · ∧Nt = nt] = P[N1 = n1]P[N2 = n2 | N1 = n1] · · ·
P[Nt = nt | N1 = n1 ∧ · · · ∧Nt−1 = nt−1]

=
1
M
· 1
n1
· · · · · 1

nt−1
. (7.3)

This completely describes the output distribution, in the sense that we
have determined the probability with which each non-increasing chain ap-
pears as an output. However, there is another way to characterize the out-
put distribution that is significantly more useful. For j = 2, . . . ,M , define
the random variable Ej to be the number of occurrences of j among the Ni.
The Ej determine the Ni, and vice versa. Indeed, EM = eM , . . . , E2 = e2

iff the output of the algorithm is the non-increasing chain

(M, . . . , M︸ ︷︷ ︸
eM times

,M − 1, . . . ,M − 1︸ ︷︷ ︸
eM−1 times

, . . . , 2, . . . , 2︸ ︷︷ ︸
e2 times

, 1).

From (7.3), we can therefore directly compute

P[EM = eM ∧ . . . ∧ E2 = e2] =
1
M

M∏
j=2

1
jej

. (7.4)
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Notice that we can write 1/M as a telescoping product:

1
M

=
M − 1

M
· M − 2
M − 1

· · · · · 2
3
· 1
2

=
M∏

j=2

(1− 1/j),

so we can re-write (7.4) as

P[EM = eM ∧ · · · ∧ E2 = e2] =
M∏

j=2

j−ej (1− 1/j). (7.5)

Notice that for j = 2, . . . ,M ,∑
ej≥0

j−ej (1− 1/j) = 1,

and so by (the discrete version of) Theorem 6.1, the variables Ej are mu-
tually independent, and for all j = 2, . . . ,M and integers ej ≥ 0, we have

P[Ej = ej ] = j−ej (1− 1/j). (7.6)

In summary, we have shown that the variables Ej are mutually inde-
pendent, where for j = 2, . . . ,M , the variable Ej + 1 has a geometric
distribution with an associated success probability of 1− 1/j.

Another, perhaps more intuitive, analysis of the joint distribution of the
Ej runs as follows. Conditioning on the event EM = eM , . . . , Ej+1 = ej+1,
one sees that the value of Ej is the number of times the value j appears in
the sequence Ni, Ni+1, . . . , where i = eM + · · ·+ ej+1 +1; moreover, in this
conditional probability distribution, it is not too hard to convince oneself
that Ni is uniformly distributed over {1, . . . , j}. Hence the probability that
Ej = ej in this conditional probability distribution is the probability of
getting a run of exactly ej copies of the value j in an experiment in which
we successively choose numbers between 1 and j at random, and this latter
probability is clearly j−ej (1− 1/j).

7.5.2 Analysis of the running time

Let T be the random variable that takes the value t when the output is
(n1, . . . , nt). Clearly, it is the value of T that essentially determines the
running time of the algorithm.

With the random variables Ej defined as above, we see that T = 1 +∑M
j=2 Ej . Moreover, for each j, Ej + 1 has a geometric distribution with

associated success probability 1− 1/j, and hence

E[Ej ] =
1

1− 1/j
− 1 =

1
j − 1

.



158 Probabilistic Algorithms

Thus,

E[T ] = 1 +
M∑

j=2

E[Ej ] = 1 +
M−1∑
j=1

1
j

=
∫ M

1

dy

y
+ O(1) ∼ log M.

Intuitively, this is roughly as we would expect, since with probability
1/2, each successive ni is at most one half as large as its predecessor, and
so after O(len(M)) steps, we expect to reach 1.

To complete the running time analysis, let us consider the total number
of times X that the main loop of Algorithm RN in §7.3 is executed. For
i = 1, 2, . . . , let Xi denote the number of times that loop is executed in the
ith loop of Algorithm RS, defining this to be zero if the ith loop is never
reached. So X =

∑∞
i=1 Xi. Arguing just as in §7.4, we have

E[X] =
∑
i≥1

E[Xi] ≤ 2
∑
i≥1

P[T ≥ i] = 2E[T ] ∼ 2 log M.

To finish, if Y denotes the running time of Algorithm RS on input
M , then we have Y ≤ c len(M)(X + 1) for some constant c, and hence
E[Y ] = O(len(M)2).

Exercise 7.16. Show that when Algorithm RS runs on input M , the
expected number of (not necessarily distinct) primes in the output sequence
is ∼ log log M . 2

Exercise 7.17. For j = 2, . . . ,M , let Fj := 1 if j appears in the output
of Algorithm RS on input M , and let Fj := 0 otherwise. Determine the
joint distribution of the Fj . Using this, show that the expected number of
distinct primes appearing in the output sequence is ∼ log log M . 2

Exercise 7.18. Design and analyze a simple probabilistic algorithm that
runs in expected constant time, and whose output distribution is a random
variable X taking integer values M = 1, 2, . . . such that P[X = M ] =
Θ(1/M3). 2

7.6 Generating a Random Factored Number

We now present an efficient algorithm that generates a random factored
number. That is, on input M ≥ 2, the algorithm generates a number
r uniformly distributed over the interval {1, . . . ,M}, but instead of the
usual output format for such a number r, the output consists of the prime
factorization of r.
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As far as anyone knows, there are no efficient algorithms for factoring
large numbers, despite years of active research in search of such an algo-
rithm. So our algorithm to generate a random factored number will not
work by generating a random number and then factoring it.

Our algorithm will use Algorithm RS in §7.5 as a subroutine. In addi-
tion, as we did in §7.4, we shall assume the existence of an deterministic,
polynomial-time primality test IsPrime(·). We denote its running time on
input n by Wn, and set W ∗

M := max{Wn : n = 2, . . . ,M}.
In the analysis of the algorithm, we shall make use of Mertens’ theorem,

which we proved in Chapter 5 (Theorem 5.13).
On input M ≥ 2, the algorithm to generate a random factored number

r ∈ {1, . . . ,M} runs as follows:

Algorithm RFN:

repeat
Run Algorithm RS on input M , obtaining (n1, . . . , nt)

(*) Let ni1 , . . . , ni`
be the primes among n1, . . . , nt,

including duplicates
(**) Set r ←

∏`
j=1 nij

If r ≤M then
s←R {1, . . . ,M}
if s ≤ r then output ni1 , . . . , ni`

and halt
forever

Notes:

(*) Each ni is tested for primality in turn using algorithm
IsPrime(·).

(**) We assume that the product is computed by a simple iter-
ative procedure that halts as soon as the partial product
exceeds M . This ensures that the time spent forming the
product is always O(len(M)2), which simplifies the analy-
sis.

Let us now analyze the running time and output distribution of Algo-
rithm RFN on input M . Let k := len(M).

To analyze this algorithm, let us first consider a single iteration of the
main loop as a random experiment in isolation. Let n = 1, . . . ,M be a
fixed integer, and let us calculate the probability that the variable r takes
the particular value n in this loop iteration. Let n =

∏
p≤M pep be the

prime factorization of n. Then r takes the value n iff Ep = ep for all primes
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p ≤M , which by the analysis in §7.5, happens with probability precisely∏
p≤M

p−ep(1− 1/p) =
U(M)

n
,

where
U(M) :=

∏
p≤M

(1− 1/p).

Now, the probability that this loop iteration produces n as output is equal
to the probability that r takes the value n and s ≤ n, which is

U(M)
n
· n

M
=

U(M)
M

.

Thus, every n is equally likely, and summing over all n = 1, . . . ,M , we see
that the probability that this loop iteration succeeds in producing some
output is U(M).

Now consider the expected running time of this loop iteration. From
the analysis in §7.5, it is easy to see that this is O(kW ∗

M ). That completes
the analysis of a single loop iteration.

Finally, consider the behavior of Algorithm RFN as a whole. From
our analysis of an individual loop iteration, it is clear that the output
distribution of Algorithm RFN is as required, and if H denotes the number
of loop iterations of the algorithm, then E[H] = U(M)−1, which by Mertens’
theorem is O(k). Since the expected running time of each individual loop
iteration is O(kW ∗

M ), it follows that the expected total running time is
O(k2W ∗

M ).

7.6.1 ♣ Using a probabilistic primality test

Analogous to the discussion in §7.4.1, we can analyze the behavior of
Algorithm RFN under the assumption that IsPrime is a probabilistic
algorithm which may erroneously indicate that a composite number is
prime with probability bounded by ε. Here, we assume that Wn de-
notes the expected running time of the primality test on input n, and set
W ∗

M := max{Wn : n = 2, . . . ,M}.
The situation here is a bit more complicated than in the case of Al-

gorithm RP, since an erroneous output of the primality test in Algorithm
RFN could lead either to the algorithm halting prematurely (with a wrong
output), or to the algorithm being delayed (because an opportunity to halt
may be missed).

Let us first analyze in detail the behavior of a single iteration of the
main loop of Algorithm RFN. Let A denote the event that the primality
test makes a mistake in this loop iteration, and let δ := P[A]. If T is the
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number of loop iterations in a given run of Algorithm RS, it is easy to see
that

δ ≤ ε E[T ] = ε `(M),

where

`(M) := 1 +
M−1∑
j=1

1
j
≤ 2 + log M.

Now, let n = 1, . . . ,M be a fixed integer, and let us calculate the probability
αn that the correct prime factorization of n is output in this loop iteration.
Let Bn be the event that the primes among the output of Algorithm RS
multiply out to n. Then αn = P[Bn ∧ A](n/M). Moreover, because of
the mutual independence of the Ej , not only does it follow that P[Bn] =
U(M)/n, but it also follows that Bn and A are independent events: to see
this, note that Bn is determined by the variables {Ej : j prime}, and A is
determined by the variables {Ej : j composite} and the random choices of
the primality test. Hence,

αn =
U(M)

M
(1− δ).

Thus, every n is equally likely to be output. If C is the event that the
algorithm halts with some output (correct or not) in this loop iteration,
then

P[C] ≥ U(M)(1− δ), (7.7)

and

P[C ∨ A] = U(M)(1− δ) + δ = U(M)− δU(M) + δ ≥ U(M). (7.8)

The expected running time of a single loop iteration of Algorithm RFN is
also easily seen to be O(kW ∗

M ). That completes the analysis of a single
loop iteration.

We next analyze the total running time of Algorithm RFN. If H is the
number of loop iterations of Algorithm RFN, it follows from (7.7) that

E[H] ≤ 1
U(M)(1− δ)

,

and assuming that ε`(M) ≤ 1/2, it follows that the expected running time
of Algorithm RFN is O(k2W ∗

M ).
Finally, we analyze the statistical distance ∆ between the output dis-

tribution of Algorithm RFN and the uniform distribution on the numbers
1 to M , in correct factored form. Let H ′ denote the first loop iteration i
for which the event C ∨ A occurs, meaning that the algorithm either halts
or the primality test makes a mistake. Then, by (7.8), H ′ has a geometric
distribution with an associated success probability of at least U(M). Let
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Ai be the event that the primality makes a mistake for the first time in loop
iteration i, and let A∗ is the event that the primality test makes a mistake in
any loop iteration. Observe that P[Ai | H ′ ≥ i] = δ and P[Ai | H ′ < i] = 0,
and so

P[Ai] = P[Ai | H ′ ≥ i]P[H ′ ≥ i] = δP[H ′ ≥ i],

from which it follows that

P[A∗] =
∑
i≥1

P[Ai] =
∑
i≥1

δP[H ′ ≥ i] = δE[H ′] ≤ δU(M)−1.

Now, if γ is the probability that the output of Algorithm RFN is not in
correct factored form, then

γ ≤ P[A∗] = δU(M)−1 = O(k2ε).

We have already argued that each value n between 1 and M , in correct
factored form, is equally likely to be output, and in particular, each such
value occurs with probability at most 1/M . It follows from Theorem 6.15
that ∆ = γ (verify).

Exercise 7.19. To simplify the analysis, we analyzed Algorithm RFN
using the worst-case estimate W ∗

M on the expected running time of the
primality test. Define

W+
M :=

M∑
j=2

Wj

j − 1
,

where Wn denotes the expected running time of a probabilistic implemen-
tation of IsPrime on input n. Show that the expected running time of
Algorithm RFN is O(kW+

M ), assuming ε`(M) ≤ 1/2. 2

Exercise 7.20. Analyze Algorithm RFN assuming that the primality
test is implemented by an “Atlantic City” algorithm with error probability
at most ε. 2

7.7 The RSA Cryptosystem

Algorithms for generating large primes, such as Algorithm RP in §7.4, have
numerous applications in cryptography. One of the most well known and
important such applications is the RSA cryptosystem, named after its in-
ventors Rivest, Shamir, and Adleman. We give a brief overview of this
system here.

Suppose that Alice wants to send a secret message to Bob over an in-
secure network. An adversary may be able to eavesdrop on the network,
and so sending the message “in the clear” is not an option. Using older,
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more traditional cryptographic techniques would require that Alice and
Bob share a secret key between them; however, this creates the problem
of securely generating such a shared secret. The RSA cryptosystem is an
example of a “public key” cryptosystem. To use the system, Bob simply
places a “public key” in the equivalent of an electronic telephone book,
while keeping a corresponding “private key” secret. To send a secret mes-
sage to Bob, Alice obtains Bob’s public key from the telephone book, and
uses this to encrypt her message. Upon receipt of the encrypted message,
Bob uses his secret key to decrypt it, obtaining the original message.

Here is how the RSA cryptosystem works. To generate a public
key/private key pair, Bob generates two very large random primes p and q.
To be secure, p and q should be quite large — typically, they are chosen to
be around 512 bits in length. We require that p 6= q, but the probability
that two random 512-bit primes are equal is negligible, so this is hardly an
issue. Next, Bob computes n := pq. Bob also selects an integer e > 1 such
that gcd(e, φ(n)) = 1. Here, φ(n) = (p− 1)(q − 1). Finally, Bob computes
d := e−1 rem φ(n). The public key is the pair (n, e), and the private key
is the pair (n, d). The integer e is called the “encryption exponent” and d
is called the “decryption exponent.”

After Bob publishes his public key (n, e), Alice may send a secret mes-
sage to Bob as follows. Suppose that a message is encoded in some canonical
way as a number between 0 and n−1 — we can always interpret a bit string
of length less than len(n) as such a number. Thus, we may assume that
a message is an element α of Zn. To encrypt the message α, Alice simply
computes β := αe. The encrypted message is β. When Bob receives β, he
computes γ := βd, and interprets γ as a message. (Note that if Bob stores
the factorization of n, then he may speed up the decryption process using
the algorithm in Exercise 4.6.)

The most basic requirement of any encryption scheme is that decryption
should “undo” encryption. In this case, this means that for all α ∈ Zn, we
should have

(αe)d = α. (7.9)

If α ∈ Z∗n, then this is clearly the case, since we have ed = 1 + φ(n)k for
some positive integer k, and hence by Euler’s theorem (Theorem 2.15), we
have

(αe)d = αed = α1+φ(n)k = α · αφ(n)k = α.

Even if α 6∈ Z∗n, equation (7.9) still holds. To see this, let α = [a mod n],
with gcd(a, n) 6= 1. There are three possible cases. First, if a ≡ 0 (mod n),
then trivially, aed ≡ 0 (mod n). Second, if a ≡ 0 (mod p) but a 6≡
0 (mod q), then trivially aed ≡ 0 (mod p), and

aed ≡ a1+φ(n)k ≡ a · aφ(n)k ≡ a (mod q),

where the last congruence follows from the fact that φ(n)k is a multiple of
q − 1, which is a multiple of the multiplicative order of a modulo q (again
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by Euler’s theorem). Thus, we have shown that aed ≡ a (mod p) and
aed ≡ a (mod q), from which it follows that aed ≡ a (mod n). The third
case, where a 6≡ 0 (mod p) and a ≡ 0 (mod q), is treated in the same way as
the second. Thus, we have shown that equation (7.9) holds for all α ∈ Zn.

Of course, the interesting question about the RSA cryptosystem is
whether or not it really is secure. Now, if an adversary, given only the
public key (n, e), were able to factor n, then he could easily compute the
decryption exponent d. It is widely believed that factoring n is compu-
tationally infeasible, for sufficiently large n, and so this line of attack is
ineffective, barring a breakthrough in factorization algorithms. However,
there may be other possible lines of attack. For example, it is natural to ask
whether one can compute the decryption exponent without having to go to
the trouble of factoring n. It turns out that the answer to this question is
no: if one could compute the decryption exponent d, then ed− 1 would be
a multiple of φ(n), and as we shall see later in §10.6, given any multiple of
φ(n), we can easily factor n.

Thus, computing the encryption exponent is equivalent to factoring n,
and so this line of attack is also ineffective. But there still could be other
lines of attack. For example, even if we assume that factoring large numbers
is infeasible, this is not enough to guarantee that for a given encrypted mes-
sage β, the adversary is unable to compute βd (although nobody actually
knows how to do this without first factoring n).

The reader should be warned that the proper notion of security for
an encryption scheme is quite subtle, and a detailed discussion of this is
well beyond the scope of this text. Indeed, the simple version of the RSA
cryptosystem presented here is in fact inadequate from a security point of
view, and because of this, actual implementations of public-key encryption
schemes based on RSA are somewhat more complicated.

We briefly mention one reason that this simple version of the RSA cryp-
tosystem is insecure. Suppose an eavesdropping adversary knows that Al-
ice will send one of a few, known, candidate messages. For example, an
adversary may know that Alice’s message is either “let’s meet today” or
“let’s meet tomorrow.” In this case, the adversary can encrypt for himself
all of the candidate messages, intercept Alice’s actual encrypted message,
and then by simply comparing encryptions, the adversary can determine
which particular message Alice encrypted. This type of attack works simply
because the encryption algorithm is deterministic, and in fact, any deter-
ministic encryption algorithm will be vulnerable to this type of attack. To
avoid this type of attack, one must use a probabilistic encryption algorithm.
In the case of the RSA cryptosystem, this is often achieved by padding the
message with some random bits before encrypting it.

Exercise 7.21. Suppose there is a probabilistic algorithm A that takes
as input an integer n of the form n = pq, where p and q are distinct primes.
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The algorithm also takes as input an integer e > 1, with gcd(e, φ(n)) = 1,
and an element α ∈ Z∗n. It outputs either “failure,” or β ∈ Z∗n such that
βe = α. Furthermore, assume that A runs in strict polynomial time, and
that for all n and e of the above form, and for randomly chosen α ∈ Z∗n, A
succeeds in finding β as above with probability ε(n, e). Here, the probability
is taken over the random choice of α, as well as the random choices made
during the execution of A.

Show how to use A to construct another probabilistic algorithm A′ that
takes as input n and e as above, as well as α ∈ Z∗n, runs in expected
polynomial time, and which satisfies the following property:

if ε(n, e) ≥ 0.001, then for all α ∈ Z∗n, A′ finds β ∈ Z∗n with
βe = α with probability at least 0.999.

2

The algorithm A′ in the above exercise is an example of what is called
a random self reduction, that is, an algorithm that reduces the task of
solving an arbitrary instance of a given problem to that of solving a random
instance of the problem. Intuitively, the fact that a problem is random self
reducible in this sense means that the problem is no harder in “the worst
case” than in “the average case.”

7.8 Notes

See Luby [55] for an exposition of the theory of pseudo-random bit gener-
ation.

Our approach in §7.1 to defining the probability distribution associated
with the execution of a probabilistic algorithm is a bit unusual (indeed, it is
a bit unusual among papers and textbooks on the subject to even bother to
formally define much of anything). There are alternative approaches. One
approach is to define the output distribution and expected running time of
an algorithm on a given input directly, using the identities in Exercise 7.4,
and avoid the construction of an underlying probability distribution. How-
ever, without such a probability distribution, we would have very few tools
at our disposal to analyze the output distribution and running time of
particular algorithms. Another approach (which we dismissed with little
justification early on in §7.1) is to attempt to define a distribution that
models an infinite random bit string. One way to do this is to identify an
infinite bit string with the real number in the unit interval [0, 1] obtained by
interpreting the bit string as a number written in base 2, and then use con-
tinuous probability theory (which we have not developed here, but which is
covered in a standard undergraduate course on probability theory), applied
to the uniform distribution on [0, 1]. There are a couple of problems with
this approach. First, the above identification of bit strings with numbers
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is not quite one to one. Second, when one tries to define the notion of ex-
pected running time, numerous technical problems arise; in particular, the
usual definition of an expected value in terms of an integral would require
us to integrate functions that are not Riemann integrable. To properly deal
with all of these issues, one would have to develop a good deal of measure
theory (σ-algebras, Lesbegue integration, and so on), at the level normally
covered in a graduate-level course on probability or measure theory.

The algorithm presented here for generating a random factored number
is due to Kalai [46], although the analysis presented here is a bit different,
and our analysis using a probabilistic primality test is new. Kalai’s algo-
rithm is significantly simpler, though less efficient than, an earlier algorithm
due to Bach [8], which uses an expected number of O(k) primality tests, as
opposed to the O(k2) primality tests used by Kalai’s algorithm.

The RSA cryptosystem was invented by Rivest, Shamir, and Adleman
[74]. There is a vast literature on cryptography. One starting point is the
book by Menezes, van Oorschot, and Vanstone [58].



Chapter 8

Abelian Groups

This chapter introduces the notion of an abelian group. This is an abstrac-
tion that models many different algebraic structures, and yet despite the
level of generality, a number of very useful results can be easily obtained.

8.1 Definitions, Basic Properties, and Exam-
ples

Definition 8.1. An abelian group is a set G together with a binary
operation ? on G such that

(i) for all a, b, c ∈ G, a ? (b ? c) = (a ? b) ? c (i.e., ? is associative),

(ii) there exists e ∈ G (called the identity element) such that for all
a ∈ G, a ? e = a = e ? a,

(iii) for all a ∈ G there exists a′ ∈ G (called the inverse of a) such that
a ? a′ = e = a′ ? a,

(iv) for all a, b ∈ G, a ? b = b ? a (i.e., ? is commutative).

While there is a more general notion of a group, which may be defined
simply by dropping property (iv) in Definition 8.1, we shall not need this
notion in this text. The restriction to abelian groups helps to simplify
the discussion significantly. Because we will only be dealing with abelian
groups, we may occasionally simply say “group” instead of “abelian group.”

Before looking at examples, let us state some very basic properties of
abelian groups that follow directly from the definition:

Theorem 8.2. Let G be an abelian group with binary operation ?. Then
we have:

(i) G contains only one identity element;

167
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(ii) every element of G has only one inverse.

Proof. Suppose e, e′ are both identities. Then we have

e = e ? e′ = e′,

where we have used part (ii) of the definition, once with e′ as the identity,
and once with e as the identity. That proves part (i) of the theorem.

Now let a ∈ G, and suppose that a has two inverses, a′ and a′′. Then
we have

a′ = a′ ? e = a′ ? (a ? a′′) = (a′ ? a) ? a′′ = e ? a′′ = a′′,

where we have used part (ii) of the definition, part (iii) of the definition
with the inverse a′′ of a, part (i) of the definition, part (iii) of the definition
with the inverse a′ of a, and part (ii) of the definition. That proves part
(ii) of the theorem. 2

These uniqueness properties justify use of the definite article in Defini-
tion 8.1 in conjunction with the terms “identity element” and “inverse.”

Abelian groups are lurking everywhere, as the following examples illus-
trate.

Example 8.1. The set of integers Z under addition forms an abelian
group, with 0 being the identity, and −a being the inverse of a ∈ Z. 2

Example 8.2. For integer n, the set nZ = {nz : z ∈ Z} under addition
forms an abelian group, again, with 0 being the identity, and n(−z) being
the inverse of nz. 2

Example 8.3. The set of non-negative integers under addition does not
form an abelian group, since additive inverses do not exist for positive
integers. 2

Example 8.4. The set of integers under multiplication does not form an
abelian group, since inverses do not exist for integers other than ±1. 2

Example 8.5. The set of integers {±1} under multiplication forms an
abelian group, with 1 being the identity, and −1 its own inverse. 2

Example 8.6. The set of rational numbers Q = {a/b : a, b ∈ Z, b 6=
0} under addition forms an abelian group, with 0 being the identity, and
(−a)/b being the inverse of a/b. 2

Example 8.7. The set of non-zero rational numbers Q∗ under multipli-
cation forms an abelian group, with 1 being the identity, and b/a being the
inverse of a/b. 2
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Example 8.8. The set Zn under addition forms an abelian group, where
[0 mod n] is the identity, and where [−a mod n] is the inverse of [a mod n].
2

Example 8.9. The set Z∗n of residue classes [a mod n] with gcd(a, n) = 1
under multiplication forms an abelian group, where [1 mod n] is the iden-
tity, and if b is a multiplicative inverse of a modulo n, then [b mod n] is the
inverse of [a mod n]. 2

Example 8.10. Continuing the previous example, let us set n = 15, and
enumerate the elements of Z∗15. They are

[1], [2], [4], [7], [8], [11], [13], [14].

An alternative enumeration is

[±1], [±2], [±4], [±7].

2

Example 8.11. As another special case, consider Z∗5. We can enumerate
the elements of this groups as

[1], [2], [3], [4]

or alternatively as
[±1], [±2].

2

Example 8.12. For any positive integer n, the set of n-bit strings under
the “exclusive or” operation forms an abelian group, where the “all zero”
bit string is the identity, and every bit string is its own inverse. 2

Example 8.13. The set of all arithmetic functions f , such that f(1) 6= 0,
with multiplication defined by the Dirichlet product (see §2.6) forms an
abelian group, where the special arithmetic function I is the identity, and
inverses are provided by the result of Exercise 2.23. 2

Example 8.14. The set of all finite bit strings under concatenation does
not form an abelian group. Although concatenation is associative and the
empty string acts as an identity element, inverses do not exist (except for
the empty string), nor is concatenation commutative. 2

Example 8.15. The set of 2× 2 integer matrices with determinant ±1,
together with the binary operation of matrix multiplication, is an example
of a non-abelian group; that is, it satisfies properties (i)–(iii) of Defini-
tion 8.1, but not property (iv). 2
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Example 8.16. The set of all permutations on a given set of size n ≥
3, together with the binary operation of function composition, is another
example of a non-abelian group (for n = 1, 2, it is an abelian group). 2

Note that in specifying a group, one must specify both the underlying
set G as well as the binary operation; however, in practice, the binary
operation is often implicit from context, and by abuse of notation, one
often refers to G itself as the group. For example, when talking about
the abelian groups Z and Zn, it is understood that the group operation is
addition, while when talking about the abelian group Z∗n, it is understood
that the group operation is multiplication.

Typically, instead of using a special symbol like “?” for the group oper-
ation, one uses the usual addition (“+”) or multiplication (“·”) operations.
For any particular, concrete abelian group, the most natural choice of no-
tation is clear (e.g., addition for Z and Zn, multiplication for Z∗n); however,
for a “generic” group, the choice is largely a matter of taste. By conven-
tion, whenever we consider a “generic” abelian group, we shall use additive
notation for the group operation, unless otherwise specified.

If an abelian group G is written additively, then the identity element is
denoted by 0G (or just 0 if G is clear from context), and the inverse of an
element a ∈ G is denoted by −a. For a, b ∈ G, a − b denotes a + (−b). If
n is a positive integer, then n · a denotes a + a + · · ·+ a, where there are n
terms in the sum — note that 1 · a = a. Moreover, 0 · a denotes 0G, and if
n is a negative integer, then n · a denotes (−n)(−a).

If an abelian group G is written multiplicatively, then the identity ele-
ment is denoted by 1G (or just 1 if G is clear from context), and the inverse
of an element a ∈ G is denoted by a−1 or 1/a. As usual, one may write ab
in place of a · b. For a, b ∈ G, a/b denotes a · b−1. If n is a positive integer,
then an denotes a ·a · · · · ·a, where there are n terms in the product — note
that a1 = a. Moreover, a0 denotes 1G, and if n is a negative integer, then
an denotes (a−1)−n.

An abelian group G may be infinite or finite. If the group is finite, we
define its order to be the number of elements in the underlying set G;
otherwise, we say that the group has infinite order.

Example 8.17. The order of the additive group Zn is n. 2

Example 8.18. The order of the multiplicative group Z∗n is φ(n), where
φ is Euler’s phi function, defined in §2.4. 2

Example 8.19. The additive group Z has infinite order. 2

We now record a few more simple but useful properties of abelian groups.

Theorem 8.3. Let G be an abelian group. Then for all a, b, c ∈ G and
n, m ∈ Z, we have:
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(i) if a + b = a + c, then b = c;

(ii) the equation a + x = b has a unique solution x ∈ G;

(iii) −(a + b) = (−a) + (−b);

(iv) −(−a) = a;

(v) (−n)a = −(na) = n(−a);

(vi) (n + m)a = na + ma;

(vii) n(ma) = (nm)a = m(na);

(viii) n(a + b) = na + nb.

Proof. Exercise. 2

If G1, . . . , Gk are abelian groups, we can form the direct product
G := G1 × · · · × Gk, which consists of all k-tuples (a1, . . . , ak) with a1 ∈
G1, . . . , ak ∈ Gk. We can view G in a natural way as an abelian group if
we define the group operation “component wise”:

(a1, . . . , ak) + (b1, . . . , bk) := (a1 + b1, . . . , ak + bk).

Of course, the groups G1, . . . , Gk may be different, and the group operation
applied in the ith component corresponds to the group operation associated
with Gi. We leave it to the reader to verify that G is in fact an abelian
group.

Exercise 8.1. In this exercise, you are to generalize the Möbius inversion
formula, discussed in §2.6, to arbitrary abelian groups. Let F be the set
of all functions mapping positive integers to integers. Let G be an abelian
group, and let G be the set of all functions mapping positive integers to
elements of G. For f ∈ F and g ∈ G, we can define the Dirichlet product
f ? g ∈ G as follows:

(f ? g)(n) :=
∑
d|n

f(d)g(n/d),

the sum being over all positive divisors d of n. Let I, J, µ ∈ F be as defined
in §2.6.

(a) Show that for all f, g ∈ F and all h ∈ G, we have (f ?g)?h = f ?(g?h).

(b) Show that for all f ∈ G, we have I ? f = f .

(c) Show that for all f, F ∈ G, we have F = J ?f if and only if f = µ?F .

2



172 Abelian Groups

8.2 Subgroups

We next introduce the notion of a subgroup.

Definition 8.4. Let G be an abelian group, and let H be a non-empty
subset of G such that

(i) a + b ∈ H for all a, b ∈ H, and

(ii) −a ∈ H for all a ∈ H.

Then H is called a subgroup of G.

In words: H is a subgroup of G if it is closed under the group operation
and taking inverses.

Multiplicative notation: if the abelian group G in the above definition is
written using multiplicative notation, then H is a subgroup if ab ∈ H and
a−1 ∈ H for all a, b ∈ H.

Theorem 8.5. If G is an abelian group, and H is a subgroup of G, then H
contains 0G; moreover, the binary operation of G defines a binary operation
on H, and with respect to this binary operation, H forms an abelian group
whose identity is 0G.

Proof. First, to see that 0G ∈ H, just pick any a ∈ H, and using both
properties of the definition of a subgroup, we see that 0G = a + (−a) ∈ H.

Next, note that by property (i) of Definition 8.4, H is closed under
addition, which means that the restriction of the binary operation “+” on
G to H induces a well defined binary operation on H. So now it suffices to
show that H, together with this operation, satisfy the defining properties
of an abelian group. Associativity and commutativity follow directly from
the corresponding properties for G. Since 0G acts as the identity on G, it
does so on H as well. Finally, property (ii) of Definition 8.4 guarantees
that every element a ∈ H has an inverse in H, namely, −a. 2

Clearly, for an abelian group G, the subsets G and {0G} are subgroups.
These are not very interesting subgroups. An easy way to sometimes find
other, more interesting, subgroups within an abelian group is by using the
following two theorems:

Theorem 8.6. Let G be an abelian group, and let m be an integer. Then
mG := {ma : a ∈ G} is a subgroup of G.

Proof. For ma,mb ∈ mG, we have ma + mb = m(a + b) ∈ mG, and
−(ma) = m(−a) ∈ mG. 2
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Theorem 8.7. Let G be an abelian group, and let m be an integer. Then
G{m} := {a ∈ G : ma = 0G} is a subgroup of G.

Proof. If ma = 0G and mb = 0G, then m(a+b) = ma+mb = 0G+0G = 0G

and m(−a) = −(ma) = −0G = 0G. 2

Multiplicative notation: if the abelian group G in the above two theo-
rems is written using multiplicative notation, then we write the subgroup
of the first theorem as Gm := {am : a ∈ G}. The subgroup in the second
theorem is denoted in the same way: G{m} := {a ∈ G : am = 1G}.

Example 8.20. For every integer m, the set mZ is the subgroup of the
additive group Z consisting of all integer multiples of m. Two such sub-
groups mZ and m′Z are equal if and only if m = ±m′. The subgroup Z{m}
is equal to Z if m = 0, and is equal to {0} otherwise. 2

Example 8.21. Let n be a positive integer, let m ∈ Z, and consider the
subgroup mZn of the additive group Zn. Now, [b mod n] ∈ mZn if and
only if there exists x ∈ Z such that mx ≡ b (mod n). By Theorem 2.7, such
an x exists if and only if d | b, where d := gcd(m,n). Thus, mZn consists
precisely of the n/d distinct residue classes

[i · d mod n] (i = 0, . . . , n/d− 1),

and in particular, mZn = dZn.
Now consider the subgroup Zn{m} of Zn. The residue class [x mod n] is

in Zn{m} if and only if mx ≡ 0 (mod n). By Theorem 2.7, this happens if
and only if x ≡ 0 (mod n/d), where d = gcd(m,n) as above. Thus, Zn{m}
consists precisely of the d residue classes

[i · n/d mod n] (i = 0, . . . , d− 1),

and in particular, Zn{m} = Zn{d} = (n/d)Zn. 2

Example 8.22. For n = 15, consider again the table in Example 2.3.
For m = 1, 2, 3, 4, 5, 6, the elements appearing in the mth row of that table
form the subgroup mZn of Zn, and also the subgroup Zn{n/d}, where
d := gcd(m,n). 2

Because the abelian groups Z and Zn are of such importance, it is a
good idea to completely characterize all subgroups of these abelian groups.
As the following two theorems show, the subgroups in the above examples
are the only subgroups of these groups.

Theorem 8.8. If G is a subgroup of Z, then there exists a unique non-
negative integer m such that G = mZ. Moreover, for two non-negative
integers m1 and m2, we have m1Z ⊆ m2Z if and only if m2 | m1.
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Proof. Actually, we have already proven this. One only needs to observe
that a subset G of Z is a subgroup if and only if it is an ideal of Z, as defined
in §1.2. The first statement of the theorem then follows from Theorem 1.5.
The second statement follows easily from the definitions, as was observed
in §1.2. 2

Theorem 8.9. If G is a subgroup of Zn, then there exists a unique pos-
itive integer d dividing n such that G = dZn. Also, for positive divisors
d1, d2 of n, we have d1Zn ⊆ d2Zn if and only if d2 | d1.

Proof. Let ρ : Z → Zn be the map that sends a ∈ Z to [a mod n] ∈ Zn.
Clearly, ρ is surjective. Consider the pre-image ρ−1(G) ⊆ Z of G.

We claim that ρ−1(G) is a subgroup of Z. To see this, observe that for
a, b ∈ Z, if [a mod n] and [b mod n] belong to G, then so do [a+b mod n] =
[a mod n] + [b mod n] and −[a mod n] = [−a mod n], and thus a + b and
−a belong to the pre-image.

Since ρ−1(G) is a subgroup of Z, by the previous theorem, we have
ρ−1(G) = dZ for some non-negative integer d. Moreover, it is clear that
n ∈ ρ−1(G), and hence d | n. That proves the existence part of the theorem.

Next, we claim that for any divisor d of n, we have ρ−1(dZn) = dZ. To
see this, note that ρ−1(dZn) consists of all integers b such that dx ≡ b mod n
has an integer solution x, and by Theorem 2.7, this congruence admits a
solution if and only if d | b. That proves the claim.

Now consider any two positive divisors d1, d2 of n. Since d1Zn ⊆ d2Zn

if and only if ρ−1(d1Zn) ⊆ ρ−1(d2Zn), the remaining statements of the
theorem follow from the corresponding statements of Theorem 8.8 and the
above claim. 2

Of course, not all abelian groups have such a simple subgroup structure.

Example 8.23. Consider the group G = Z2 × Z2. For any non-zero
α ∈ G, α + α = 0G. From this, it is easy to see that the set H = {0G, α}
is a subgroup of G. However, for any integer m, mG = G if m is odd, and
mG = {0G} if m is even. Thus, the subgroup H is not of the form mG for
any m. 2

Example 8.24. Consider again the group Z∗n, for n = 15, discussed in
Example 8.10. As discussed there, we have Z∗15 = {[±1], [±2], [±4], [±7]}.
Therefore, the elements of (Z∗15)2 are

[1]2 = [1], [2]2 = [4], [4]2 = [16] = [1], [7]2 = [49] = [4];

thus, (Z∗15)2 has order 2, consisting as it does of the two distinct elements
[1] and [4].

Going further, one sees that (Z∗15)4 = {[1]}. Thus, α4 = [1] for all
α ∈ Z∗15.
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By direct calculation, one can determine that (Z∗15)3 = Z∗15; that is,
cubing simply permutes Z∗15.

For any integer m, write m = 4q + r, where 0 ≤ r < 4. Then for any
α ∈ Z∗15, we have αm = α4q+r = α4qαr = αr. Thus, (Z∗15)m is either Z∗15,
(Z∗15)2, or {[1]}.

However, there are certainly other subgroups of Z∗15 — for example, the
subgroup {[±1]}. 2

Example 8.25. Consider again the group Z∗5 from Example 8.11. As
discussed there, Z∗5 = {[±1], [±2]}. Therefore, the elements of (Z∗5)2 are

[1]2 = [1], [2]2 = [4] = [−1];

thus, (Z∗5)2 = {[±1]} and has order 2.
There are in fact no other subgroups of Z∗5 besides Z∗5, {[±1]}, and {[1]}.

Indeed, if H is a subgroup containing [2], then we must have H = Z∗5:
[2] ∈ H implies [2]2 = [4] = [−1] ∈ H, which implies [−2] ∈ H as well. The
same holds if H is a subgroup containing [−2]. 2

Example 8.26. Consider again the group of arithmetic functions f , such
that f(1) 6= 0, with multiplication defined by the Dirichlet product, dis-
cussed in Example 8.13. By the results of Exercises 2.17 and 2.24, we see
that the subset of all multiplicative arithmetic functions is a subgroup of
this group. 2

The following two theorems may be used to simplify verifying that a
subset is a subgroup.

Theorem 8.10. If G is an abelian group, and H is a non-empty subset
of G such that a− b ∈ H for all a, b ∈ H, then H is a subgroup of G.

Proof. Since H is non-empty, let c be an arbitrary element of H. Then
0G = c − c ∈ H. It follows that for all a ∈ H, we have −a = 0G − a ∈ H,
and for all a, b ∈ H, we have a + b = a− (−b) ∈ H. 2

Theorem 8.11. If G is an abelian group, and H is a non-empty, finite
subset of G such that a + b ∈ H for all a, b ∈ H, then H is a subgroup of
G.

Proof. We only need to show that −a ∈ H for all a ∈ H. Let a ∈ H be
given. If a = 0G, then clearly −a = 0G ∈ H, so assume that a 6= 0G, and
consider the set S of all elements of G of the form ma, for m = 1, 2, . . . .
Since H is closed under addition, it follows that S ⊆ H. Moreover, since
H is finite, S must be finite, and hence there must exist integers m1,m2

such that m1 > m2 > 0 and m1a = m2a; that is, ra = 0G, where r :=
m1 −m2 > 0. We may further assume that r > 1, since otherwise a = 0G,
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and we are assuming that a 6= 0G. It follows that a + (r − 1)a = 0G, and
so −a = (r − 1)a ∈ S. 2

We close this section with two theorems that provide useful ways to
build new subgroups out of old subgroups.

Theorem 8.12. If H1 and H2 are subgroups of an abelian group G, then
so is

H1 + H2 := {h1 + h2 : h1 ∈ H1, h2 ∈ H2}.

Proof. Consider two elements in H1 + H2, which we can write as h1 + h2

and h′1 + h′2, where h1, h
′
1 ∈ H1 and h2, h

′
2 ∈ H2. Then by the closure

properties of subgroups, h1 + h′1 ∈ H1 and h2 + h′2 ∈ H2, and hence (h1 +
h2)+ (h′1 +h′2) = (h1 +h′1)+ (h2 +h′2) ∈ H1 +H2. Similarly, −(h1 +h2) =
(−h1) + (−h2) ∈ H1 + H2. 2

Multiplicative notation: if the abelian group G in the above theorem
is written multiplicatively, then the subgroup defined in the theorem is
written H1 ·H2 := {h1h2 : h1 ∈ H1, h2 ∈ H2}.

Theorem 8.13. If H1 and H2 are subgroups of an abelian group G, then
so is H1 ∩H2.

Proof. If h ∈ H1 ∩ H2 and h′ ∈ H1 ∩ H2, then since h, h′ ∈ H1, we
have h + h′ ∈ H1, and since h, h′ ∈ H2, we have h + h′ ∈ H2; therefore,
h + h′ ∈ H1 ∩ H2. Similarly, −h ∈ H2 and −h ∈ H2, and therefore,
−h ∈ H1 ∩H2. 2

Exercise 8.2. Show that if H ′ is a subgroup of an abelian group G, then
a set H ⊆ H ′ is a subgroup of G if and only if H is a subgroup of H ′. 2

Exercise 8.3. Let G be an abelian group with subgroups H1 and H2.
Show that any subgroup H of G that contains H1 ∪H2 contains H1 + H2,
and H1 ⊆ H2 if and only if H1 + H2 = H2. 2

Exercise 8.4. Let H1 be a subgroup of an abelian group G1 and H2 a
subgroup of an abelian group G2. Show that H1 × H2 is a subgroup of
G1 ×G2. 2

Exercise 8.5. Let G1 and G2 be abelian groups, and let H be a subgroup
of G1 ×G2. Define

H1 := {h1 ∈ G1 : (h1, h2) ∈ H for some h2 ∈ G2}.

Show that H1 is a subgroup of G1. 2

Exercise 8.6. Give an example of specific abelian groups G1 and G2,
along with a subgroup H of G1 × G2, such that H cannot be written as
H1 ×H2, where H1 is a subgroup of G1 and H2 is a subgroup of G2. 2
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8.3 Cosets and Quotient Groups

We now generalize the notion of a congruence relation.
Let G be an abelian group, and let H be a subgroup of G. For a, b ∈ G,

we write a ≡ b (mod H) if a − b ∈ H. In other words, a ≡ b (mod H) if
and only if a = b + h for some h ∈ H.

Analogously to Theorem 2.2, if we view the subgroup H as fixed, then
the following theorem says that the binary relation “· ≡ · (mod H)” is an
equivalence relation on the set G:

Theorem 8.14. Let G be an abelian group and H a subgroup of G. For
all a, b, c ∈ G, we have:

(i) a ≡ a (mod H);

(ii) a ≡ b (mod H) implies b ≡ a (mod H);

(iii) a ≡ b (mod H) and b ≡ c (mod H) implies a ≡ c (mod H).

Proof. For (i), observe that H contains 0G = a− a. For (ii), observe that
if H contains a− b, then it also contains −(a− b) = b−a. For (iii), observe
that if H contains a−b and b−c, then it also contains (a−b)+(b−c) = a−c.
2

Since the binary relation “· ≡ · (mod H)” is an equivalence relation,
it partitions G into equivalence classes. It is easy to see (verify) that for
any a ∈ G, the equivalence class containing a is precisely the set a + H :=
{a + h : h ∈ H}, and this set is called the coset of H in G containing a,
and an element of such a coset is called a representative of the coset.

Multiplicative notation: if G is written multiplicatively, then a ≡
b (mod H) means a/b ∈ H, and the coset of H in G containing a is
aH := {ah : h ∈ H}.

Example 8.27. Let G := Z and H := nZ for some positive integer n.
Then a ≡ b (mod H) if and only if a ≡ b (mod n). The coset a + H is
exactly the same thing as the residue class [a mod n]. 2

Example 8.28. Let G := Z4 and let H be the subgroup 2G = {[0], [2]}
of G. The coset of H containing [1] is {[1], [3]}. These are all the cosets of
H in G. 2

Theorem 8.15. Any two cosets of a subgroup H in an abelian group G
have equal cardinality; that is, there is a bijective map from one coset to
the other.
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Proof. It suffices to exhibit a bijection between H and a + H for any
a ∈ G. The map fa : H → a + H that sends h ∈ H to a + h is easily seen
to be just such a bijection. 2

An incredibly useful consequence of the above theorem is:

Theorem 8.16 (Lagrange’s Theorem). If G is a finite abelian group,
and H is a subgroup of G, then the order of H divides the order of G.

Proof. This is an immediate consequence of the previous theorem, and
the fact that the cosets of H in G partition G. 2

Analogous to Theorem 2.3, we have:

Theorem 8.17. Let G be an abelian group and H a subgroup. For
a, a′, b, b′ ∈ G, if a ≡ a′ (mod H) and b ≡ b′ (mod H), then a + b ≡
a′ + b′ (mod H).

Proof. Now, a ≡ a′ (mod H) and b ≡ b′ (mod H) means that a′ = a + h1

and b′ = b+h2 for h1, h2 ∈ H. Therefore, a′+b′ = (a+h1)+(b+h2) = (a+
b)+(h1+h2), and since h1+h2 ∈ H, this means that a+b ≡ a′+b′ (mod H).
2

Let G be an abelian group and H a subgroup. Theorem 8.17 allows us
to define a binary operation on the collection of cosets of H in G in the
following natural way: for a, b ∈ G, define

(a + H) + (b + H) := (a + b) + H.

The fact that this definition is unambiguous follows immediately from The-
orem 8.17. Also, one can easily verify that this operation defines an abelian
group, where H acts as the identity element, and the inverse of a coset
a + H is (−a) + H. The resulting group is called the quotient group
of G modulo H, and is denoted G/H. The order of the group G/H is
sometimes denoted [G : H] and is called the index of H in G.

Multiplicative notation: if G is written multiplicatively, then the defini-
tion of the group operation of G/H is expressed

(aH) · (bH) := (ab)H.

Theorem 8.18. Let G be a finite abelian group and H a subgroup. Then
[G : H] = |G|/|H|. Moreover, if H ′ is another subgroup of G with H ⊆ H ′,
then

[G : H] = [G : H ′][H ′ : G].
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Proof. The fact that [G : H] = |G|/|H| follows directly from Theorem 8.15.
The fact that [G : H] = [G : H ′][H ′ : G] follows from a simple calculation:

[G : H ′] =
|G|
|H ′|

=
|G|/|H|
|H ′|/|H|

=
[G : H]
[H ′ : H]

.

2

Example 8.29. For the additive group of integers Z and the subgroup
nZ for n > 0, the quotient group Z/nZ is precisely the same as the additive
group Zn that we have already defined. For n = 0, Z/nZ is essentially just
a “renaming” of Z. 2

Example 8.30. Let G := Z6 and H = 3G be the subgroup of G con-
sisting of the two elements {[0], [3]}. The cosets of H in G are α := H =
{[0], [3]}, β := [1] + H = {[1], [4]}, and γ := [2] + H = {[2], [5]}. If we
write out an addition table for G, grouping together elements in cosets of
H in G, then we also get an addition table for the quotient group G/H:

+ [0] [3] [1] [4] [2] [5]
[0] [0] [3] [1] [4] [2] [5]
[3] [3] [0] [4] [1] [5] [2]
[1] [1] [4] [2] [5] [3] [0]
[4] [4] [1] [5] [2] [0] [3]
[2] [2] [5] [3] [0] [4] [1]
[5] [5] [2] [0] [3] [1] [4]

This table illustrates quite graphically the point of Theorem 8.17: for
any two cosets, if we take any element from the first and add it to any
element of the second, we always end up in the same coset.

We can also write down just the addition table for G/H:

+ α β γ
α α β γ
β β γ α
γ γ α β

Note that by replacing α with [0 mod 3], β with [1 mod 3], and γ with
[2 mod 3], the addition table for G/H becomes the addition table for Z3.
In this sense, we can view G/H as essentially just a “renaming” of Z3. 2

Example 8.31. Let us return to Example 8.24. The group Z∗15, as we
saw, is of order 8. The subgroup (Z∗15)2 of Z∗15 has order 2. Therefore,
the quotient group Z∗15/(Z∗15)2 has order 4. Indeed, the cosets are α00 =
{[1], [4]}, α01 = {[−1], [−4]}, α10 = {[2], [−7]}, and α11 = {[7], [−2]}. In
the quotient group, α00 is the identity; moreover, we have

α2
01 = α2

10 = α2
11 = α00
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and
α01α10 = α11, α10α11 = α01, α01α11 = α10.

This completely describes the behavior of the group operation of the quo-
tient group. Note that this group is essentially just a “renaming” of the
group Z2 × Z2. 2

Example 8.32. As we saw in Example 8.25, (Z∗5)2 = {[±1]}. Therefore,
the quotient group Z∗5/(Z∗5)2 has order 2. The cosets of (Z∗5)2 in Z∗5 are
α0 = {[±1]} and α1 = {[±2]}. In the group Z∗5/(Z∗5)2, α0 is the identity,
and α1 is its own inverse, and we see that this group is essentially just a
“renaming” of Z2. 2

Exercise 8.7. Let H be a subgroup of an abelian group G.

(a) Show that if H ′ is a subgroup of G containing H, then H ′/H is a
subgroup of G/H.

(b) Show that if K is a subgroup of G/H, then the set H ′ := {a ∈ G :
a + H ∈ K} is a subgroup of G containing H.

2

8.4 Group Homomorphisms and Isomor-
phisms

Definition 8.19. A group homomorphism is a function ρ from an
abelian group G to an abelian group G′ such that ρ(a + b) = ρ(a) + ρ(b) for
all a, b ∈ G.

Note that in the equality ρ(a + b) = ρ(a) + ρ(b) in the above definition,
the addition on the left-hand side is taking place in the group G while the
addition on the right-hand side is taking place in the group G′.

Two sets play a critical role in understanding a group homomorphism
ρ : G → G′. The first set is the image of ρ, that is, the set ρ(G) = {ρ(a) :
a ∈ G}. The second set is the kernel of ρ, defined as the set of all elements
of G that are mapped to 0G′ by ρ, that is, the set ρ−1({0G′}) = {a ∈ G :
ρ(a) = 0G′}. We introduce the following notation for these sets: img(ρ)
denotes the image of ρ, and ker(ρ) denotes the kernel of ρ.

Example 8.33. For any abelian group G and any integer m, the map
that sends a ∈ G to ma ∈ G is clearly a group homomorphism from G
into G, since for a, b ∈ G, we have m(a + b) = ma + mb. The image of
this homomorphism is mG and the kernel is G{m}. We call this map the
m-multiplication map on G. If G is written multiplicatively, we call this
the m-power map on G, and its image is Gm. 2
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Example 8.34. Consider the m-multiplication map on Zn. As we saw in
Example 8.21, if d := gcd(n, m), the image mZn of this map is a subgroup
of Zn of order n/d, while its kernel Zn{m} is a subgroup of order d. 2

Example 8.35. Let G be an abelian group and let a be a fixed element
of G. Let ρ : Z→ G be the map that sends z ∈ Z to za ∈ G. It is easy to
see that this is group homomorphism, since

ρ(z + z′) = (z + z′)a = za + z′a = ρ(z) + ρ(z′).

2

Example 8.36. As a special case of the previous example, let n be a
positive integer and let α be an element of Z∗n. Let ρ : Z → Z∗n be the
group homomorphism that sends z ∈ Z to αz ∈ Z∗n. If the multiplicative
order of α is equal to k, then as discussed in §2.5, the image of ρ consists
of the k distinct group elements α0, α1, . . . , αk−1. The kernel of ρ consists
of those integers a such that αa = [1 mod n]. Again by the discussion in
§2.5, the kernel of ρ is equal to kZ. 2

Example 8.37. We may generalize Example 8.35 as follows. Let G be an
abelian group, and let a1, . . . , ak be fixed elements of G. Let ρ : Z×k → G
be the map that sends (z1, . . . , zk) ∈ Z×k to z1a1 + · · · + zkak ∈ G. The
reader may easily verify that ρ is a group homomorphism. 2

Example 8.38. As a special case of the previous example, let p1, . . . , pk

be distinct primes, and let ρ : Z×k → Q∗ be the group homomorphism that
sends (z1, . . . , zk) ∈ Z×k to pz1

1 · · · p
zk

k ∈ Q∗. The image of ρ is the set of all
non-zero fractions whose numerator and denominator are divisible only by
the primes p1, . . . , pk. The kernel of ρ contains only the all-zero tuple 0×k.
2

The following theorem summarizes some of the most important proper-
ties of group homomorphisms.

Theorem 8.20. Let ρ be a group homomorphism from G to G′.

(i) ρ(0G) = 0G′ .

(ii) ρ(−a) = −ρ(a) for all a ∈ G.

(iii) ρ(na) = nρ(a) for all n ∈ Z and a ∈ G.

(iv) For any subgroup H of G, ρ(H) is a subgroup of G′.

(v) ker(ρ) is a subgroup of G.

(vi) For all a, b ∈ G, ρ(a) = ρ(b) if and only if a ≡ b (mod ker(ρ)).
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(vii) ρ is injective if and only if ker(ρ) = {0G}.

(viii) For any subgroup H ′ of G′, ρ−1(H ′) is a subgroup of G containing
ker(ρ).

Proof.

(i) We have

0G′ + ρ(0G) = ρ(0G) = ρ(0G + 0G) = ρ(0G) + ρ(0G).

Now cancel ρ(0G) from both sides (using part (i) of Theorem 8.3).

(ii) We have

0G′ = ρ(0G) = ρ(a + (−a)) = ρ(a) + ρ(−a),

and hence ρ(−a) is the inverse of ρ(a).

(iii) For n = 0, this follows from part (i). For n > 0, this follows from
the definitions by induction on n. For n < 0, this follows from the
positive case and part (v) of Theorem 8.3.

(iv) For any a, b ∈ H, we have a + b ∈ H and −a ∈ H; hence, ρ(H)
contains ρ(a + b) = ρ(a) + ρ(b) and ρ(−a) = −ρ(a).

(v) If ρ(a) = 0G′ and ρ(b) = 0G′ , then ρ(a+b) = ρ(a)+ρ(b) = 0G′+0G′ =
0G′ , and ρ(−a) = −ρ(a) = −0G′ = 0G′ .

(vi) ρ(a) = ρ(b) iff ρ(a) − ρ(b) = 0G′ iff ρ(a − b) = 0G′ iff a − b ∈ ker(ρ)
iff a ≡ b (mod ker(ρ)).

(vii) If ρ is injective, then in particular, ρ−1({0G′}) cannot contain any
other element besides 0G. If ρ is not injective, then there exist two
distinct elements a, b ∈ G with ρ(a) = ρ(b), and by part (vi), ker(ρ)
contains the element a− b, which is non-zero.

(viii) This is very similar to part (v). If ρ(a) ∈ H ′ and ρ(b) ∈ H ′, then
ρ(a + b) = ρ(a) + ρ(b) ∈ H ′, and ρ(−a) = −ρ(a) ∈ H ′. Moreover,
since H ′ contains 0G′ , we must have ρ−1(H ′) ⊇ ρ−1({0G′}) = ker(ρ).

2

Part (vii) of the above theorem is particular useful: to check that a group
homomorphism is injective, it suffices to determine if ker(ρ) = {0G}. Thus,
the injectivity and surjectivity of a given group homomorphism ρ : G→ G′

may be characterized in terms of its kernel and image:

• ρ is injective if and only if ker(ρ) = {0G};
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• ρ is surjective if and only if img(ρ) = G′.

The next three theorems establish some further convenient facts about
group homomorphisms.

Theorem 8.21. If ρ : G → G′ and ρ′ : G′ → G′′ are group homomor-
phisms, then so is their composition ρ′ ◦ ρ : G→ G′′.

Proof. For a, b ∈ G, we have ρ′(ρ(a + b)) = ρ′(ρ(a) + ρ(b)) = ρ′(ρ(a)) +
ρ′(ρ(b)). 2

Theorem 8.22. Let ρi : G → Gi, for i = 1, . . . , n, be group homo-
morphisms. Then the map ρ : G → G1 × · · · × Gn that sends a ∈ G
to (ρ1(a), . . . , ρn(a)) is a group homomorphism with kernel ker(ρ1) ∩ · · · ∩
ker(ρn).

Proof. Exercise. 2

Theorem 8.23. Let ρi : Gi → G, for i = 1, . . . , n, be group homomor-
phisms. Then the map ρ : G1 × · · · × Gn → G that sends (a1, . . . , an) to
ρ1(a1) + · · ·+ ρn(an) is a group homomorphism.

Proof. Exercise. 2

Consider a group homomorphism ρ : G→ G′. If ρ is bijective, then ρ is
called a group isomorphism of G with G′. If such a group isomorphism
ρ exists, we say that G is isomorphic to G′, and write G ∼= G′. Moreover,
if G = G′, then ρ is called a group automorphism on G.

Theorem 8.24. If ρ is a group isomorphism of G with G′, then the in-
verse function ρ−1 is a group isomorphism of G′ with G.

Proof. For a′, b′ ∈ G′, we have

ρ(ρ−1(a′) + ρ−1(b′)) = ρ(ρ−1(a′)) + ρ(ρ−1(b′)) = a′ + b′,

and hence ρ−1(a′) + ρ−1(b′) = ρ−1(a′ + b′). 2

Because of this theorem, if G is isomorphic to G′, we may simply say
that “G and G′ are isomorphic.”

We stress that a group isomorphism of G with G′ is essentially just a
“renaming” of the group elements — all structural properties of the group
are preserved, even though the two groups might look quite different su-
perficially.
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Example 8.39. As was shown in Example 8.30, the quotient group G/H
discussed in that example is isomorphic to Z3. As was shown in Exam-
ple 8.31, the quotient group Z∗15/(Z∗15)2 is isomorphic to Z2 × Z2. As was
shown in Example 8.32, the quotient group Z∗5/(Z∗5)2 is isomorphic to Z2.
2

Example 8.40. For n > 0, we have defined Zn so that it is literally the
same as Z/nZ. A more “low tech” approach is to define the group Cn which
consists of the set of integers {0, 1, . . . , n−1}, with the group operation that
sends i, j to (i + j) rem n. It is easy to verify that Zn is isomorphic to Cn.
For n = 0, as we said in Example 8.29, the group Z/nZ is isomorphic to Z.
2

Example 8.41. If gcd(n, m) = 1, then the m-multiplication map on Zn

is a group automorphism. 2

The following four theorems provide important constructions of group
homomorphisms.

Theorem 8.25. If H is a subgroup of an abelian group G, then the map
ρ : G → G/H given by ρ(a) = a + H is a surjective group homomorphism
whose kernel is H.

Proof. This really just follows from the definition of the quotient group.
To verify that ρ is a group homomorphism, note that

ρ(a + b) = (a + b) + H = (a + H) + (b + H) = ρ(a) + ρ(b).

Surjectivity follows from the fact that every coset is of the form a + H for
some a ∈ G. The fact that ker(ρ) = H follows from the fact that a + H is
the coset of H in G containing a, and so this is equal to H if and only if
a ∈ H. 2

The homomorphism of the above theorem is called the natural map
from G to G/H.

Theorem 8.26. Let ρ be a group homomorphism from G into G′. Then
the map ρ̄ : G/ ker(ρ) → img(ρ) that sends the coset a + ker(ρ) for a ∈ G
to ρ(a) is unambiguously defined and is a group isomorphism of G/ ker(ρ)
with img(ρ).

Proof. Let K := ker(ρ). To see that the definition ρ̄ is unambiguous, note
that if a ≡ a′ mod K, then by part (vi) of Theorem 8.20, ρ(a) = ρ(a′). To
see that ρ̄ is a group homomorphism, note that

ρ̄((a + K) + (b + K)) = ρ̄((a + b) + K) = ρ(a + b) = ρ(a) + ρ(b)
= ρ̄(a + K) + ρ̄(b + K).
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It is clear that ρ̄ maps onto img(ρ), since any element of img(ρ) is of the
form ρ(a) for some a ∈ G, and the map ρ̄ sends a + K to ρ(a). Finally,
to see that ρ̄ is injective, suppose that ρ̄(a + K) = 0G′ ; then we have
ρ(a) = 0G′ , and hence a ∈ K; from this, it follows that a + K is equal to
K, which is the zero element of G/K. Injectivity then follows from part
(vii) of Theorem 8.20, applied to ρ̄. 2

The following theorem is an easy generalization of the previous one.

Theorem 8.27. Let ρ be a group homomorphism from G into G′. Then
for any subgroup H contained in ker(ρ), the map ρ̄ : G/H → img(ρ) that
sends the coset a + H for a ∈ G to ρ(a) is unambiguously defined and is a
group homomorphism from G/H onto img(ρ) with kernel ker(ρ)/H.

Proof. Exercise — just mimic the proof of the previous theorem. 2

Theorem 8.28. Let G be an abelian group with subgroups H1,H2. Then
the map ρ : H1 × H2 → H1 + H2 that sends (h1, h2) to h1 + h2 is a
surjective group homomorphism. Moreover, if H1 ∩H2 = {0G}, then ρ is a
group isomorphism of H1 ×H2 with H1 + H2.

Proof. The fact that ρ is a group homomorphism is just a special case
of Theorem 8.23, applied to the inclusion maps ρ1 : H1 → H1 + H2 and
ρ2 : H2 → H1 + H2. One can also simply verify this by direct calculation:
for h1, h

′
1 ∈ H1 and h2, h

′
2 ∈ H2, we have

ρ(h1 + h′1, h2 + h′2) = (h1 + h′1) + (h2 + h′2)
= (h1 + h2) + (h′1 + h′2)
= ρ(h1, h2) + ρ(h′1, ρ

′
2).

Moreover, from the definition of H1 +H2, we see that ρ is in fact surjective.
Now assume that H1 ∩H2 = {0G}. To see that ρ is injective, it suffices

to show that ker(ρ) is trivial; that is, it suffices to show that for all h1 ∈ H1

and h2 ∈ H2, h1 +h2 = 0G implies h1 = 0G and h2 = 0G. But h1 +h2 = 0G

implies h1 = −h2 ∈ H2, and hence h1 ∈ H1 ∩H2 = {0G}, and so h1 = 0G.
Similarly, one shows that h2 = 0G, and that finishes the proof. 2

Example 8.42. For n ≥ 1, the natural map ρ from Z to Zn sends a ∈ Z
to the residue class [a mod n]. This map is a surjective group homomor-
phism with kernel nZ. 2

Example 8.43. We may restate the Chinese remainder theorem (The-
orem 2.8) in more algebraic terms. Let n1, . . . , nk be pairwise relatively
prime, positive integers. Consider the map from the group Z to the group
Zn1 ×· · ·×Znk

that sends x ∈ Z to ([x mod n1], . . . , [x mod nk]). It is easy
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to see that this map is a group homomorphism (this follows from Exam-
ple 8.42 and Theorem 8.22). In our new language, the Chinese remainder
theorem says that this group homomorphism is surjective and that the ker-
nel is nZ, where n =

∏k
i=1 ni. Therefore, by Theorem 8.26, the map that

sends [x mod n] ∈ Zn to ([x mod n1], . . . , [x mod nk]) is a group isomor-
phism of the group Zn with the group Zn1 × · · · × Znk

. 2

Example 8.44. Let n1, n2 be positive integers with n1 > 1 and n1 | n2.
Then the map ρ̄ : Zn2 → Zn1 that sends [a mod n2] to [a mod n1] is a
surjective group homomorphism, and [a mod n2] ∈ ker(ρ̄) if and only if
n1 | a; that is, ker(ρ̄) = n1Zn2 . The map ρ̄ can also be viewed as the map
obtained by applying Theorem 8.27 with the natural map ρ from Z to Zn1

and the subgroup n2Z of Z, which is contained in ker(ρ) = n1Z. 2

Example 8.45. Let us reconsider Example 8.21. Let n be a positive
integer, let m ∈ Z, and consider the subgroup mZn of the additive group
Zn. Let ρ1 : Z→ Zn be the natural map, and let ρ2 : Zn → Zn be the m-
multiplication map. The composed map ρ = ρ2 ◦ ρ1 from Z to Zn is also a
group homomorphism. The kernel of ρ consists of those integers a such that
am ≡ 0 (mod n), and so Theorem 2.7 implies that ker(ρ) = (n/d)Z, where
d := gcd(m,n). The image of ρ is mZn. Theorem 8.26 therefore implies
that the map ρ̄ : Zn/d → mZn that sends [a mod n/d] to [ma mod n] is a
group isomorphism. 2

Exercise 8.8. Verify that the “is isomorphic to” relation on abelian
groups is an equivalence relation; that is, for all abelian groups G1, G2, G3,
we have

(a) G1
∼= G1;

(b) G1
∼= G2 implies G2

∼= G1;

(c) G1
∼= G2 and G2

∼= G3 implies G1
∼= G3.

2

Exercise 8.9. Let G1, G2 be abelian groups, and let ρ : G1 × G2 → G1

be the map that sends (a1, a2) ∈ G1 × G2 to a1 ∈ G1. Show that ρ is a
surjective group homomorphism whose kernel is {0G1} ×G2. 2

Exercise 8.10. Suppose that G, G1, and G2 are abelian groups, and
that ρ : G1 ×G2 → G is a group isomorphism. Let H1 := ρ(G1 × {0G2})
and H2 := ρ({0G1} ×G2). Show that

(a) H1 and H2 are subgroups of G,

(b) H1 + H2 = G, and
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(c) H1 ∩H2 = {0G}.

2

Exercise 8.11. Let ρ be a group homomorphism from G into G′. Show
that for any subgroup H of G, we have ρ−1(ρ(H)) = H + ker(ρ). 2

Exercise 8.12. Let ρ be a group homomorphism from G into G′. Show
that the subgroups of G containing ker(ρ) are in one-to-one correspondence
with the subgroups of img(ρ), where the subgroup H of G containing ker(ρ)
corresponds to the subgroup ρ(H) of img(ρ). 2

Exercise 8.13. Let G be an abelian group with subgroups H ⊆ H ′.

(a) Show that we have a group isomorphism

G/H ′ ∼=
G/H

H ′/H
.

(b) Show that if [G : H] is finite (even though G itself may have infinite
order), then [G : H] = [G : H ′] · [H ′ : H].

2

Exercise 8.14. Show that if G = G1×G2 for abelian groups G1 and G2,
and H1 is a subgroup of G1 and H2 is a subgroup of G2, then G/(H1×H2) ∼=
G1/H1 ×G2/H2. 2

Exercise 8.15. Let ρ1 and ρ2 be group homomorphisms from G into G′.
Show that the map ρ : G → G′ that sends a ∈ G to ρ1(a) + ρ2(a) ∈ G′ is
also a group homomorphism. 2

Exercise 8.16. Let G and G′ be abelian groups. Consider the set H
of all group homomorphisms ρ : G → G′. This set is non-empty, since
the map that sends everything in G to 0G′ is trivially an element of H.
We may define an addition operation on H as follows: for ρ1, ρ2 ∈ H, let
ρ1 + ρ2 be the map ρ : G→ G′ that sends a ∈ G to ρ1(a) + ρ2(a). By the
previous exercise, ρ is also in H, and so this addition operation is a well-
defined binary operation on H. Show that H, together with this addition
operation, forms an abelian group. 2

Exercise 8.17. This exercise develops an alternative, “quick and dirty”
proof of the Chinese remainder theorem, based on group theory and a
counting argument. Let n1, . . . , nk be pairwise relatively prime, positive
integers, and let n := n1 · · ·nk. Consider the map ρ : Z→ Zn1 × · · · ×Znk

that sends x ∈ Z to ([x mod n1], . . . , [x mod nk]).
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(a) Using the results of Example 8.42 and Theorem 8.22, show (directly)
that ρ is a group homomorphism with kernel nZ.

(b) Using Theorem 8.26, conclude that the map ρ̄ given by that theorem,
which sends [x mod n] to ([x mod n1], . . . , [x mod nk]), is an injective
group homomorphism from Zn into Zn1 × · · · × Znk

.

(c) Since |Zn| = n = |Zn1 × · · · × Znk
|, conclude that the map ρ̄ is

surjective, and thus, it is an isomorphism between Zn and Zn1×· · ·×
Znk

.

Although simple, this proof does not give us an explicit formula for com-
puting ρ̄−1. 2

Exercise 8.18. Let p be an odd prime and consider the squaring map
on Z∗p.

(a) Using Exercise 2.5, show that the kernel of the squaring map on Z∗p
consists of the two elements [±1 mod p].

(b) Using the results of this section, conclude that there are (p − 1)/2
squares in Z∗p, each of which has precisely two square roots in Z∗p.

2

Exercise 8.19. Consider the group homomorphism ρ : Z× Z× Z→ Q∗

that sends (a, b, c) to 2a3b12c. Describe the image and kernel of ρ. 2

Exercise 8.20. This exercise develops some simple — but extremely
useful — connections between group theory and probability theory. Let
ρ : G → G′ be a group homomorphism, where G and G′ are finite abelian
groups.

(a) Show that if g is a random variable with the uniform distribution on
G, then ρ(g) is a random variable with the uniform distribution on
img(ρ).

(b) Show that if g is a random variable with the uniform distribution
on G, and g′ is a fixed element in img(ρ), then the conditional dis-
tribution of g, given that ρ(g) = g′, is the uniform distribution on
ρ−1({g′}).

(c) Show that if g′1 is a fixed element of G′, g1 is uniformly distributed
over ρ−1({g′1}), g′2 is a fixed element of G′, and g2 is a fixed element of
ρ−1({g′2}), then g1 + g2 is uniformly distributed over ρ−1({g′1 + g′2}).

(d) Show that if g′1 is a fixed element of G′, g1 is uniformly distributed over
ρ−1({g′1}), g′2 is a fixed element of G′, g2 is uniformly distributed over
ρ−1({g′2}), and g1 and g2 are independent, then g1 + g2 is uniformly
distributed over ρ−1({g′1 + g′2}).

2
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8.5 Cyclic Groups

Let G be an abelian group. For a ∈ G, define 〈a〉 := {za : z ∈ Z}. It is easy
to see that 〈a〉 is a subgroup of G — indeed, it is the image of the group
homomorphism discussed in Example 8.35. Moreover, 〈a〉 is the smallest
subgroup of G containing a; that is, 〈a〉 contains a, and any subgroup H
of G that contains a must also contain 〈a〉. The subgroup 〈a〉 is called the
subgroup (of G) generated by a. Also, one defines the order of a to
be the order of the subgroup 〈a〉.

More generally, for a1, . . . , ak ∈ G, we define 〈a1, . . . , ak〉 := {z1a1 +
· · ·+zkak : z1, . . . , zk ∈ Z}. One also verifies that 〈a1, . . . , ak〉 is a subgroup
of G, and indeed, is the smallest subgroup of G that contains a1, . . . , ak.
The subgroup 〈a1, . . . , ak〉 is called the subgroup (of G) generated by
a1, . . . , ak.

An abelian group G is said to be cyclic if G = 〈a〉 for some a ∈ G, in
which case, a is called a generator for G. An abelian group G is said to
be finitely generated if G = 〈a1, . . . , ak〉 for some a1, . . . , ak ∈ G.

Multiplicative notation: if G is written multiplicatively, then 〈a〉 :=
{az : z ∈ Z}, and 〈a1, . . . , ak〉 := {az1

1 · · · a
zk

k : z1, . . . , zk ∈ Z}; also, for
emphasis and clarity, we use the term multiplicative order of a.

Classification of cyclic groups. We can very easily classify all cyclic
groups. Suppose that G is a cyclic group with generator a. Consider the
map ρ : Z→ G that sends z ∈ Z to za ∈ G. As discussed in Example 8.35,
this map is a group homomorphism, and since a is a generator for G, it
must be surjective.

Case 1: ker(ρ) = {0}. In this case, ρ is an isomorphism of Z with G.

Case 2: ker(ρ) 6= {0}. In this case, since ker(ρ) is a subgroup of Z different
from {0}, by Theorem 8.8, it must be of the form nZ for some n > 0.
Hence, by Theorem 8.26, the map ρ̄ : Zn → G that sends [z mod n]
to za is an isomorphism of Zn with G.

So we see that a cyclic group is isomorphic either to the additive group
Z or the additive group Zn, for some positive integer n. We have thus
classified all cyclic groups “up to isomorphism.” From this classification,
we obtain:

Theorem 8.29. Let G be an abelian group and let a ∈ G.

(i) If there exists a positive integer m such that ma = 0G, then the least
such positive integer n is the order of a; in this case, we have

– for any integer z, za = 0G if and only if n | z, and more gener-
ally, for integers z1, z2, z1a = z2a if and only if z1 ≡ z2 (mod n);
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– the subgroup 〈a〉 consists of the n distinct elements

0 · a, 1 · a, . . . , (n− 1) · a.

(ii) If G has finite order, then |G| · a = 0G and the order of a divides |G|.

Proof. Part (i) follows immediately from the above classification, along
with part (vi) of Theorem 8.20. Part (ii) follows from part (i), along with
Lagrange’s theorem (Theorem 8.16), since 〈a〉 is a subgroup of G. 2

Example 8.46. The additive group Z is a cyclic group generated by
1. The only other generator is −1. More generally, the subgroup of Z
generated by m ∈ Z is mZ. 2

Example 8.47. The additive group Zn is a cyclic group generated by
[1 mod n]. More generally, for m ∈ Z, the subgroup of Zn generated by
[m mod n] is equal to mZn, which by Example 8.21 has order n/ gcd(m,n).
In particular, [m mod n] generates Zn if and only if m is relatively prime
to n, and hence, the number of generators of Zn is φ(n). 2

Example 8.48. Consider the additive group G := Zn1 × Zn2 , and let
α := ([1 mod n1], [1 mod n2]) ∈ Zn1 × Zn2 . For m ∈ Z, we have mα = 0G

if and only if n1 | m and n2 | m. This implies that α generates a subgroup
of G of order lcm(n1, n2).

Suppose that gcd(n1, n2) = 1. From the above discussion, it follows that
G is cyclic of order n1n2. One could also see this directly using the Chinese
remainder theorem: as we saw in Example 8.43, the Chinese remainder
theorem gives us an isomorphism of G with the cyclic group Zn1n2 .

Conversely, if d := gcd(n1, n2) > 1, then all elements of Zn1 ×Zn2 have
order dividing n1n2/d, and so Zn1 × Zn2 cannot be cyclic. 2

Example 8.49. For a, n ∈ Z with n > 0 and gcd(a, n) = 1, the definition
in this section of the multiplicative order of α := [a mod n] ∈ Z∗n is consis-
tent with that given in §2.5, and is also the same as the multiplicative order
of a modulo n. Indeed, Euler’s theorem (Theorem 2.15) is just a special
case of part (ii) of Theorem 8.29. Also, α is a generator for Z∗n if and only
if a is a primitive root modulo n. 2

Example 8.50. As we saw in Example 8.24, all elements of Z∗15 have
multiplicative order dividing 4, and since Z∗15 has order 8, we conclude that
Z∗15 is not cyclic. 2

Example 8.51. The group Z∗5 is cyclic, with [2] being a generator:

[2]2 = [4] = [−1], [2]3 = [−2], [2]4 = [1].

2
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Example 8.52. Based on the calculations in Example 2.6, we may con-
clude that Z∗7 is cyclic, with both [3] and [5] being generators. 2

The following two theorems completely characterize the subgroup struc-
ture of cyclic groups. Actually, we have already proven the results in these
two theorems, but nevertheless, these results deserve special emphasis.

Theorem 8.30. Let G be a cyclic group of infinite order.

(i) G is isomorphic to Z.

(ii) The subgroups of G are in one-to-one correspondence with the non-
negative integers, where each such integer m corresponds to the cyclic
group mG.

(iii) For any two non-negative integers m,m′, mG ⊆ m′G if and only if
m′ | m.

Proof. That G ∼= Z was established in our classification of cyclic groups,
it suffices to prove the other statements of the theorem for G = Z. It is
clear that for any integer m, the subgroup mZ is cyclic, as m is a generator.
This fact, together with Theorem 8.8, establish all the other statements. 2

Theorem 8.31. Let G be a cyclic group of finite order n.

(i) G is isomorphic to Zn.

(ii) The subgroups of G are in one-to-one correspondence with the positive
divisors of n, where each such divisor d corresponds to the subgroup
dG; moreover, dG is a cyclic group of order n/d.

(iii) For each positive divisor d of n, we have dG = G{n/d}; that is, the
kernel of the (n/d)-multiplication map is equal to the image of the
d-multiplication map; in particular, G{n/d} has order n/d.

(iv) For any two positive divisors d, d′ of n, we have dG ⊆ d′G if and only
if d′ | d.

(v) For any positive divisor d of n, the number of elements of order d in
G is φ(d).

(vi) For any integer m, we have mG = dG and G{m} = G{d}, where
d := gcd(m,n).

Proof. That G ∼= Zn was established in our classification of cyclic groups,
and so it suffices to prove the other statements of the theorem for G = Zn.

The one-to-one correspondence in part (ii) was established in Theo-
rem 8.9. The fact that dZn is cyclic of order n/d can be seen in a number
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of ways; indeed, in Example 8.45 we constructed an isomorphism of Zn/d

with dZn.
Part (iii) was established in Example 8.21.
Part (iv) was established in Theorem 8.9.
For part (v), the elements of order d in Zn are all contained in Zn{d},

and so the number of such elements is equal to the number of generators of
Zn{d}. The group Zn{d} is cyclic of order d, and so is isomorphic to Zd,
and as we saw in Example 8.47, this group has φ(d) generators.

Part (vi) was established in Example 8.21. 2

Since cyclic groups are in some sense the simplest kind of abelian group,
it is nice to have some sufficient conditions under which a group must be
cyclic. The following theorems provide such conditions.

Theorem 8.32. If G is an abelian group of prime order, then G is cyclic.

Proof. Let |G| = p. Let a ∈ G with a 6= 0G, and let k be the order of a.
As the order of an element divides the order of the group, we have k | p,
and so k = 1 or k = p. Since a 6= 0G, we must have k 6= 1, and so k = p,
which implies that a generates G. 2

Theorem 8.33. If G1 and G2 are finite cyclic groups of relatively prime
order, then G1 ×G2 is also cyclic.

Proof. This follows from Example 8.48, together with our classification of
cyclic groups. 2

Theorem 8.34. Any subgroup of a cyclic group is cyclic.

Proof. This is just a restatement of part (ii) of Theorem 8.30 and part (ii)
of Theorem 8.31 2

Theorem 8.35. If ρ : G → G′ is a group homomorphism, and G is
cyclic, then img(G) is cyclic.

Proof. If G is generated by a, then it is easy to see that the image of ρ is
generated by ρ(a). 2

The next three theorems are often useful in calculating the order of a
group element.

Theorem 8.36. Let G be an abelian group, let a ∈ G be of finite order
n, and let m be an arbitrary integer. Then the order of ma is n/ gcd(m,n).
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Proof. By our classification of cyclic groups, we know that the subgroup
〈a〉 is isomorphic to Zn, where under this isomorphism, a corresponds to
[1 mod n] and ma corresponds to [m mod n]. The theorem then follows
from the observations in Example 8.47. 2

Theorem 8.37. Suppose that a is an element of an abelian group, and
for some prime p and integer e ≥ 1, we have pea = 0G and pe−1a 6= 0G.
Then a has order pe.

Proof. If m is the order of a, then since pea = 0G, we have m | pe. So
m = pf for some f = 0, . . . , e. If f < e, then pe−1a = 0G, contradicting the
assumption that pe−1a 6= 0G. 2

Theorem 8.38. Suppose G is an abelian group with a1, a2 ∈ G such that
a1 is of finite order n1, a2 is of finite order n2, and gcd(n1, n2) = 1. Then
the order of a1 + a2 is n1n2.

Proof. Let m be the order of a1 + a2. It is clear that n1n2(a1 + a2) = 0G,
and hence m divides n1n2.

We claim that 〈a1〉 ∩ 〈a2〉 = {0G}. To see this, suppose a ∈ 〈a1〉 ∩ 〈a2〉.
Then since a ∈ 〈a1〉, the order of a must divide n1. Likewise, since a ∈ 〈a2〉,
the order of a must divide n2. From the assumption that gcd(n1, n2) = 1,
it follows that the order of a must be 1, meaning that a = 0G.

Since m(a1 + a2) = 0G, it follows that ma1 = −ma2. This implies that
ma1 belongs to 〈a2〉, and since ma1 trivially belongs to 〈a1〉, we see that
ma1 belongs to 〈a1〉∩〈a2〉. From the above claim, it follows that ma1 = 0G,
and hence n1 divides m. By a symmetric argument, we see that n2 divides
m. Again, since gcd(n1, n2) = 1, we see that n1n2 divides m. 2

For an abelian group G, we say that an integer k kills G if kG = {0G}.
Consider the set KG of integers that kill G. Evidently, KG is a subgroup
of Z, and hence of the form mZ for a uniquely determined non-negative
integer m. This integer m is called the exponent of G. If m 6= 0, then we
see that m is the least positive integer that kills G.

We first state some basic properties.

Theorem 8.39. Let G be an abelian group of exponent m.

(i) For any integer k such that kG = {0G}, we have m | k.

(ii) If G has finite order, then m divides |G|.

(iii) If m 6= 0, then for any a ∈ G, the order of a is finite, and the order
of a divides m.

(iv) If G is cyclic, then the exponent of G is 0 if G is infinite, and is |G|
is G is finite.
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Proof. Exercise. 2

The next two theorems develop some crucial properties about the struc-
ture of finite abelian groups.

Theorem 8.40. If a finite abelian group G has exponent m, then G con-
tains an element of order m. In particular, a finite abelian group is cyclic
if and only if its order equals its exponent.

Proof. The second statement follows immediately from the first. For the
first statement, assume that m > 1, and let m =

∏r
i=1 pei

i be the prime
factorization of m.

First, we claim that for each i = 1, . . . , r, there exists ai ∈ G such that
(m/pi)ai 6= 0G. Suppose the claim were false: then for some i, (m/pi)a =
0G for all a ∈ G; however, this contradicts the minimality property in the
definition of the exponent m. That proves the claim.

Let a1, . . . , ar be as in the above claim. Then by Theorem 8.37,
(m/pei

i )ai has order pei
i for each i = 1, . . . , r. Finally, by Theorem 8.38, the

group element
(m/pe1

1 )a1 + · · ·+ (m/per
r )ar

has order m. 2

Theorem 8.41. Let G be a finite abelian group of order n. If p is a prime
dividing n, then G contains an element of order p.

Proof. We can prove this by induction on n.
If n = 1, then the theorem is vacuously true.
Now assume n > 1 and that the theorem holds for all groups of order

strictly less than n. Let a be any non-zero element of G, and let m be
the order of a. Since a is non-zero, we must have m > 1. If p | m, then
(m/p)a is an element of order p, and we are done. So assume that p - m and
consider the quotient group G/H, where H is the subgroup of G generated
by a. Since H has order m, G/H has order n/m, which is strictly less than
n, and since p - m, we must have p | (n/m). So we can apply the induction
hypothesis to the group G/H and the prime p, which says that there is an
element b ∈ G such that b + H ∈ G/H has order p. If ` is the order of b,
then `b = 0G, and so `b ≡ 0G (mod H), which implies that the order of
b + H divides `. Thus, p | `, and so (`/p)b is an element of G of order p. 2

As a corollary, we have:

Theorem 8.42. Let G be a finite abelian group. Then the primes dividing
the exponent of G are the same as the primes dividing its order.
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Proof. Since the exponent divides the order, any prime dividing the
exponent must divide the order. Conversely, if a prime p divides the order,
then since there is an element of order p in the group, the exponent must
be divisible by p. 2

Exercise 8.21. Let G be an abelian group of order n, and let m be an
integer. Show that mG = G if and only if gcd(m,n) = 1. 2

Exercise 8.22. Let G be an abelian group of order mm′, where
gcd(m,m′) = 1. Consider the map ρ : mG×m′G to G that sends (a, b) to
a + b. Show that ρ is a group isomorphism. 2

Exercise 8.23. Let G be an abelian group, a ∈ G, and m ∈ Z, such that
m > 0 and ma = 0G. Let m = pe1

1 · · · per
r be the prime factorization of m.

For i = 1, . . . , r, let fi be the largest non-negative integer such that fi ≤ ei

and m/pfi

i · a = 0G. Show that the order of a is equal to pe1−f1
1 · · · per−fr

r .
2

Exercise 8.24. Show that for finite abelian groups G1, G2 whose expo-
nents are m1 and m2, the exponent of G1 ×G2 is lcm(m1,m2). 2

Exercise 8.25. Give an example of an abelian group G whose exponent
is zero, but where every element of G has finite order. 2

Exercise 8.26. Show how Theorem 2.11 easily follows from Theo-
rem 8.31. 2

8.6 ♣ The Structure of Finite Abelian
Groups

We next state a theorem that classifies all finite abelian groups up to iso-
morphism.

Theorem 8.43 (Fundamental Theorem of Finite Abelian Groups).
A finite abelian group (with more than one element) is isomorphic to a
direct product of cyclic groups

Zp
e1
1
× · · · × Zper

r
,

where the pi are primes (not necessarily distinct) and the ei are positive
integers. This direct product of cyclic groups is unique up to the order of
the factors.

An alternative statement of this theorem is the following:
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Theorem 8.44. A finite abelian group (with more than one element) is
isomorphic to a direct product of cyclic groups

Zm1 × · · · × Zmt ,

where each mi > 1, and where for i = 1, . . . , t − 1, we have mi | mi+1.
Moreover, the integers m1, . . . ,mt are uniquely determined, and mt is the
exponent of the group.

Exercise 8.27. Show that Theorems 8.43 and 8.44 are equivalent; that
is, show that each one implies the other. To do this, give a natural one-
to-one correspondence between sequences of prime powers (as in Theo-
rem 8.43) and sequences of integers m1, . . . ,mt (as in Theorem 8.44), and
also make use of Example 8.48. 2

Exercise 8.28. Using the fundamental theorem of finite abelian groups
(either form), give short and simple proofs of Theorems 8.40 and 8.41. 2

We now prove Theorem 8.44, which we break into two lemmas, the first
of which proves the existence part of the theorem, and the second of which
proves the uniqueness part.

Lemma 8.45. A finite abelian group (with more than one element) is
isomorphic to a direct product of cyclic groups

Zm1 × · · · × Zmt
,

where each mi > 1, and where for i = 1, . . . , t − 1, we have mi | mi+1;
moreover, mt is the exponent of the group.

Proof. Let G be a finite abelian group with more than one element, and
let m be the exponent of G. By Theorem 8.40, there exists an element
a ∈ G of order m. Let A = 〈a〉. Then A ∼= Zm. Now, if A = G, the lemma
is proved. So assume that A ( G.

We will show that there exists a subgroup B of G such that G = A + B
and A ∩ B = {0}. From this, Theorem 8.28 gives us an isomorphism of G
with A×B. Moreover, the exponent of B is clearly a divisor of m, and so
the lemma will follow by induction (on the order of the group).

So it suffices to show the existence of a subgroup B as above. We prove
this by contradiction. Suppose that there is no such subgroup, and among
all subgroups B such that A∩B = {0}, assume that B is maximal, meaning
that there is no subgroup B′ of G such that B ( B′ and A∩B′ = {0}. By
assumption C := A + B ( G.
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Let d be any element of G that lies outside of C. Consider the quotient
group G/C, and let r be the order of d + C in G/C. Note that r > 1 and
r | m. We shall define a group element d′ with slightly nicer properties
than d, as follows. Since rd ∈ C, we have rd = sa + b for some s ∈ Z and
b ∈ B. We claim that r | s. To see this, note that 0 = md = (m/r)rd =
(m/r)sa + (m/r)b, and since A ∩ B = {0}, we have (m/r)sa = 0, which
can only happen if r | s. That proves the claim. This allows us to define
d′ := d− (s/r)a. Since d ≡ d′ (mod C), we see that d′ + C also has order
r in G/C, but also that rd′ ∈ B.

We next show that A ∩ (B + 〈d′〉) = {0}, which will yield the contra-
diction we seek, and thus prove the lemma. Because A ∩ B = {0}, it will
suffice to show that A ∩ (B + 〈d′〉) ⊆ B. Now, suppose we have a group
element b′ + xd′ ∈ A, with b′ ∈ B and x ∈ Z. Then in particular, xd′ ∈ C,
and so r | x, since d′ + C has order r in G/C. Further, since rd′ ∈ B, we
have xd′ ∈ B, whence b′ + xd′ ∈ B. 2

Lemma 8.46. Suppose that G := Zm1×· · ·×Zmt
and H := Zn1×· · ·×

Znt are isomorphic, where the mi and ni are positive integers (possibly 1)
such that mi | mi+1 for i = 1, . . . , t− 1. Then mi = ni for i = 1, . . . , t.

Proof. Clearly,
∏

i mi = |G| = |H| =
∏

i ni. We prove the lemma
by induction on the order of the group. If the group order is 1, then
clearly all mi and ni must be 1, and we are done. Otherwise, let p be a
prime dividing the group order. Now, suppose that p divides mr, . . . ,mt

but not m1, . . . ,mr−1, and that p divides ns, . . . , nt but not n1, . . . , ns−1,
where r ≤ t and s ≤ t. Evidently, the groups pG and pH are isomorphic.
Moreover,

pG ∼= Zm1 × · · · × Zmr−1 × Zmr/p × · · · × Zmt/p,

and
pH ∼= Zn1 × · · · × Zns−1 × Zns/p × · · · × Znt/p.

Thus, we see that |pG| = |G|/pt−r+1 and |pH| = |H|/pt−s+1, from which
it follows that r = s, and the lemma then follows by induction. 2



Chapter 9

Rings

This chapter introduces the notion of a ring, more specifically, a commu-
tative ring with unity. The theory of rings provides a useful conceptual
framework for reasoning about a wide class of interesting algebraic struc-
tures. Intuitively speaking, a ring is an algebraic structure with addition
and multiplication operations that behave like we expect addition and mul-
tiplication should. While there is a lot of terminology associated with rings,
the basic ideas are fairly simple.

9.1 Definitions, Basic Properties, and Exam-
ples

Definition 9.1. A commutative ring with unity is a set R together
with addition and multiplication operations on R, such that

(i) the set R under addition forms an abelian group, and we denote the
additive identity by 0R;

(ii) multiplication is associative; that is, for all a, b, c ∈ R, we have
a(bc) = (ab)c;

(iii) multiplication distributes over addition; that is, for all a, b, c ∈ R, we
have a(b + c) = ab + ac and (b + c)a = ba + ca;

(iv) there exists a multiplicative identity; that is, there exists an element
1R ∈ R, such that 1R · a = a = a · 1R for all a ∈ R;

(v) multiplication is commutative; that is, for all a, b ∈ R, we have ab =
ba.

There are other, more general (and less convenient) types of rings —
one can drop properties (iv) and (v), and still have what is called a ring.
We shall not, however, be working with such general rings in this text.

198
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Therefore, to simplify terminology, from now on, by a “ring,” we shall
always mean a commutative ring with unity.

Let R be a ring. Notice that because of the distributive law, for any
fixed a ∈ R, the map from R to R that sends b ∈ R to ab ∈ R is a group
homomorphism with respect to the underlying additive group of R. We
call this the a-multiplication map.

We first state some simple facts:

Theorem 9.2. Let R be a ring. Then

(i) the multiplicative identity 1R is unique;

(ii) 0R · a = 0R for all a ∈ R;

(iii) (−a)b = a(−b) = −(ab) for all a, b ∈ R;

(iv) (−a)(−b) = ab for all a, b ∈ R;

(v) (na)b = a(nb) = n(ab) for all n ∈ Z and a, b ∈ R.

Proof. Part (i) may be proved using the same argument as was used
to prove part (i) of Theorem 8.2. Parts (ii), (iii), and (v) follow directly
from parts (i), (ii), and (iii) of Theorem 8.20, using appropriate multipli-
cation maps, discussed above. Part (iv) follows from parts (iii) and (iv) of
Theorem 8.3. 2

Example 9.1. The set Z under the usual rules of multiplication and
addition forms a ring. 2

Example 9.2. For n ≥ 1, the set Zn under the rules of multiplication
and addition defined in §2.3 forms a ring. 2

Example 9.3. The set Q of rational numbers under the usual rules of
multiplication and addition forms a ring. 2

Example 9.4. The set R of real numbers under the usual rules of multi-
plication and addition forms a ring. 2

Example 9.5. The set C of complex numbers under the usual rules of
multiplication and addition forms a ring. Any z ∈ C can be written
(uniquely) as z = a + bi, with a, b ∈ R, and i =

√
−1. If z′ = a′ + b′i

is another complex number, with a′, b′ ∈ R, then

z + z′ = (a + a′) + (b + b′)i and zz′ = (aa′ − bb′) + (ab′ + a′b)i.

The fact that C is a ring can be verified by direct calculation; however, we
shall see later that this follows easily from more general considerations.
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Recall the complex conjugation operation, which sends z to z̄ :=
a − bi. One can verify by direct calculation that complex conjugation is
both additive and multiplicative; that is, z + z′ = z̄ + z̄′ and z · z′ = z̄ · z̄′.

The norm of z is N(z) := zz̄ = a2 + b2. So we see that N(z) is
a non-negative real number, and is zero iff z = 0. Moreover, from the
multiplicativity of complex conjugation, it is easy to see that the norm is
multiplicative as well: N(zz′) = zz′zz′ = zz′z̄z̄′ = N(z)N(z′). 2

Example 9.6. Consider the set F of all arithmetic functions, that is,
functions mapping positive integers to real numbers. We can define addition
and multiplication operations on F in a natural, point-wise fashion: for
f, g ∈ F , let f + g be the function that sends n to f(n) + g(n), and let
f ·g be the function that sends n to f(n)g(n). These operations of addition
and multiplication make F into a ring: the additive identity is the function
that is everywhere 0, and the multiplicative identity is the function that is
everywhere 1.

Another way to make F into a ring is to use the addition operation as
above, together with the Dirichlet product, which we defined in §2.6, for
the multiplication operation. In this case, the multiplicative identity is the
function I that we defined in §2.6, which takes the value 1 at 1 and the
value 0 everywhere else. The reader should verify that the distributive law
holds. 2

Note that in a ring R, if 1R = 0R, then for all a ∈ R, we have a =
1R · a = 0R · a = 0R, and hence the ring R is trivial, in the sense that it
consists of the single element 0R, with 0R + 0R = 0R and 0R · 0R = 0R. If
1R 6= 0R, we say that R is non-trivial. We shall rarely be concerned with
trivial rings for their own sake; however, they do sometimes arise in certain
constructions.

If R1, . . . , Rk are rings, then the set of all k-tuples (a1, . . . , ak) with ai ∈
Ri for i = 1, . . . , k, with addition and multiplication defined component-
wise, forms a ring. The ring is denoted by R1 × · · · ×Rk, and is called the
direct product of R1, . . . , Rk.

The characteristic of a ring R is defined as the exponent of the un-
derlying additive group (see §8.5). Note that for m ∈ Z and a ∈ R, we
have

ma = m(1R · a) = (m · 1R)a,

so that if m · 1R = 0R, then ma = 0R for all a ∈ R. Thus, if the additive
order of 1R is infinite, the characteristic of R is zero, and otherwise, the
characteristic of R is equal to the additive order of 1R.

Example 9.7. The ring Z has characteristic zero, Zn has characteristic
n, and Zn1 × Zn2 has characteristic lcm(n1, n2). 2
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For elements a, b in a ring R, we say that b divides a, or alternatively,
that a is divisible by b, if there exists c ∈ R such that a = bc. If b divides
a, then b is called a divisor of a, and we write b | a. Note Theorem 1.1
holds for an arbitrary ring.

When there is no possibility for confusion, one may write “0” instead
of “0R” and “1” instead of “1R.” Also, one may also write, for example,
2R to denote 2 · 1R, 3R to denote 3 · 1R, and so on; moreover, where the
context is clear, one may use an implicit “type cast,” so that m ∈ Z really
means m · 1R.

For a ∈ R and positive integer n, the expression an denotes the product
a · a · · · · · a, where there are n terms in the product. One may extend this
definition to n = 0, defining a0 to be the multiplicative identity 1R.

Exercise 9.1. Verify the usual “rules of exponent arithmetic” for a ring
R. That is, show that for a ∈ R, and non-negative integers n1, n2, we have

(an1)n2 = an1n2 and an1an2 = an1+n2 .

2

Exercise 9.2. Show that the familiar binomial theorem holds in an
arbitrary ring R; that is, for a, b ∈ R and positive integer n, we have

(a + b)n =
n∑

i=0

(
n

i

)
an−ibi.

2

9.1.1 Units and Fields

Let R be a ring. We call u ∈ R a unit if it has a multiplicative inverse,
meaning that uu′ = 1R for some u′ ∈ R. It is easy to see that the mul-
tiplicative inverse of u, if its exists, is unique, and we denote it by u−1;
also, for a ∈ R, we may write a/u to denote au−1. It is clear that a unit u
divides every a ∈ R.

We denote the set of units by R∗. It is easy to verify that the set R∗

is closed under multiplication, from which it follows that R∗ is an abelian
group, called the multiplicative group of units of R. If u ∈ R∗, then
of course un ∈ R∗ for all non-negative integers n, and the multiplicative
inverse of un is (u−1)n, which we may also write as u−n (which is consistent
with our notation for abelian groups).

If R is non-trivial and every non-zero element of R has a multiplicative
inverse, then R is called a field.



202 Rings

Example 9.8. The only units in the ring Z are ±1. Hence, Z is not a
field. 2

Example 9.9. For positive integer n, the units in Zn are the residue
classes [a mod n] with gcd(a, n) = 1. In particular, if n is prime, all non-
zero residue classes are units, and if n is composite, some non-zero residue
classes are not units. Hence, Zn is a field if and only if n is prime. Of
course, the notation Z∗n introduced in this section for the group of units of
the ring Zn is consistent with the notation introduced in §2.3. 2

Example 9.10. Every non-zero element of Q is a unit. Hence, Q is a
field. 2

Example 9.11. Every non-zero element of R is a unit. Hence, R is a
field. 2

Example 9.12. For non-zero z = a + bi ∈ C, with a, b ∈ R, we have
c := N(z) = a2 + b2 > 0. It follows that the complex number z̄c−1 =
(ac−1)+(−bc−1)i is the multiplicative inverse of z, since z·z̄c−1 = (zz̄)c−1 =
1. Hence, every non-zero element of C is a unit, and so, C is a field. 2

Example 9.13. For rings R1, . . . , Rk, it is easy to see that the multi-
plicative group of units of the direct product R1 × · · · × Rk is equal to
R∗

1 × · · · × R∗
k. Indeed, by definition, (a1, . . . , ak) has a multiplicative in-

verse if and only if each individual ai does. 2

Example 9.14. Consider the rings of arithmetic functions defined in Ex-
ample 9.6. If multiplication is defined point-wise, then an arithmetic func-
tion f is a unit if and only if f(n) 6= 0 for all n. If multiplication is defined
in terms of the Dirichlet product, then by the result of Exercise 2.23, an
arithmetic function f is a unit if and only if f(1) 6= 0. 2

9.1.2 Zero divisors and Integral Domains

Let R be a ring. An element a ∈ R is called a zero divisor if a 6= 0R and
there exists non-zero b ∈ R such that ab = 0R.

If R is non-trivial and has no zero divisors, then it is called an integral
domain. Put another way, a non-trivial ring R is an integral domain if
and only if the following holds: for all a, b ∈ R, ab = 0R implies a = 0R or
b = 0R.

Note that if u is a unit in R, it cannot be a zero divisor (if ub = 0R,
then multiplying both sides of this equation by u−1 yields b = 0R). In
particular, it follows that any field is an integral domain.

Example 9.15. Z is an integral domain. 2
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Example 9.16. For n > 1, Zn is an integral domain if and only if n is
prime. In particular, if n is composite, so n = n1n2 with 1 < n1 < n
and 1 < n2 < n, then [n1] and [n2] are zero divisors: [n1][n2] = [0], but
[n1] 6= [0] and [n2] 6= [0]. 2

Example 9.17. Q, R, and C are fields, and hence, are also integral do-
mains. 2

Example 9.18. For two non-trivial rings R1, R2, an element (a1, a2) ∈
R1 × R2 is a zero divisor if and only if a1 is a zero divisor, a2 is a zero
divisor, or exactly one of a1 or a2 is zero. In particular, R1 ×R2 is not an
integral domain. 2

We have the following “cancellation law”:

Theorem 9.3. If R is a ring, and a, b, c ∈ R such that a 6= 0R and a is
not a zero divisor, then ab = ac implies b = c.

Proof. ab = bc implies a(b − c) = 0R. The fact that a 6= 0 and a is not a
zero divisor implies that we must have b− c = 0R, and so b = c. 2

Theorem 9.4. If D is an integral domain, then

(i) for all a, b, c ∈ D, a 6= 0D and ab = ac implies b = c;

(ii) for all a, b ∈ D, a | b and b | a if and only if a = bc for some c ∈ D∗.

(iii) for all a, b ∈ D with b 6= 0D and b | a, there is a unique c ∈ D such
that a = bc, which we may denote as a/b.

Proof. The first statement follows immediately from the previous theorem
and the definition of an integral domain.

For the second statement, if a = bc for c ∈ D∗, then we also have
b = ac−1; thus, b | a and a | b. Conversely, a | b implies b = ax for x ∈ D,
and b | a implies a = by for y ∈ D, and hence b = bxy. If b = 0R, then
the equation a = by implies a = 0R, and so the statement holds for any c;
otherwise, cancel b, we have 1D = xy, and so x and y are units.

For the third statement, if a = bc and a = bc′, then bc = bc′, and cancel
b. 2

Theorem 9.5. The characteristic of an integral domain is either zero or
a prime.

Proof. By way of contradiction, suppose that D is an integral domain with
characteristic m that is neither zero nor prime. Since, by definition, D is
not a trivial ring, we cannot have m = 1, and so m must be composite. Say
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m = st, where 1 < s < m and 1 < t < m. Since m is the additive order of
1D, it follows that (s · 1D) 6= 0D and (t · 1D) 6= 0D; moreover, since D is an
integral domain, it follows that (s · 1D)(t · 1D) 6= 0D. So we have

0D = m · 1D = (st) · 1D = (s · 1D)(t · 1D) 6= 0D,

a contradiction. 2

Theorem 9.6. Any finite integral domain is a field.

Proof. Let D be a finite integral domain, and let a be any non-zero
element of D. Consider the a-multiplication map that sends b ∈ D to ab,
which is a group homomorphism on the additive group of D. Since a is
not a zero-divisor, it follows that the kernel of the a-multiplication map is
{0D}, hence the map is injective, and by finiteness, it must be surjective as
well. In particular, there must be an element b ∈ D such that ab = 1D. 2

Theorem 9.7. Any finite field F must be of cardinality pw, where p is
prime, w is a positive integer, and p is the characteristic of F .

Proof. By Theorem 9.5, the characteristic of F is either zero or a prime,
and since F is finite, it must be prime. Let p denote the characteristic.
By definition, p is the exponent of the additive group of F , and by The-
orem 8.42, the primes dividing the exponent are the same as the primes
dividing the order, and hence F must have cardinality pw for some positive
integer w. 2

Of course, for every prime p, Zp is a finite field of cardinality p. As we
shall see later (in Chapter 20), for every prime p and positive integer w,
there exists a field of cardinality pw. Later in this chapter, we shall see some
specific examples of finite fields whose cardinality is not prime (Examples
9.35 and 9.47).

Exercise 9.3. Let R be a ring of characteristic m > 0, and let n be any
integer. Show that

(a) if gcd(n, m) = 1, then n · 1R is a unit;

(b) if 1 < gcd(n, m) < m, then n · 1R is a zero divisor;

(c) otherwise, n · 1R = 0R.

2

Exercise 9.4. Let D be an integral domain, m ∈ Z, and a ∈ D. Show
that ma = 0D if and only if m is a multiple of the characteristic of D or
a = 0D. 2
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Exercise 9.5. This exercise depends on results in §8.6. Using the fun-
damental theorem of finite abelian groups, show that the additive group of
a finite field of characteristic p and cardinality pw is isomorphic to Z×w

p . 2

9.1.3 Subrings

Definition 9.8. A subset S of a ring R is called a subring if

(i) S is a subgroup of the additive group R,

(ii) S is closed under multiplication, and

(iii) 1R ∈ S.

It is clear that the operations of addition and multiplication on a ring
R make a subring S of R into a ring, where 0R is the additive identity
of S and 1R is the multiplicative identity of S. One may also call R an
extension ring of S.

Some texts do not require that 1R belongs to a subring S, and instead
require only that S contains a multiplicative identity, which may be different
than that of R. This is perfectly reasonable, but for simplicity, we restrict
ourselves to the case when 1R ∈ S.

Expanding the above definition, we see that a subset S of R is a subring
if and only if 1R ∈ S and for all a, b ∈ S, we have

a + b ∈ S, −a ∈ S, and ab ∈ S.

If fact, to verify that S is a subring, it suffices to show that −1R ∈ S and
that S is closed under addition and multiplication; indeed, if −1R ∈ S
and S is closed under multiplication, then S is closed under negation, and
further, 1R = −(−1R) ∈ S.

Example 9.19. Z is a subring of Q. 2

Example 9.20. Q is a subring of R. 2

Example 9.21. R is a subring of C.
Note that for z := a + bi ∈ C, with a, b ∈ R, we have z̄ = z iff

a + bi = a− bi iff b = 0. That is, z̄ = z iff z ∈ R. 2

Example 9.22. The set Z[i] of complex numbers of the form a+bi, with
a, b ∈ Z, is a subring of C. It is called the ring of Gaussian integers.
Since C is a field, it contains no zero divisors, and hence Z[i] contains no
zero divisors. Hence, Z[i] is an integral domain.

Let us determine the units of Z[i]. If z ∈ Z[i] is a unit, then there exists
z′ ∈ Z[i] such that zz′ = 1. Taking norms, we obtain

1 = N(1) = N(zz′) = N(z)N(z′).
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Clearly, the norm of a Gaussian integer is a non-negative integer, and so
N(z)N(z′) = 1 implies N(z) = 1. Now, if z := a+bi, then N(z) = a2 +b2,
and so N(z) = 1 implies z = ±1 or z = ±i. Conversely, it is clear that ±1
and ±i are indeed units, and so these are the only units in Z[i]. 2

Example 9.23. Let m be a positive integer, and let Q(m) be the set of
rational numbers of the form a/b, where a and b are integers, and b is
relatively prime to m. Then Q(m) is a subring of Q, since for any a, b, c, d ∈
Z with gcd(b, m) = 1 and gcd(d, m) = 1, we have

a

b
+

c

d
=

ad + bc

bd
and

a

b
· c
d

=
ac

bd
,

and since gcd(bd,m) = 1, it follows that the sum and product of any two
element of Q(m) is again in Q(m). Clearly, Q(m) contains −1, and so it
follows that Q(m) is a subring of Q. The units of Q(m) are precisely those
rational numbers of the form a/b, where gcd(a,m) = gcd(b, m) = 1. 2

Example 9.24. If R and S are non-trivial rings, then R′ := R × {0S}
is not a subring of R × S: although it satisfies the first two requirements
of the definition of a subring, it does not satisfy the third. However, R′

does contain an element that acts as a multiplicative identity of R′, namely
(1R, 0S), and hence could be viewed as a subring of R × S under a more
liberal definition. 2

Theorem 9.9. Any subring of an integral domain is also an integral do-
main.

Proof. If D′ is a subring of the integral domain D, then any zero divisor
in D′ would itself be a zero divisor in D. 2

Note that it is not the case that a subring of a field is always a field:
the subring Z of Q is a counter-example. If F ′ is a subring of a field F , and
F ′ is itself a field, then we say that F ′ is a subfield of F , and that F is an
extension field of F ′.

Example 9.25. Q is a subfield of R, which in turn is a subfield of C. 2

Exercise 9.6. Show that the set Q[i] of complex numbers of the form
a + bi, with a, b ∈ Q, is a subfield of C. 2

Exercise 9.7. Show that if S and S′ are subrings of R, then so is S∩S′.
2
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9.2 Polynomial rings

If R is a ring, then we can form the ring of polynomials R[X], consisting
of all polynomials a0 + a1X + · · ·+ akXk in the indeterminate, or “formal”
variable, X, with coefficients in R, and with addition and multiplication
being defined in the usual way.

Example 9.26. Let us define a few polynomials over the ring Z:

a := 3 + X2, b := 1 + 2X− X3, c := 5, d := 1 + X, e := X, f := 4X3.

We have

a+ b = 4+2X+X2−X3, a · b = 3+6X+X2−X3−X5, cd+ef = 5+5X+4X4.

2

As illustrated in the previous example, elements of R are also poly-
nomials. Such polynomials are called constant polynomials; all other
polynomials are called non-constant polynomials. The set R of con-
stant polynomials clearly forms a subring of R[X]. In particular, 0R is the
additive identity in R[X] and 1R is the multiplicative identity in R[X].

For completeness, we present a more formal definition of the ring R[X].
The reader should bear in mind that this formalism is rather tedious, and
may be more distracting than it is enlightening. It is technically conve-
nient to view a polynomial as having an infinite sequence of coefficients
a0, a1, a2, . . . , where each coefficient belongs to R, but where only a finite
number of the coefficients are non-zero. We may write such a polynomial
as an infinite sum

∑∞
i=0 aiXi; however, this notation is best thought of

“syntactic sugar”: there is really nothing more to the polynomial than this
sequence of coefficients. With this notation, if

a =
∞∑

i=0

aiX
i and b =

∞∑
i=0

biX
i,

then

a + b :=
∞∑

i=0

(ai + bi)Xi, (9.1)

and

a · b :=
∞∑

i=0

( i∑
k=0

akbi−k

)
Xi. (9.2)

We should first verify that these addition and multiplication operations
actually produce coefficient sequences with only a finite number of non-zero
terms. Suppose that for non-negative integers k and `, we have ai = 0R for
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all i > k and bi = 0R for all i > `. Then it is clear that the coefficient of Xi

in a + b is zero for all i > max{k, `}, and it is also not too hard to see that
the coefficient of Xi in a · b is zero for all i > k + `.

We leave it to the reader to verify that R[X], with addition and multi-
plication defined as above, actually satisfies the definition of a ring — this
is entirely straightforward, but tedious.

For c ∈ R, we may identify c with the polynomial
∑∞

i=0 ciXi, where
c0 = c and ci = 0R for i > 0. Strictly speaking, c and

∑∞
i=0 ciXi are not the

same mathematical object, but there will certainly be no possible confusion
in treating them as such. Thus, from a narrow, legalistic point of view, R
is not a subring of R[X], but we shall not let such let such annoying details
prevent us from continuing to speak of it as such.

As one last matter of notation, we may naturally write X to denote the
polynomial

∑∞
i=0 aiXi, where a1 = 1R and ai = 0R for all i 6= 1.

With all of these conventions and definitions, we can return to the prac-
tice of writing polynomials as we did in Example 9.26, without any loss of
precision.

Note that as a matter of definition, we allow R to be the trivial ring, in
which case R[X] is also the trivial ring.

9.2.1 Polynomials versus polynomial functions

Of course, a polynomial a =
∑k

i=0 aiXi defines a polynomial function on R

that sends α ∈ R to
∑k

i=0 aiα
i, and we denote the value of this function

as a(α). However, it is important to regard polynomials over R as formal
expressions, and not to identify them with their corresponding functions.
In particular, two polynomials are equal if and only if their coefficients are
equal. This distinction is important, since there are rings R over which two
different polynomials define the same function. One can of course define the
ring of polynomial functions on R, but in general, that ring has a different
structure from the ring of polynomials over R.

Example 9.27. In the ring Zp, for prime p, by Fermat’s little theorem
(Theorem 2.16), we have αp − α = [0] for all α ∈ Zp. But consider the
polynomial a := Xp − X ∈ Zp[X]. We have a(α) = [0] for all α ∈ Zp, and
hence the function defined by a is the zero function, yet a is definitely not
the zero polynomial. 2

More generally, if R is a subring of a ring E, a polynomial a =∑k
i=0 aiXi ∈ R[X] defines a polynomial function from E to E that sends

α ∈ E to
∑k

i=0 aiα
i ∈ E, and the value of this function is denoted a(α).

If E = R[X], then evaluating a polynomial a ∈ R[X] at a point α ∈ E
amounts to polynomial composition. For example, if a = X2 + X then

a
[
X + 1

]
= (X + 1)2 + (X + 1) = X2 + 3X + 2.
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A simple, but important, fact is the following:

Theorem 9.10. Let R be a subring of a ring E. For a, b ∈ R[X] and
α ∈ E, if p := ab ∈ R[X] and s := a + b ∈ R[X], then we have

p(α) = a(α)b(α) and s(α) = a(α) + b(α).

Also, if c ∈ R[X] is a constant polynomial, then c(α) = c for all α ∈ E.

Proof. Exercise. 2

Note that the syntax for polynomial evaluation creates some potential
ambiguities: if a is a polynomial, one could interpret a(b+c) as either
a times b+c, or a evaluated at b+c; usually, the meaning will be clear
from context, but to avoid such ambiguities, if the intended meaning
is the former, we shall generally write this as, say, a·(b+c) or (b+c)a,
and if the intended meaning is the latter, we shall generally write this
as a[ b + c ].

So as to keep the distinction between ring elements and indetermi-
nates clear, we shall use the symbol “X” only to denote the latter.
Also, for a polynomial a ∈ R[X], we shall in general write this simply
as “a,” and not as “a(X).” Of course, the choice of the symbol “X”
is arbitrary; occasionally, we may use other symbols, such as “Y,” as
alternatives.

9.2.2 Basic properties of polynomial rings

Let R be a ring. For non-zero a ∈ R[X], if a =
∑k

i=0 aiXi with ak 6= 0R,
then we call k the degree of a, denoted deg(a), we call ak the leading
coefficient of a, denoted lc(a), and we call a0 the constant term of a. If
lc(a) = 1R, then a is called monic.

Suppose a =
∑k

i=0 aiXi and b =
∑`

i=0 biXi are polynomials such that
ak 6= 0R and b` 6= 0R, so that deg(a) = k and lc(a) = ak, and deg(b) = `
and lc(b) = b`. When we multiply these two polynomials, we get

ab = a0b0 + (a0b1 + a1b0)X + · · ·+ akb`X
k+`.

In particular, deg(ab) ≤ deg(a) + deg(b). If either of ak or b` are not
zero divisors, then akb` is not zero, and hence deg(ab) = deg(a) + deg(b).
However, if both ak and b` are zero divisors, then we may have akb` =
0R, in which case, the product ab may be zero, or perhaps ab 6= 0R but
deg(ab) < deg(a) + deg(b).

Example 9.28. Over the ring Z6, consider the polynomials a := [1] +
[2]X and b = [1] + [3]X. We have ab = [1] + [5]X + [6]X2 = [1] + [5]X. Thus,
deg(ab) = 1 < 2 = deg(a) + deg(b). 2
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For the zero polynomial, we establish the following conventions: its
leading coefficient and constant term are defined to be 0R, and its degree
is defined to be −∞. With these conventions, we may succinctly state that

for all a, b ∈ R[X], deg(ab) ≤ deg(a) + deg(b), with equality
guaranteed to hold unless the leading coefficients of both a and
b are zero divisors.

In the case where the ring of coefficients is as integral domain, we can
say significantly more:

Theorem 9.11. Let D be an integral domain. Then

(i) for all a, b ∈ D[X], we have deg(ab) = deg(a) + deg(b);

(ii) D[X] is an integral domain;

(iii) (D[X])∗ = D∗.

Proof. Exercise. 2

9.2.3 Division with remainder

An extremely important property of polynomials is a division with remain-
der property, analogous to that for the integers:

Theorem 9.12 (Division with Remainder Property). Let R be a
ring. For a, b ∈ R[X] with b 6= 0R and lc(b) ∈ R∗, there exist unique
q, r ∈ R[X] such that a = bq + r and deg(r) < deg(b).

Proof. Consider the set S of polynomials of the form a − zb with
z ∈ R[X]. Let r = a − qb be an element of S of minimum degree.
We must have deg(r) < deg(b), since otherwise, we would have r′ :=
r − (lc(r) lc(b)−1Xdeg(r)−deg(b)) · b ∈ S, and deg(r′) < deg(r), contradict-
ing the minimality of deg(r).

That proves the existence of r and q. For uniqueness, suppose that
a = bq + r and a = bq′ + r′, where deg(r) < deg(b) and deg(r′) < deg(b).
This implies r′ − r = b · (q − q′). However, if q 6= q′, then

deg(b) > deg(r′ − r) = deg(b · (q − q′)) = deg(b) + deg(q − q′) ≥ deg(b),

which is impossible. Therefore, we must have q = q′, and hence r = r′. 2

If a = bq + r as in the above theorem, we define a rem b := r. Clearly,
b | a if and only if a rem b = 0R. Moreover, note that if deg(a) < deg(b),
then q = 0 and r = a; otherwise, if deg(a) ≥ deg(b), then q 6= 0 and
deg(a) = deg(b) + deg(q).

As a consequence of the above theorem, we have:
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Theorem 9.13. For a ring R and a ∈ R[X] and α ∈ R, a(α) = 0R if and
only if (X− α) divides a.

Proof. If R is the trivial ring, there is nothing to prove, so assume that R
is non-trivial. Let us write a = (X−α)q+r, with q, r ∈ R[X] and deg(r) < 1,
which means that r ∈ R. Then we have a(α) = (α−α)q(α) + r = r. Thus,
a(α) = 0R if and only if a rem (X−α) = 0R, which holds if and only if X−α
divides a. 2

With R, a, α as in the above theorem, we say that α is a root of a if
a(α) = 0R.

Theorem 9.14. Let D be an integral domain, and let a ∈ D[X], with
deg(a) = k ≥ 0. Then a has at most k roots.

Proof. We can prove this by induction. If k = 0, this means that a is a
non-zero element of D, and so it clearly has no roots.

Now suppose that k > 0. If a has no roots, we are done, so suppose
that a has a root α. Then we can write a = (X−α)q, where deg(q) = k−1.
Now, for any root β of a with β 6= α, we have 0D = a(β) = (β − α)q(β),
and using the fact that D is an integral domain, we must have q(β) = 0D.
Thus, the only roots of a are α and the roots of q. By induction, q has at
most k − 1 roots, and hence a has at most k roots. 2

Theorem 9.14 has many applications, among which is the following
beautiful theorem that establishes an important property of the multiplica-
tive structure of an integral domain:

Theorem 9.15. Let D be an integral domain and G a subgroup of D∗ of
finite order. Then G is cyclic.

Proof. Let n be the order of G, and suppose G is not cyclic. Then by
Theorem 8.40, we have that the exponent m of G is strictly less than n.
It follows that αm = 1D for all α ∈ G. That is, all the elements of G are
roots of the polynomial Xm − 1D ∈ D[X]. But since a polynomial of degree
m over D has at most m roots, this contradicts the fact that m < n. 2

As a special case of Theorem 9.15, we have:

Theorem 9.16. For any finite field F , the group F ∗ is cyclic. In partic-
ular, if p is prime, then Z∗p is cyclic, that is, there exists a primitive root
modulo p.
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Exercise 9.8. Let D be an infinite integral domain, and let a ∈ D[X].
Show that if a(α) = 0D for all α ∈ D, then a = 0D. Thus, for an infinite in-
tegral domain D, there is a one-to-one correspondence between polynomials
over D and polynomial functions on D. 2

Exercise 9.9. This exercise develops an alternative proof of Theo-
rem 9.15. Let n be the order of the group. Using Theorem 9.14, show
that for all d | n, there are at most d elements in the group whose multi-
plicative order divides d. From this, deduce that for all d | n, the number of
elements of multiplicative order d is either 0 or φ(d). Now use Theorem 2.11
to deduce that for all d | n (and in particular, for d = n), the number of
elements of multiplicative order d is equal to φ(d). 2

Exercise 9.10. Let F be a field of characteristic other than 2, so that the
2F 6= 0F . Show that the familiar quadratic formula holds for F . That
is, for a, b, c ∈ F with a 6= 0F , the polynomial f := aX2 + bX + c ∈ F [X]
has a root if and only if there exists z ∈ F such that z2 = d, where d is the
discriminant of f , defined as d := b2 − 4ac, and in this case the roots of
f are

−b± z

2a
.

2

Exercise 9.11. Let R be a ring, let a ∈ R[X], with deg(a) = k ≥ 0, and
let α be an element of R.

(a) Show that there exists an integer m, with 0 ≤ m ≤ k, and a polyno-
mial q ∈ R[X], such that

a = (X− α)mq and q(α) 6= 0R.

(b) Show that the values m and q in part (a) are uniquely determined
(by a and α).

(c) Show that m > 0 if and only if α is a root of a.

2

Let mα(a) denote the value m in the previous exercise; for completeness,
one can define mα(a) := ∞ if a is the zero polynomial. If mα(a) > 0, then
α is called a root of a of multiplicity mα(a); if mα(a) = 1, then α is called
a simple root of a, and if mα(a) > 1, then α is called a multiple root of
a.

The following exercise refines Theorem 9.14, taking into account multi-
plicities:
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Exercise 9.12. Let D be an integral domain, and let a ∈ D[X], with
deg(a) = k ≥ 0. Show that ∑

α∈D

mα(a) ≤ k.

2

Exercise 9.13. Let D be an integral domain, let a, b ∈ D[X], and let
α ∈ D. Show that mα(ab) = mα(a) + mα(b). 2

Exercise 9.14. Let R be a ring, let a ∈ R[X], with deg(a) = k ≥ 0, let
α ∈ R, and let m := mα(a). Show that if we evaluate a at X + α, we have

a
[
X + α

]
=

k∑
i=m

biX
i,

where bm, . . . , bk ∈ R and bm 6= 0R. 2

9.2.4 Formal Derivatives

Let R be any ring, and let a ∈ R[X] be a polynomial. If a =
∑`

i=0 aiXi, we
define the formal derivative of a as

D(a) :=
∑̀
i=1

iaiX
i−1.

We stress that unlike the “analytical” notion of derivative from calculus,
which is defined in terms of limits, this definition is purely “symbolic.”
Nevertheless, some of the usual rules for derivatives still hold:

Theorem 9.17. Let R be a ring. For all a, b ∈ R[X] and c ∈ R, we have

(i) D(a + b) = D(a) + D(b);

(ii) D(ca) = cD(a);

(iii) D(ab) = D(a)b + aD(b).

Proof. Parts (i) and (ii) follow immediately by inspection, but part (iii)
requires some proof. First, note that part (iii) holds trivially if either a or
b are zero, so let us assume that neither are zero.

We first prove part (iii) for monomials, that is, polynomials of the
form cXi for non-zero c ∈ R and i ≥ 0. Suppose a = cXi and b = dXj . If
i = 0, so a = c, then the result follows from part (ii) and the fact that
D(c) = 0; when j = 0, the result holds by a symmetric argument. So
assume that i > 0 and j > 0. Now, D(a) = icXi−1 and D(b) = jdXj−1, and
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D(ab) = D(cdXi+j) = (i + j)cdXi+j−1. The result follows from a simple
calculation.

Having proved part (iii) for monomials, we now prove it in general on
induction on the total number of monomials appearing in a and b. If the
total number is 2, then both a and b are monomials, and we are in the base
case; otherwise, one of a and b must consist of at least 2 monomials, and for
concreteness, say it is b that has this property. So we can write b = b1 + b2,
where both b1 and b2 have fewer monomials than does b. Applying part (i)
and the induction hypothesis for part (iii), we have

D(ab) = D(ab1 + ab2)
= D(ab1) + D(ab2)
= D(a)b1 + aD(b1) + D(a)b2 + aD(b2)
= D(a) · (b1 + b2) + a · (D(b1) + D(b2))
= D(a) · (b1 + b2) + a ·D(b1 + b2)
= D(a)b + aD(b).

2

Exercise 9.15. Let R be a ring, let a ∈ R[X], and let α ∈ R be a root of
a. Show that α is a multiple root of a if and only if α is a root of D(a) (see
Exercise 9.11). 2

Exercise 9.16. Let R be a ring, let a ∈ R[X] with deg(a) = k ≥ 0, and
let α ∈ R. Show that if we evaluate a at X + α, writing

a
[
X + α

]
=

k∑
i=0

biX
i,

with b0, . . . , bk ∈ R, then we have

i! · bi = (Di(a))(α) for i = 0, . . . , k.

2

Exercise 9.17. Let F be a field such that every non-constant polynomial
a ∈ F [X] has a root α ∈ F . (The field C is an example of such a field, an
important fact which we shall not be proving in this text.) Show that for
every positive integer r that is not a multiple of the characteristic of F ,
there exists an element ζ ∈ F ∗ of multiplicative order r, and that every
element in F ∗ whose order divides r is a power of ζ. 2
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9.3 Multi-variate polynomials

One can naturally generalize the notion of a polynomial in a single variable
to that of a polynomial in several variables. We discuss these ideas briefly
here — they will play only a minor role in the remainder of the text.

Consider the ring R[X] of polynomials over a ring R. If Y is another
indeterminate, we can form the ring R[X][Y] of polynomials in Y whose
coefficients are themselves polynomials in X over the ring R. One may
write R[X, Y] instead of R[X][Y]. An element of R[X, Y] is called a bivariate
polynomial.

Consider a typical element a ∈ R[X, Y], which may be written

a =
∑̀
j=0

( k∑
i=0

aijX
i

)
Yj . (9.3)

Rearranging terms, this may also be written as

a =
∑

0≤i≤k
0≤j≤`

aijX
iYj , (9.4)

or as

a =
k∑

i=0

(∑̀
j=0

aijY
j

)
Xj . (9.5)

If a is written as in (9.4), the terms aijXiYj with aij 6= 0R are called
monomials. The total degree of such a monomial aijXiYj is defined to
be i+j, and if a is non-zero, then the total degree of a, denoted Deg(a), is
defined to be the maximum total degree of any monomial appearing in (9.4).
We define the total degree of the zero polynomial to be −∞. The reader
may verify that for any a, b ∈ R[X, Y], we have Deg(ab) ≤ Deg(a) + Deg(b),
while equality holds if R is an integral domain.

When a is written as in (9.5), one sees that we can naturally view a as
an element of R[Y ][X], that is, as a polynomial in X whose coefficients are
polynomials in Y . From a strict, syntactic point of view, the rings R[Y ][X]
and R[X][Y ] are not the same, but there is no harm done in blurring this
distinction when convenient. We denote by degX(a) the degree of a, viewed
as a polynomial in X, and by degY(a) the degree of a, viewed as a polynomial
in Y. Analogously, one can formally differentiate a with respect to either X
or Y, obtaining the “partial” derivatives DX(a) and DY(a).

Example 9.29. Let us illustrate, with a particular example, the three
different forms — as in (9.3), (9.4), and (9.5) — of expressing a bivariate
polynomial. In the ring Z[X, Y] we have

a = (5X2 − 3X + 4)Y + (2X2 + 1)
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= 5X2Y + 2X2 − 3XY + 4Y + 1
= (5Y + 2)X2 + (−3Y)X + (4Y + 1).

We have Deg(a) = 3, degX(a) = 2, and degY(a) = 1. 2

More generally, if X1, . . . , Xn are indeterminates, we can form the ring
R[X1, . . . , Xn] of multi-variate polynomials in n variables over R. For-
mally, we can think of this ring as R[X1][X2] · · · [Xn]. Any multi-variate
polynomial can be expressed uniquely as the sum of monomials of the form
cXe1

1 · · · Xen
n for non-zero c ∈ R and non-negative integers e1, . . . , en; the

total degree of such a monomial is defined to be
∑

i ei, and the total degree
of a multi-variate polynomial a, denoted Deg(a), is defined to be the max-
imum degree of its monomials. As above, for a, b ∈ R[X1, . . . , Xn], we have
Deg(ab) ≤ Deg(a) + Deg(b), while equality always holds if R is an integral
domain.

Just as for bivariate polynomials, the order of the indetermi-
nates is not important, and for any i = 1, . . . , n, one can natu-
rally view any a ∈ R[X1, . . . , Xn] as a polynomial in Xi over the ring
R[X1, . . . , Xi−1, Xi+1, . . . , Xn], and define degXi

(a) to be the degree of a when
viewed in this way. Analogously, one can formally differentiate a with re-
spect to any variable Xi, obtaining the “partial” derivative DXi(a).

Just as polynomials in a single variable define polynomial functions, so
do polynomials in several variables. If R is a subring of E, a ∈ R[X1, . . . , Xn],
and α = (α1, . . . , αn) ∈ E×n, we define a(α) to be the element of E ob-
tained by evaluating the expression obtained by substituting αi for Xi in a.
Theorem 9.10 carries over directly to the multi-variate case.

Exercise 9.18. Let R be a ring, and let α1, . . . , αn be elements of R.
Show that any polynomial a ∈ R[X1, . . . , Xn] can be expressed as

a = (X1 − α1)q1 + · · ·+ (Xn − αn)qn + r,

where q1, . . . , qn ∈ R[X1, . . . , Xn] and r ∈ R. Moreover, show that the value
of r appearing in such an expression is uniquely determined (by a and
α1, . . . , αn). 2

Exercise 9.19. This exercise generalizes Theorem 9.14. Let D be an
integral domain, and let a ∈ D[X1, . . . , Xn], with Deg(a) = k ≥ 0. Let T be
a finite subset of D. Show that the number of elements α ∈ T×n such that
a(α) = 0 is at most k|T |n−1. 2

9.4 Ideals and Quotient Rings

Definition 9.18. Let R be a ring. An ideal of R is a subgroup I of the
additive group of R that is closed under multiplication by elements of R,
that is, for all a ∈ I and r ∈ R, we have ar ∈ I.



9.4 Ideals and Quotient Rings 217

Expanding the above definition, we see that a non-empty subset I of R
is an ideal of R if and only if for all a, b ∈ I and r ∈ R, we have

a + b ∈ I, −a ∈ I, and ar ∈ I.

Observe that the condition −a ∈ I is redundant, as it is implied by the
condition ar ∈ I with r = −1R. Note that in the case when R is the ring
Z, this definition of an ideal is consistent with that given in §1.2.

Clearly, {0R} and R are ideals of R. From the fact that an ideal I is
closed under multiplication by elements of R, it is easy to see that I = R
if and only if 1R ∈ I.

Example 9.30. For m ∈ Z, the set mZ is not only a subgroup of the
additive group Z, it is also an ideal of the ring Z. 2

Example 9.31. For m ∈ Z, the set mZn is not only a subgroup of the
additive group Zn, it is also an ideal of the ring Zn. 2

Example 9.32. In the previous two examples, we saw that for some
rings, the notion of an additive subgroup coincides with that of an ideal. Of
course, that is the exception, not the rule. Consider the ring of polynomial
R[X]. Suppose a is a non-zero polynomial in R[X]. The additive subgroup
generated by a consists of polynomials whose degrees are at most that of a.
However, this subgroup is not an ideal, since any ideal containing a must
also contain a · Xi for all i ≥ 0, and must therefore contain polynomials of
arbitrarily high degree. 2

Let a1, . . . , ak be elements of a ring R. Then it is easy to see that the
set

a1R + · · ·+ akR := {a1r1 + · · ·+ akrk : r1, . . . , rk ∈ R}
is an ideal of R, and contains a1, . . . , ak. It is called the ideal of R gener-
ated by a1, . . . , ak. Clearly, any ideal I of R that contains a1, . . . , ak must
contain a1R + · · ·+ akR, and in this sense, a1R + · · ·+ akR is the smallest
ideal of R containing a1, . . . , ak. An alternative notation that is often used
is to write (a1, . . . , ak) to denote the ideal generated by a1, . . . , ak, when the
ring R is clear from context. If an ideal I is of the form aR = {ar : r ∈ R}
for some a ∈ R, then we say that I is a principal ideal.

Note that if I and J are ideals of a ring R, then so are I +J := {x+y :
x ∈ I, y ∈ J} and I ∩ J (verify).

Since an ideal I of a ring R is a subgroup of the additive group R, we
may adopt the congruence notation in §8.3, writing a ≡ b (mod I) if and
only if a− b ∈ I.

Note that if I = dR, then a ≡ b (mod I) if and only if d | (a−b), and as a
matter of notation, one may simply write this congruence as a ≡ b (mod d).

Just considering R as an additive group, then as we saw in §8.3, we can
form the additive group R/I of cosets, where (a+I)+(b+I) := (a+b)+I.
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By also considering the multiplicative structure of R, we can view R/I as
a ring. To do this, we need the following fact:

Theorem 9.19. Let I be an ideal of a ring R, and let a, a′, b, b′ ∈ R. If
a ≡ a′ (mod I) and b ≡ b′ (mod I), then ab ≡ a′b′ (mod I).

Proof. If a′ = a + x for x ∈ I and b′ = b + y for y ∈ I, then a′b′ =
ab + ay + bx + xy. Since I is closed under multiplication by elements
of R, we see that ay, bx, xy ∈ I, and since it is closed under addition,
ay + bx + xy ∈ I. Hence, a′b′ − ab ∈ I. 2

This theorem is perhaps one of the main motivations for the definition
of an ideal. It allows us to define multiplication on R/I as follows: for
a, b ∈ R,

(a + I) · (b + I) := ab + I.

The above theorem is required to show that this definition is unambiguous.
Once that is done, it is straightforward to show that all the properties that
make R a ring are inherited by R/I — we leave the details of this to the
reader. In particular, the multiplicative identity of R/I is the coset 1R + I.
The ring R/I is called the quotient ring or residue class ring of R
modulo I.

As a matter of notation, for a ∈ R, we define [a mod I] := a+ I, and if
I = dR, we may write this simply as [a mod d]. If I is clear from context,
we may also just write [a].

Example 9.33. For n ≥ 1, the ring Zn is precisely the quotient ring
Z/nZ. 2

Example 9.34. Let f be a monic polynomial over a ring R with deg(f) =
` ≥ 0, and consider the quotient ring E := R[X]/fR[X]. By the division
with remainder property for polynomials (Theorem 9.12), for every a ∈
R[X], there exists a unique polynomial b ∈ R[X] such that a ≡ b (mod f)
and deg(b) < `. From this, it follows that every element of E can be written
uniquely as [b mod f ], where b ∈ R[X] is a polynomial of degree less than `.

The assumption that f is monic may be relaxed a bit: all that really
matters in this example is that the leading coefficient of f is a unit, so
that the division with remainder property applies. Also, note that in this
situation, we will generally prefer the more compact notation R[X]/(f),
instead of R[X]/fR[X]. 2

Example 9.35. Consider the polynomial f := X2+X+1 ∈ Z2[X] and the
quotient ring E := Z2[X]/(f). Let us name the elements of E as follows:

00 := [0 mod f ], 01 := [1 mod f ], 10 := [X mod f ], 11 := [X+1 mod f ].
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With this naming convention, addition of two elements in E corresponds
to just computing the bit-wise exclusive-or of their names. More precisely,
the addition table for E is the following:

+ 00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

Note that 00 acts as the additive identity for E, and that as an additive
group, E is isomorphic to the additive group Z2 × Z2.

As for multiplication in E, one has to compute the product of two
polynomials, and then reduce modulo f . For example, to compute 10 · 11,
using the identity X2 ≡ X + 1 (mod f), one sees that

X · (X + 1) ≡ X2 + X ≡ (X + 1) + X ≡ 1 (mod f);

thus, 10 ·11 = 01. The reader may verify the following multiplication table
for E:

· 00 01 10 11
00 00 00 00 00
01 00 01 10 11
10 00 10 11 01
11 00 11 01 10

Observe that 01 acts as the multiplicative identity for E. Notice that every
non-zero element of E has a multiplicative inverse, and so E is in fact a
field. By Theorem 9.16, we know that E∗ must be cyclic (this fact also
follows from Theorem 8.32, and the fact that |E∗| = 3.) Indeed, the reader
may verify that both 10 and 11 have multiplicative order 3.

This is the first example we have seen of a finite field whose cardinality
is not prime. 2

Exercise 9.20. Let p be a prime, and consider the ring Q(p) (see Exam-
ple 9.23). Show that any non-zero ideal of Q(p) is of the form (pi), for some
uniquely determined integer i ≥ 0. 2

Exercise 9.21. Let R be a ring. Show that if I is a non-empty subset
of R[X] that is closed under addition, multiplication by elements of R, and
multiplication by X, then I is an ideal of R[X]. 2

For the following three exercises, we need some definitions. An ideal I
of a ring R is called prime if I ( R and if for all a, b ∈ R, ab ∈ I implies
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a ∈ I or b ∈ I. An ideal I of a ring R is called maximal if I ( R and there
are no ideals J of R such that I ( J ( R.

Exercise 9.22. Let R be a ring.

(a) Show that an ideal I of R is prime if and only if R/I is an integral
domain.

(b) Show that an ideal I of R is maximal if and only if R/I is a field.

(c) Show that all maximal ideals of R are also prime ideals.

2

Exercise 9.23. This exercise explores some examples of prime and max-
imal ideals.

(a) Show that in the ring Z, the ideal {0} is prime but not maximal, and
that the maximal ideals are precisely those of the form pZ, where p
is prime.

(b) More generally, show that in an integral domain D, the ideal {0} is
prime, and this ideal is maximal if and only if D is a field.

(c) Show that in the ring F [X, Y], where F is a field, the ideal (X, Y) is
maximal, while the ideals (X) and (Y) are prime, but not maximal.

2

Exercise 9.24. It is a fact that all non-trivial rings R contain at least one
maximal ideal. Showing this in general requires some fancy set-theoretic
notions. This exercise develops a proof in the case where R is countable
(i.e., finite or countably infinite).

(a) Show that if R is non-trivial but finite, then it contains a maximal
ideal.

(b) Assume that R is countably infinite, and let a1, a2, a3, . . . be an
enumeration of the elements of R. Define a sequence of ideals
I0, I1, I2, . . . , as follows. Set I0 := {0R}, and for i ≥ 0, define

Ii+1 :=
{

Ii + aiR if Ii + aiR ( R;
Ii otherwise.

Finally, set

I :=
∞⋃

i=0

Ii.
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Show that I is a maximal ideal of R.

Hint: first show that I is an ideal; then show that I ( R by assuming
that 1R ∈ I and deriving a contradiction; finally, show that I is
maximal by assuming that for some i = 1, 2, . . . , we have I ( I +
aiR ( R, and deriving a contradiction.

2

For the following three exercises, we need the following definition: for
subsets X, Y of a ring R, let X · Y denote the set of all finite sums of the
form

x1y1 + · · ·+ x`y` (with xk ∈ X, yk ∈ Y for k = 1, . . . , `, for some ` ≥ 0).

Note that X · Y contains 0R (the “empty” sum, with ` = 0).

Exercise 9.25. Let R be a ring, and S a subset of R. Show that S · R
is an ideal of R, and is the smallest ideal of R containing S. 2

Exercise 9.26. Let I and J be two ideals of a ring R.

(a) Show that I · J is an ideal.

(b) Show that if I and J are principal ideals, with I = aR and J = bR,
then I · J = abR, and so is also a principal ideal.

(c) Show that I · J ⊆ I ∩ J .

(d) Show that if I + J = R, then I · J = I ∩ J .

2

Exercise 9.27. Let S be a subring of a ring R. Let I be an ideal of R,
and J an ideal of S.

(a) Show that I ∩ S is an ideal of S, and that (I ∩ S) ·R is an ideal of R
contained in I.

(b) Show that (J ·R) ∩ S is an ideal of S containing J .

2
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9.5 Ring Homomorphisms and Isomorphisms

Definition 9.20. A function ρ from a ring R to a ring R′ is called a
ring homomorphism if it is a group homomorphism with respect to the
underlying additive groups of R and R′, and if in addition,

(i) ρ(ab) = ρ(a)ρ(b) for all a, b ∈ R, and

(ii) ρ(1R) = 1R′ .

Expanding the definition, we see that the requirements that ρ must
satisfy in order to be a ring homomorphism are that for all a, b ∈ R, we
have ρ(a + b) = ρ(a) + ρ(b) and ρ(ab) = ρ(a)ρ(b), and that ρ(1R) = 1R′ .
Note that some texts do not require that ρ(1R) = 1R′ .

Since a ring homomorphism ρ from R to R′ is also an additive group
homomorphism, we may also adopt the notation and terminology for image
and kernel, and note that all the results of Theorem 8.20 apply as well here.
In particular, ρ(0R) = 0R′ , ρ(a) = ρ(b) if and only if a ≡ b (mod ker(ρ)),
and ρ is injective if and only if ker(ρ) = {0R}. However, we may strengthen
Theorem 8.20 as follows:

Theorem 9.21. Let ρ : R→ R′ be a ring homomorphism.

(i) For any subring S of R, ρ(S) is a subring of R′.

(ii) For any ideal I of R, ρ(I) is an ideal of img(ρ).

(iii) ker(ρ) is an ideal of R.

(iv) For any ideal I ′ of R′, ρ−1(I ′) is an ideal of R.

Proof. Exercise. 2

Theorems 8.21 and 8.22 have natural ring analogs — one only has to
show that the corresponding group homomorphisms are also ring homo-
morphisms:

Theorem 9.22. If ρ : R → R′ and ρ′ : R′ → R′′ are ring homomor-
phisms, then so is their composition ρ′ ◦ ρ : R→ R′′.

Proof. Exercise. 2

Theorem 9.23. Let ρi : R → Ri, for i = 1, . . . , n, be ring homomor-
phisms. Then the map ρ : R → R1 × · · · × Rn that sends a ∈ R to
(ρ1(a), . . . , ρn(a)) is a ring homomorphism.
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Proof. Exercise. 2

If a ring homomorphism ρ : R → R′ is a bijection, then it is called a
ring isomorphism of R with R′. If such a ring isomorphism ρ exists, we
say that R is isomorphic to R′, and write R ∼= R′. Moreover, if R = R′,
then ρ is called a ring automorphism on R.

Analogous to Theorem 8.24, we have:

Theorem 9.24. If ρ is a ring isomorphism of R with R′, then the inverse
function ρ−1 is a ring isomorphism of R′ with R.

Proof. Exercise. 2

Because of this theorem, if R is isomorphic to R′, we may simply say
that “R and R′ are isomorphic.”

We stress that a ring isomorphism ρ of R with R′ is essentially just
a “renaming” of elements; in particular, ρ maps units to units and zero
divisors to zero divisors (verify); moreover, the restriction of the map ρ to
R∗ yields a group isomorphism of R∗ with (R′)∗ (verify).

An injective ring homomorphism ρ : R → E is called an embedding
of R in E. In this case, img(ρ) is a subring of E and R ∼= img(ρ). If
the embedding is a natural one that is clear from context, we may simply
identify elements of R with their images in E under the embedding, and as
a slight abuse of terminology, we shall say that R as a subring of E.

We have already seen an example of this, namely, when we formally
defined the ring of polynomials R[X] over R, we defined the map ρ : R →
R[X] that sends c ∈ R to the polynomial whose constant term is c, and all
other coefficients zero. This map ρ is clearly an embedding, and it was via
this embedding that we identified elements of R with elements of R[X], and
so viewed R as a subring of R[X].

This practice of identifying elements of a ring with their images in an-
other ring under a natural embedding is very common. We shall see more
examples of this later (in particular, Example 9.43 below).

Theorems 8.25, 8.26, and 8.27 also have natural ring analogs — again,
one only has to show that the corresponding group homomorphisms are
also ring homomorphisms:

Theorem 9.25. If I is an ideal of a ring R, then the natural map ρ :
R → R/I given by ρ(a) = a + I is a surjective ring homomorphism whose
kernel is I.

Proof. Exercise. 2
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Theorem 9.26. Let ρ be a ring homomorphism from R into R′. Then
the map ρ̄ : R/ ker(ρ)→ img(ρ) that sends the coset a+ker(ρ) for a ∈ R to
ρ(a) is unambiguously defined and is a ring isomorphism of R/ ker(ρ) with
img(ρ).

Proof. Exercise. 2

Theorem 9.27. Let ρ be a ring homomorphism from R into R′. Then
for any ideal I contained in ker(ρ), the map ρ̄ : R/I → img(ρ) that sends
the coset a + I for a ∈ R to ρ(a) is unambiguously defined and is a ring
homomorphism from R/I onto img(ρ) with kernel ker(ρ)/I.

Proof. Exercise. 2

Example 9.36. For n ≥ 1, the natural map ρ from Z to Zn sends a ∈ Z
to the residue class [a mod n]. In Example 8.42, we noted that this is a
surjective group homomorphism on the underlying additive groups, with
kernel nZ; however, this map is also a ring homomorphism. 2

Example 9.37. As we saw in Example 8.43, if n1, . . . , nk are pairwise
relatively prime, positive integers, then the map from Z to Zn1 × · · · ×
Znk

that sends x ∈ Z to ([x mod n1], . . . , [x mod nk]) is a surjective group
homomorphism on the underlying additive groups, with kernel nZ, where
n =

∏k
i=1 ni. However, this map is also a ring homomorphism (this follows

from Example 9.36 and Theorem 9.23). Therefore, by Theorem 9.26, the
map that sends [x mod n] ∈ Zn to ([x mod n1], . . . , [x mod nk]) is a ring
isomorphism of the ring Zn with the ring Zn1×· · ·×Znk

. It follows that the
restriction of this map to Z∗n yields a group isomorphism of the multiplicative
groups Z∗n and Z∗n1

× · · · × Z∗nk
(see Example 9.13). 2

Example 9.38. As we saw in Example 8.44, if n1, n2 are positive integers
with n1 > 1 and n1 | n2, then the map ρ̄ : Zn2 → Zn1 that sends [a mod n2]
to [a mod n1] is a surjective group homomorphism on the underlying addi-
tive groups with kernel n1Zn2 . This map is also a ring homomorphism. The
map ρ̄ can also be viewed as the map obtained by applying Theorem 9.27
with the natural map ρ from Z to Zn1 and the ideal n2Z of Z, which is
contained in ker(ρ) = n1Z. 2

Example 9.39. Let R be a subring of a ring E, and fix α ∈ E. The
polynomial evaluation map ρ : R[X]→ E that sends a ∈ R[X] to a(α) ∈
E is a ring homomorphism from R[X] into E (see Theorem 9.10). The image
of ρ consists of all polynomial expressions in α with coefficients in R, and
is denoted R[α]. Note that R[α] is a subring of E containing R ∪ {α}, and
is the smallest such subring of E. 2
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Example 9.40. We can generalize the previous example to multi-variate
polynomials. If R is a subring of a ring E and α1, . . . , αn ∈ E, then the
map ρ : R[X1, . . . , Xn]→ E that sends a ∈ R[X1, . . . , Xn] to a(α1, . . . , αn) is
a ring homomorphism. Its image consists of all polynomial expressions in
α1, . . . , αn with coefficients in R, and is denoted R[α1, . . . , αn]. Moreover,
this image is a subring of E containing R∪{α1, . . . , αn}, and is the smallest
such subring of E. 2

Example 9.41. For any ring R, consider the map ρ : Z→ R that sends
m ∈ Z to m · 1R in R. This is clearly a ring homomorphism (verify). If
ker(ρ) = {0}, then img(ρ) ∼= Z, and so the ring Z is embedded in R, and
R has characteristic zero. If ker(ρ) = nZ for n > 0, then img(ρ) ∼= Zn, and
so the ring Zn is embedded in R, and R has characteristic n. Note that we
have n = 1 if and only if R is trivial.

Note that img(ρ) is the smallest subring of R; indeed, since any subring
of R must contain 1R and be closed under addition and subtraction, it must
contain img(ρ). 2

Example 9.42. Let R be a ring of prime characteristic p. For any a, b ∈
R, we have (see Exercise 9.2)

(a + b)p =
p∑

k=0

(
p

k

)
ap−kbk.

However, by Exercise 1.11, all of the binomial coefficients are multiples of
p, except for k = 0 and k = p, and hence in the ring R, all of these terms
vanish, leaving us with

(a + b)p = ap + bp.

This result is often jokingly referred to as the “freshman’s dream,” for
somewhat obvious reasons.

Of course, as always, we have

(ab)p = apbp and 1p
R = 1R,

and so it follows that the map ρ : R → R that sends a ∈ R to ap is a ring
homomorphism. It also immediately follows that for any integer e ≥ 1,
the e-fold composition ρe : R → R that sends a ∈ R to ape

is also a ring
homomorphism. 2

Example 9.43. As in Example 9.34, let f be a monic polynomial over a
ring R with deg(f) = `, but now assume that ` > 0. Consider the natural
map ρ from R[X] to the quotient ring E := R[X]/(f) that sends a ∈ R[X] to
[a mod f ]. If we restrict ρ to the subring R of R[X], we obtain an embedding
of R into E. Since this is a very natural embedding, one usually simply
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identifies elements of R with their images in E inder ρ, and regards R as a
subring of E. Taking this point of view, we see that if a =

∑
i aiXi, then

[a mod f ] = [
∑

i

aiX
i mod f ] =

∑
i

ai[X mod f ]i = a(η),

where η := [X mod f ] ∈ E. Therefore, the map ρ may be viewed as the
polynomial evaluation map, as in Example 9.39, that sends a ∈ R[X] to
a(η) ∈ E. Note that we have E = R[η]; moreover, every element of E can
be expressed uniquely as b(η) for some b ∈ R[X] of degree less than `, and
more generally, for arbitrary a, b ∈ R[X], we have a(η) = b(η) if and only if
a ≡ b (mod f). 2

Example 9.44. As a special case of Example 9.43, let f := X2 + 1 ∈
R[X], and consider the quotient ring R[X]/(f). If we set i := [X mod f ] ∈
R[X]/(f), then every element of R[X]/(f) can be expressed uniquely as a+bi,
where a, b ∈ R. Moreover, we have i2 = −1, and more generally, for
a, b, a′, b′ ∈ R, we have

(a + bi) + (a′ + b′i) = (a + a′) + (b + b′)i

and
(a + bi) · (a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i.

Thus, the rules for arithmetic in R[X]/(f) are precisely the familiar rules
of complex arithmetic, and so C and R[X]/(f) are essentially the same,
as rings. Indeed, the “algebraically correct” way of defining the complex
numbers C is simply to define them to be the quotient ring R[X]/(f) in the
first place. This will be our point of view from now on. 2

Example 9.45. Consider the polynomial evaluation map ρ : R[X]→ C =
R[X]/(X2 +1) that sends g ∈ R[X] to g(−i). For any g ∈ R[X], we may write
g = (X2 + 1)q + a + bX, where q ∈ R[X] and a, b ∈ R. Since (−i)2 + 1 =
i2 + 1 = 0, we have g(−i) = ((−i)2 + 1)q(−i) + a − bi = a − bi. Clearly,
then, ρ is surjective and the kernel of ρ is the ideal of R[X] generated by the
polynomial X2 +1. By Theorem 9.26, we therefore get a ring automorphism
ρ̄ on C that sends a + bi ∈ C to a− bi. In fact, ρ̄ it is none other than the
complex conjugation map. Indeed, this is the “algebraically correct” way
of defining complex conjugation in the first place. 2

Example 9.46. We defined the ring Z[i] of Gaussian integers in Exam-
ple 9.22 as a subring of C. Let us verify that the notation Z[i] introduced in
Example 9.22 is consistent with that introduced in Example 9.39. Consider
the polynomial evaluation map ρ : Z[X]→ C that sends g ∈ Z[X] to g(i) ∈ C.
For any g ∈ Z[X], we may write g = (X2 + 1)q + a + bX, where q ∈ Z[X] and
a, b ∈ Z. Since i2 + 1 = 0, we have g(i) = (i2 + 1)q(i) + a + bi = a + bi.
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Clearly, then, the image of ρ is the set {a + bi : a, b ∈ Z}, and the kernel of
ρ is the ideal of Z[X] generated by the polynomial X2 + 1. This shows that
Z[i] in Example 9.22 is the same as Z[i] in Example 9.39, and moreover,
Theorem 9.26 implies that Z[i] is isomorphic to Z[X]/(X2 + 1).

Thus, we can directly construct the Gaussian integers as the quotient
ring Z[X]/(X2 + 1). Likewise the field Q[i] (see Exercise 9.6) can be con-
structed directly as Q[X]/(X2 + 1). Such direct constructions are appealing
in that they are purely “elementary,” as they do not appeal to anything so
“sophisticated” as the real numbers. 2

Example 9.47. Let p be a prime, and consider the quotient ring E :=
Zp[X]/(X2 + 1). If we set i := [X mod (X2 + 1)] ∈ E, then E = Zp[i] =
{a + bi : a, b ∈ Zp}. In particular, E is a ring of cardinality p2. Moreover,
the rules for addition and multiplication in E look exactly the same as they
do in C: for a, b, a′, b′ ∈ Zp, we have

(a + bi) + (a′ + b′i) = (a + a′) + (b + b′)i

and
(a + bi) · (a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i.

Note that E may or may not be a field.
On the one hand, suppose that c2 = −1 for some c ∈ Zp (for example,

p = 2, p = 5, p = 13). Then (c + i)(c− i) = c2 + 1 = 0, and so E is not an
integral domain.

On the other hand, suppose there is no c ∈ Zp such that c2 = −1 (for
example, p = 3, p = 7). Then for any a, b ∈ Zp, not both zero, we must
have a2 + b2 6= 0; indeed, suppose that a2 + b2 = 0, and that, say, b 6= 0;
then we would have (a/b)2 = −1, contradicting the assumption that −1 has
no square root in Zp. Since Zp is a field, it follows that the same formula
for multiplicative inverses in C applies in E, namely,

(a + bi)−1 =
a− bi

a2 + b2
.

This construction provides us with more examples of finite fields whose
cardinality is not prime. 2

Example 9.48. If ρ : R → R′ is a ring homomorphism, then we can
extend ρ in a natural way to a ring homomorphism from R[X] to R′[X], by
defining ρ(

∑
i aiXi) :=

∑
i ρ(ai)Xi. We leave it to the reader to verify that

this indeed is a ring homomorphism. 2

Exercise 9.28. Verify that the “is isomorphic to” relation on rings is an
equivalence relation; that is, for all rings R1, R2, R3, we have



228 Rings

(a) R1
∼= R1;

(b) R1
∼= R2 implies R2

∼= R1;

(c) R1
∼= R2 and R2

∼= R3 implies R1
∼= R3.

2

Exercise 9.29. Let R1, R2 be rings, and let ρ : R1 × R2 → R1 be the
map that sends (a1, a2) ∈ R1 ×R2 to a1 ∈ R1. Show that ρ is a surjective
ring homomorphism whose kernel is {0R1} ×R2. 2

Exercise 9.30. Let ρ be a ring homomorphism from R into R′. Show
that the ideals of R containing ker(ρ) are in one-to-one correspondence with
the ideals of img(ρ), where the ideal I of R containing ker(ρ) corresponds
to the ideal ρ(I) of img(ρ). 2

Exercise 9.31. Let ρ : R → S be a ring homomorphism. Show that
ρ(R∗) ⊆ S∗, and that the restriction of ρ to R∗ yields a group homomor-
phism ρ∗ : R∗ → S∗ whose kernel is (1R + ker(ρ)) ∩R∗. 2

Exercise 9.32. Show that if F is a field, then the only ideals of F are
{0F } and F . From this, conclude the following: if ρ : F → R is a ring homo-
morphism from F into a non-trivial ring R, then ρ must be an embedding.
2

Exercise 9.33. Let n be a positive integer.

(a) Show that the rings Z[X]/(n) and Zn[X] are isomorphic.

(b) Assuming that n = pq, where p and q are distinct primes, show that
the rings Zn[X] and Zp[X]× Zq[X] are isomorphic.

2

Exercise 9.34. Let n be a positive integer, let f ∈ Z[X] be a monic
polynomial, and let f̄ be the image of f in Zn[X] (i.e., f̄ is obtained by
applying the natural map from Z to Zn coefficient-wise to f). Show that
the rings Z[X]/(n, f) and Zn[X]/(f̄) are isomorphic. 2

Exercise 9.35. Let R be a ring, and let α1, . . . , αn be elements of R.
Show that the rings R and R[X1, . . . , Xn]/(X1−α1, . . . , Xn−αn) are isomor-
phic. 2

Exercise 9.36. Let ρ : R → R′ be a ring homomorphism, and suppose
that we extend ρ, as in Example 9.48, to a ring homomorphism from R[X]
to R′[X]. Show that for any a ∈ R[X], we have D(ρ(a)) = ρ(D(a)), where
D(·) denotes the formal derivative. 2
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Exercise 9.37. This exercise and the next generalize the Chinese re-
mainder theorem to arbitrary rings. Suppose I and J are two ideals of a
ring R such that I + J = R. Show that the map ρ : R → R/I × R/J that
sends a ∈ R to ([a mod I], [a mod J ]) is a surjective ring homomorphism
with kernel I · J . Conclude that R/(I · J) is isomorphic to R/I ×R/J . 2

Exercise 9.38. Generalize the previous exercise, showing that
R/(I1 · · · Ik) is isomorphic to R/I1 × · · · × R/Ik, where R is a ring,
and I1, . . . , Ik are ideals of R, provided Ii + Ij = R for all i, j such that
i 6= j. 2

Exercise 9.39. Let F be a field and let d be an element of F that is not
a perfect square (i.e., there does not exist e ∈ F such that e2 = d). Let
E := F [X]/(X2 − d), and let η := [X mod (X2 − d)], so that E = F [η] =
{a + bη : a, b ∈ F}.

(a) Show that the quotient ring E is a field, and write down the formula
for the inverse of a + bη ∈ E.

(b) Show that the map that sends a + bη ∈ E to a − bη is a ring auto-
morphism on E.

2

Exercise 9.40. Let Q(m) be the subring of Q defined in Example 9.23.
Let us define the map ρ : Q(m) → Zm as follows. For a/b ∈ Q with
b relatively prime to m, ρ(a/b) := [a mod m][b mod m]−1. Show that ρ
is unambiguously defined, and is a surjective ring homomorphism. Also,
describe the kernel of ρ. 2

Exercise 9.41. Let ρ : R→ R′ be a map from a ring R to a ring R′ that
satisfies all the requirements of a ring homomorphism, except that we do
not require that ρ(1R) = 1R′ .

(a) Give a concrete example of such a map ρ, such that ρ(1R) 6= 1R′ and
ρ(1R) 6= 0R′ .

(b) Show that img(ρ) is a ring in which ρ(1R) plays the role of the mul-
tiplicative identity.

(c) Show that if R′ is an integral domain, and ρ(1R) 6= 0R′ , then ρ(1R) =
1R′ , and hence ρ satisfies our definition of a ring homomorphism.

(d) Show that if ρ is surjective, then ρ(1R) = 1R′ , and hence ρ satisfies
our definition of a ring homomorphism.

2



Chapter 10

Probabilistic Primality Testing

In this chapter, we discuss some simple and efficient probabilistic tests for
primality.

10.1 Trial Division

Suppose we are given a number n, and we want to determine whether n is
prime or composite. The simplest algorithm to describe and to program is
trial division. We simply divide n by 2, 3, and so on, testing if any of
these numbers evenly divide n. Of course, we don’t need to go any further
than

√
n, since if n has any non-trivial factors, it must have one that is no

greater than
√

n (see Exercise 1.1). Not only does this algorithm determine
whether n is prime or composite, it also produces a non-trivial factor of n
in case n is composite.

Of course, the drawback of this algorithm is that it is terribly inefficient:
it requires Θ(

√
n) arithmetic operations, which is exponential in the binary

length of n. Thus, for practical purposes, this algorithm is limited to quite
small n. Suppose, for example, that n has 100 decimal digits, and that a
computer can perform 1 billion divisions per second (this is much faster
than any computer existing today). Then it would take 3 × 1035 years to
perform

√
n divisions.

In this chapter, we discuss a much faster primality test that allows 100
decimal digit numbers to be tested for primality in less than a second.
Unlike the above test, however, this test does not find a factor of n when
n is composite. Moreover, the algorithm is probabilistic, and may in fact
make a mistake. However, the probability that it makes a mistake can be
made so small as to be irrelevant for all practical purposes. Indeed, we can
easily make the probability of error as small as 2−100 — should one really
care about an event that happens with such a miniscule probability?

230
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10.2 The Structure of Z∗n
Before going any further, we have to have a firm understanding of the
group Z∗n. As we know, Z∗n consists of those elements [a mod n] ∈ Zn such
that a is an integer relatively prime to n. Suppose n = pe1

1 · · · per
r is the

factorization of n into primes. By the Chinese remainder theorem, we have
the ring isomorphism

Zn
∼= Zp

e1
1
× · · · × Zper

r

which induces a group isomorphism

Z∗n ∼= Z∗
p

e1
1
× · · · × Z∗per

r
.

Thus, to determine the structure of the group Z∗n for general n, it suffices
to determine the structure for n = pe, where p is prime. By Theorem 2.13,
we already know the order of the group Z∗pe , namely, φ(pe) = pe−1(p− 1).

The main result of this section is the following:

Theorem 10.1. If p is an odd prime, then for any positive integer e, the
group Z∗pe is cyclic. The group Z∗2e is cyclic for e = 1 or 2, but not for
e ≥ 3. For e ≥ 3, Z∗2e is isomorphic to the additive group Z2 × Z2e−2 .

In the case where e = 1, this theorem is a special case of Theorem 9.16,
which we proved in §9.2.3. Note that for e > 1, the ring Zpe is not a field,
and so Theorem 9.16 cannot be used directly. To deal with the case e > 1,
we need a few simple facts.

Theorem 10.2. Let p be a prime. For integer e ≥ 1, if a ≡ b (mod pe),
then ap ≡ bp (mod pe+1).

Proof. We have a = b+cpe for some c ∈ Z. Thus, ap = bp+pbp−1cpe+dp2e

for an integer d. It follows that ap ≡ bp (mod pe+1). 2

Theorem 10.3. Let p be a prime. Let e ≥ 1 be an integer and assume
pe > 2. If a ≡ 1 + pe (mod pe+1), then ap ≡ 1 + pe+1 (mod pe+2).

Proof. By Theorem 10.2, ap ≡ (1+pe)p (mod pe+2). Expanding (1+pe)p,
we have

(1 + pe)p = 1 + p · pe +
p−1∑
k=2

(
p

k

)
pek + pep.

By Exercise 1.11, all of the terms in the sum on k are divisible by p1+2e,
and 1 + 2e ≥ e + 2 for all e ≥ 1. For the term pep, the assumption that
pe > 2 means that either p ≥ 3 or e ≥ 2, which implies ep ≥ e + 2. 2
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Now consider Theorem 10.1 in the case where p is odd. As we already
know that Z∗p is cyclic, assume e > 1. Let x ∈ Z be chosen so that [x mod p]
generates Z∗p. Suppose the multiplicative order of [x mod pe] ∈ Z∗pe is m.
Then as xm ≡ 1 (mod pe) implies xm ≡ 1 (mod p), it must be the case that
p− 1 divides m, and so [xm/(p−1) mod pe] has multiplicative order exactly
p − 1. By Theorem 8.38, if we find an integer y such that [y mod pe] has
multiplicative order pe−1, then [xm/(p−1)y mod pe] has multiplicative order
(p− 1)pe−1, and we are done. We claim that y := 1 + p does the job. Any
integer between 0 and pe− 1 can be expressed as an e-digit number in base
p; for example, y = (0 · · · 0 1 1)p. If we compute successive pth powers of y
modulo pe, then by Theorem 10.3 we have:

y rem pe = (0 · · · 0 1 1)p

yp rem pe = (∗ · · · ∗ 1 0 1)p

yp2
rem pe = (∗ · · · ∗ 1 0 0 1)p

...
ype−2

rem pe = (1 0 · · · 0 1)p

ype−1
rem pe = (0 · · · 0 1)p

Here, “∗” indicates an arbitrary digit. From this table of values, it is clear
(see Theorem 8.37) that [y mod pe] has multiplicative order pe−1. That
proves Theorem 10.1 for odd p.

We now prove Theorem 10.1 in the case p = 2. For e = 1 and e = 2, the
theorem is easily verified. Suppose e ≥ 3. Consider the subgroup G ⊆ Z∗2e

generated by [5 mod 2e]. Expressing integers between 0 and 2e−1 as e-digit
binary numbers, and applying Theorem 10.3, we have:

5 rem 2e = (0 · · · 0 1 0 1)2
52 rem 2e = (∗ · · · ∗ 1 0 0 1)2

...
52e−3

rem 2e = (1 0 · · · 0 1)2
52e−2

rem 2e = (0 · · · 0 1)2

So it is clear (see Theorem 8.37) that [5 mod 2e] has multiplicative order
2e−2. We claim that [−1 mod 2e] /∈ G. If it were, then since it has multi-
plicative order 2, and since any cyclic group of even order has precisely one
element of order 2 (see Theorem 8.31), it must be equal to [52e−3

mod 2e];
however, it is clear from the above calculation that 52e−3 6≡ −1 (mod 2e).
Let H ⊆ Z∗2e be the subgroup generated by [−1 mod 2e]. Then from the
above, G ∩ H = {[1 mod 2e]}, and hence by Theorem 8.28, G × H is iso-
morphic to the subgroup G ·H of Z∗2e . But since the orders of G×H and
Z∗2e are equal, we must have G ·H = Z∗2e . That proves the theorem.
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Exercise 10.1. Show that for n > 0, the group Z∗n is cyclic if and only
if

n = 1, 2, 4, pe, or 2pe,

where p is an odd prime and e is a positive integer. 2

Exercise 10.2. Let n = pq, where p and q are distinct primes such that
p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are themselves prime. Show
that the subgroup (Z∗n)2 of squares is a cyclic group of order p′q′. 2

Exercise 10.3. Let n = pq, where p and q are distinct primes such that
p - (q − 1) and q - (p− 1).

(a) Show that the map that sends [a mod n] ∈ Z∗n to [an mod n2] ∈
(Z∗n2)n is a group isomorphism.

(b) Consider the element α := [1 + n mod n2] ∈ Z∗n2 ; show that for any
non-negative integer k, αk = [1 + kn mod n2], and conclude that α
has multiplicative order n.

(c) Show that the map from Zn×Z∗n to Z∗n2 that sends ([k mod n], [a mod
n]) to [(1 + kn)an mod n2] is a group isomorphism.

2

10.3 The Miller-Rabin Test

We describe in this section a fast (polynomial time) test for primality,
known as the Miller-Rabin test. The algorithm, however, is probabilistic,
and may (with small probability) make a mistake.

We assume for the remainder of this section that the number n we are
testing for primality is odd.

Several probabilistic primality tests, including the Miller-Rabin test,
have the following general structure. Define Z6=n to be the set of non-zero
elements of Zn; thus, |Z6=n | = n − 1, and if n is prime, Z6=n = Z∗n. Suppose
also that we define a set Ln ⊆ Z6=n such that

• there is an efficient algorithm that on input n and α ∈ Z6=n , determines
if α ∈ Ln;

• if n is prime, then Ln = Z∗n;

• if n is composite, |Ln| ≤ c(n− 1) for some constant c < 1.

To test n for primality, we set an “error parameter” t, and choose ran-
dom elements α1, . . . , αt ∈ Z6=n . If αi ∈ Ln for all i = 1, . . . , t, then we
output true; otherwise, we output false.
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It is easy to see that if n is prime, this algorithm always outputs true,
and if n is composite this algorithm outputs true with probability at most
ct. If c = 1/2 and t is chosen large enough, say t = 100, then the probability
that the output is wrong is so small that for all practical purposes, it is “just
as good as zero.”

We now make a first attempt at defining a suitable set Ln. Let us define

Ln := {α ∈ Z6=n : αn−1 = 1}.

Note that Ln ⊆ Z∗n, since if αn−1 = 1, then α has a multiplicative inverse,
namely, αn−2. Using a repeated-squaring algorithm, we can test if α ∈ Ln

in time O(len(n)3).

Theorem 10.4. If n is prime, then Ln = Z∗n. If n is composite and
Ln ( Z∗n, then |Ln| ≤ (n− 1)/2.

Proof. Note that Ln is the kernel of the (n − 1)-power map on Z∗n, and
hence is a subgroup of Z∗n.

If n is prime, then we know that Z∗n is a group of order n− 1. Since the
order of a group element divides the order of the group, we have αn−1 = 1
for all α ∈ Z∗n. That is, Ln = Z∗n.

Suppose that n is composite and Ln ( Z∗n. Since the order of a subgroup
divides the order of the group, we have |Z∗n| = m|Ln| for some integer
m > 1. From this, we conclude that

|Ln| =
1
m
|Z∗n| ≤

1
2
|Z∗n| ≤

n− 1
2

.

2

Unfortunately, there are odd composite numbers n such that Ln = Z∗n.
The smallest such number is

561 = 3 · 11 · 17.

Such numbers are called Carmichael numbers. They are extremely rare,
but it is known that there are infinitely many of them, so we can not ignore
them. The following theorem puts some constraints on such numbers.

Theorem 10.5. A Carmichael number n is of the form n = p1 · · · pr,
where the pi are distinct primes, r ≥ 3, and (pi−1) | (n−1) for i = 1, . . . , r.

Proof. Let n = pe1
1 · · · per

r be a Carmichael number. By the Chinese
remainder theorem, we have an isomorphism of Z∗n with the group

Z∗
p

e1
1
× · · · × Z∗per

r
,
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and we know that each group Z∗
p

ei
i

is cyclic of order pei−1
i (pi − 1). Thus,

the power n − 1 kills the group Z∗n if and only if it kills all the groups
Z∗

p
ei
i

, which happens if and only if pei−1
i (pi − 1) | (n − 1). Now, on the

one hand, n ≡ 0 (mod pi). On the other hand, if ei > 1, we would have
n ≡ 1 (mod pi), which is clearly impossible. Thus, we must have ei = 1.

It remains to show that r ≥ 3. Suppose r = 2, so that n = p1p2. We
have

n− 1 = p1p2 − 1 = (p1 − 1)p2 + (p2 − 1).

Since (p1 − 1) | (n− 1), we must have (p1 − 1) | (p2 − 1). By a symmetric
argument, (p2 − 1) | (p1 − 1). Hence, p1 = p2, a contradiction. 2

To obtain a good primality test, we need to define a different set L′n,
which we do as follows. Let n− 1 = 2hm, where m is odd (and h ≥ 1 since
n is assumed odd), and define

L′n := {α ∈ Z6=n : αm2h

= 1 and
for j = 0, . . . , h− 1, αm2j+1

= 1 implies αm2j

= ±1}.

The Miller-Rabin test uses this set L′n, in place of the set Ln defined
above. It is clear from the definition that L′n ⊆ Ln.

Testing whether a given α ∈ Z6=n belongs to L′n can be done using the
following procedure:

β ← αm

if β = 1 then return true
for j ← 0 to h− 1 do

if β = −1 then return true
if β = +1 then return false
β ← β2

return false

It is clear that using a repeated-squaring algorithm, this procedure runs
in time O(len(n)3). We leave it to the reader to verify that this procedure
correctly determines membership in L′n.

Theorem 10.6. If n is prime, then L′n = Z∗n. If n is composite, then
|L′n| ≤ (n− 1)/4.

The rest of this section is devoted to a proof of this theorem.
Let n− 1 = m2h, where m is odd.
First, suppose n is prime, and let α ∈ Z∗n. Since Z∗n is a group of order

n− 1, and the order of a group element divides the order of the group, we
know that αm2h

= αn−1 = 1. Now consider any index j = 0, . . . , h − 1
such that αm2j+1

= 1, and consider the value β := αm2j

. Then since
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β2 = αm2j+1
= 1, the only possible choices for β are ±1 — this is because

Z∗n is cyclic of even order and so there are exactly 2 elements of Z∗n whose
multiplicative order divides 2, namely ±1. So we have shown that α ∈ L′n.

Now suppose that n is an odd composite.
Our strategy will be to first show that L′n is contained in a particular

subgroup G of Z∗n. We will then show that the order of G is suitably small.
Let

n = pe1
1 · · · per

r

be the prime factorization of n. Further, for i = 1, . . . , r, let Ri denote the
ring Zp

ei
i

, and let
θ : R1 × · · · ×Rr → Zn

be the ring isomorphism provided by the Chinese remainder theorem.
Also, let φ(pei

i ) = mi2hi , with mi odd, for i = 1, . . . , r, and let ` :=
min{h, h1, . . . , hr}.

Let α ∈ L′n be given, and suppose α = θ(α1, . . . , αr). Since α ∈ Z∗n, we
have αi ∈ R∗

i for i = 1, . . . , r.

Claim 1: We have
αm2`

= 1.

Proof of claim. The claim may be restated as

αm2j

= 1 (j = `, . . . , h).

The claim is clearly true by the definition of L′n for j = h. If ` = h, there
is nothing more to prove, so assume that ` < h, and in particular, that
` = hi for some i = 1, . . . , r. We may then prove the claim by induction,
assuming that it is true for some j = ` + 1, . . . , h, and proving it for j − 1.
Since α ∈ L′n and αm2j

= 1, we must have αm2j−1
= ±1. Suppose, by way

of contradiction, that αm2j−1
= −1 = θ(−1, . . . ,−1), and so in particular,

we must have αm2j−1

i = −1. To derive a contradiction, we shall now show
that αm2j−1

i = 1. To show this, let k be the multiplicative order of αi,
and observe that since αm2j

i = 1, we must have k | m2j ; further, since
αi is an element of a group of order mi2hi , we must have k | mi2hi . We
may therefore conclude that k | m2hi , and since hi = ` ≤ j − 1, we have
k | m2j−1, and so αm2j−1

i = 1. That proves Claim 1.

We have shown that for α ∈ L′n, we have αm2`

= 1, from which it
follows, by the definition of L′n, that αm2`−1

= ±1. For j = 0, . . . , h, let
H(j) := Z∗n{m2j}. (Recall that for any group H, written multiplicatively,
and any integer k, H{k} denotes the kernel of the k-power map on H.) So
we have

L′n ⊆ G := {α ∈ Z∗n : αm2`−1
= ±1} ⊆ H(`) ⊆ H(h) ⊆ Z∗n,

where G is clearly a subgroup of Z∗n, as it is the pre-image of the subgroup
{±1} of Z∗n under the (m2`−1)-power map.
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Claim 2: We have
[H(`) : G] = 2r−1. (10.1)

Proof of claim. To prove the claim, we consider the tower of subgroups

H(`−1) ⊆ G ⊆ H(`).

The claim will follow immediately from the following two facts (see Theo-
rem 8.18):

[H(`) : H(`−1)] = 2r, (10.2)

and
[G : H(`−1)] = 2. (10.3)

For i = 1, . . . , r, let us define Ki := R∗
i {m2`} and K ′

i := R∗
i {m2`−1}.

Evidently, we have

H(`) = θ(K1 × · · · ×Kr) and H(`−1) = θ(K ′
1 × · · · ×K ′

r). (10.4)

Consider a fixed index i = 1, . . . , r for a moment. Clearly, we have
K ′

i ⊆ Ki, and it is also evident that K2
i ⊆ K ′

i, and since Ki is a cyclic
group, [Ki : K2

i ] is either 1 or 2. Since [Ki : K2
i ] = [Ki : K ′

i][K
′
i : K2

i ], it
follows that [Ki : K ′

i] is either 1 or 2. Now, as ` ≤ hi, and since R∗
i is a cyclic

group of order mi2hi , there is some ζi ∈ R∗
i of multiplicative order 2`, and

in particular, ζ2`−1

i = −1. Moreover, ζm2`−1

i = (−1)m = −1 and ζm2`

i = 1.
In particular, ζi ∈ Ki \K ′

i, and we conclude that [Ki : K ′
i] = 2, where K ′

i

and ζiK
′
i are the distinct cosets of K ′

i in Ki. Moreover, for b = 0, 1, the
coset ζb

i K ′
i is the pre-image of (−1)b under the (m2`−1)-power map on R∗

i .
From the discussion in the previous paragraph, along with (10.4), we

see that there are 2r distinct cosets of H(`−1) in H(`), namely,

θ(ζb1
1 , . . . , ζbr

r ) ·H(`−1), (b1 = 0, 1; · · · ; br = 0, 1),

where each such coset θ(ζb1
1 , . . . , ζbr

r ) · H(`−1) is the pre-image of
θ((−1)b1 , . . . , (−1)br ) under the (m2`−1)-power map on Z∗n. The iden-
tity (10.2) is now clear. Moreover, since G is the pre-image of
{θ(1, . . . , 1), θ(−1, . . . ,−1)} under the (m2`−1)-power map on Z∗n, the iden-
tity (10.3) is also clear. That finishes the proof of Claim 2.

Now we are almost done with the proof of the theorem. There are four
cases to consider. In the first three cases, we show that [Z∗n : G] ≥ 4, from
which it follows that |L′n|/|Z6=n | ≤ 1/4.

Case 1: r ≥ 3. In this case, we have

[Z∗n : G] = [Z∗n : H(`)] [H(`) : G] ≥ 1 · 2r−1 ≥ 4.

Case 2: r = 2. In this case, we know by Theorem 10.5 that n is not a
Carmichael number, and hence [Z∗n : H(h)] ≥ 2. Hence

[Z∗n : G] = [Z∗n : H(h)] [H(h) : H(`)] [H(`) : G] ≥ 2 · 1 · 2 = 4.
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Case 3: r = 1 and n 6= 9. In this case, we have n = pe with e > 1, and
|H(h)| = gcd(pe − 1, pe−1(p − 1)) = p − 1. Hence, [Z∗n : H(h)] = pe−1, and
so

[Z∗n : G] = [Z∗n : H(h)] [H(h) : G] ≥ pe−1 · 1 = pe−1 ≥ 5,

since our assumptions imply that either p > 3 or e ≥ 2.

Case 4: n = 9. In this case, one can check that L′9 = {±1}, and so
|L′9|/|Z

6=
9 | = 2/8 = 1/4.

That completes the proof of Theorem 10.6

Exercise 10.4. Show that an integer n > 1 is prime if and only if there
exists an element in Z∗n of multiplicative order n− 1. 2

Exercise 10.5. Let p be a prime. Show that n := 2p + 1 is a prime if
and only if 2n−1 ≡ 1 (mod n). 2

Exercise 10.6. Here is another primality test that takes as input a pos-
itive, odd integer n, and a positive integer parameter t. The algorithm
chooses α1, . . . , αt ∈ Z6=n at random, and computes

βi := α
(n−1)/2
i (i = 1, . . . , t).

If (β1, . . . , βt) is of the form (±1,±1, . . . ,±1), but is not equal to
(1, 1, . . . , 1), the algorithm outputs true; otherwise, the algorithm outputs
false. Show that if n is prime, then the algorithm outputs false with prob-
ability at most 2−t, and if n is composite, the algorithm outputs true with
probability at most 2−t. 2

In the terminology of §7.2, the algorithm in the above exercise is an
example of an “Atlantic City” algorithm for the language of prime numbers
(or equivalently, the language of composite numbers), while the Miller-
Rabin test is an example of a “Monte Carlo” algorithm for the language of
composite numbers.

10.4 Generating Random Primes using the
Miller-Rabin Test

The Miller-Rabin test is the most practical algorithm known for testing
primality, and because of this, it is widely used in many applications, espe-
cially cryptographic applications where one needs to generate large, random
primes (as we saw in §7.7). In this section, we discuss how one uses the
Miller-Rabin test in several practically relevant scenarios where one must
generate large primes.



10.4 Generating Random Primes using the Miller-Rabin Test 239

10.4.1 Generating a random prime between 1 and M

Suppose one is given an integer M ≥ 2, and wants to generate a random
prime between 1 and M . We can do this by simply picking numbers at
random until one of them passes a primality test. We discussed this problem
in some detail in §7.4, where we assumed that we had a primality test
IsPrime. The reader should review §7.4, and §7.4.1 in particular. In this
section, we discuss aspects of this problem that are specific to the situation
where the Miller-Rabin test is used to implement IsPrime.

To be more precise, let us define the following algorithm MR(n, t), which
takes as input positive integers n and t, and runs as follows:

if n = 1 then return false
if n = 2 then return true
if n is even then return false

repeat t times
α←R {1, . . . , n− 1}
if α 6∈ L′n return false

return true

So we shall implement IsPrime(·) as MR(·, t), where t is an auxiliary
parameter. By Theorem 10.6, if n is prime, the output of MR(n, t) is always
true, while if n is composite, the output is true with probability at most
4−t. Thus, this implementation of IsPrime satisfies the assumptions in
§7.4.1, with ε = 4−t,

Let γ(M, t) be the probability that the output of Algorithm RP in §7.4
— using this implementation of IsPrime — is composite. Then as we
discussed in §7.4.1,

γ(M, t) ≤ 4−t M

π(M)
= O(4−tk), (10.5)

where k = len(M). Furthermore, if the output of Algorithm RP is prime,
then every prime is equally likely; that is, conditioning on the event that
the output is prime, the conditional output distribution is uniform over all
primes.

Let us now consider the expected running time of Algorithm RP. As
was shown in §7.4.1, this is O(kW ′

M ), where W ′
M is the expected running

time of IsPrime where the average is taken with respect to the random
choice of input n ∈ {1, . . . ,M} and the random choices of the primality
test itself. Clearly, we have W ′

M = O(tk3), since MR(n, t) executes at most
t iterations of the Miller-Rabin test, and each such test takes time O(k3).
This leads to an expected total running time bound of O(tk4). However,
this estimate for W ′

M is overly pessimistic. Intuitively, this is because when
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n is composite, we expect to perform very few Miller-Rabin tests — only
when n is prime do we actually perform all t of them. To make a rigorous
argument, consider the experiment in which n is chosen at random from
{1, . . . ,M}, and MR(n, t) is executed. Let Y be the number of times the
basic Miller-Rabin test is actually executed. Conditioned on any fixed,
prime value of n, the value of Y is always t. Conditioned on any fixed,
composite value of n, the distribution of Y is geometric with an associated
success probability of at least 3/4; thus, the conditional expectation of Y
is at most 4/3 in this case. Thus, we have

E[Y ] = E[Y | n prime]P[n prime] + E[Y | n not prime]P[n not prime]
≤ tπ(M)/M + 4/3.

Thus, E[Y ] ≤ 4/3 + O(t/k), from which it follows that W ′
M = O(k3 + tk2),

and hence the expected total running time of Algorithm RP is actually
O(k4 + tk3).

Note that the above estimate (10.5) for γ(M, t) is actually quite pes-
simistic. This is because the error probability 4−t is a worst-case estimate;
in fact, for “most” composite integers n, the probability that MR(n, t) out-
puts true is much smaller than this. In fact, γ(M, 1) is very small for large
M . For example, the following is known:

Theorem 10.7. We have

γ(M, 1) ≤ exp[−(1 + o(1)) log(M) log(log(log(M)))/ log(log(M))].

Proof. Literature — see §10.7. 2

The bound in the above theorem goes to zero quite quickly — faster
than (log M)−c for any positive constant c. While the above theorem is
asymptotically very good, in practice, one needs explicit bounds. For ex-
ample, the following lower bounds for − log2(γ(2k, 1)) are known:

k 200 300 400 500 600
3 19 37 55 74

Given an upper bound on γ(M, 1), we can bound γ(M, t) for t ≥ 2 using
the following inequality:

γ(M, t) ≤ γ(M, 1)
1− γ(M, 1)

4−t+1. (10.6)

To prove (10.6), it is not hard to see that on input M , the output distribu-
tion of Algorithm RP is the same as that of the following algorithm:
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repeat
repeat

n←R {1, . . . ,M}
until MR(n, 1)
n1 ← n

until MR(n1, t− 1)
output n1

Consider for a moment a single execution of the outer loop of the above
algorithm. Let β be the probability that n1 is composite, and let α be the
conditional probability that MR(n1, t − 1) outputs true, given that n1 is
composite. Evidently, β = γ(M, 1) and α ≤ 4−t+1.

Now, using exactly the same reasoning as was used to derive equation
(7.2) in §7.4.1, we find that

γ(M, t) =
αβ

αβ + (1− β)
≤ αβ

1− β
≤ 4−t+1γ(M, 1)

1− γ(M, 1)
,

which proves (10.6).

Given that γ(M, 1) is so small, for large M , Algorithm RP actually
exhibits the following behavior in practice: it generates a random value
n ∈ {1, . . . ,M}; if n is odd and composite, then the very first iteration of
the Miller-Rabin test will detect this with overwhelming probability, and
no more iterations of the test are performed on this n; otherwise, if n is
prime, the algorithm will perform t− 1 more iterations of the Miller-Rabin
test, “just to make sure.”

Exercise 10.7. Consider the problem of generating a random Sophie
Germain prime between 1 and M (see §5.5.5). One algorithm to do this is
as follows:

repeat
n←R {1, . . . ,M}
if MR(n, t) then

if MR(2n + 1, t) then
output n and halt

forever

Assuming Conjecture 5.26, show that this algorithm runs in expected
time O(k5+tk4), and outputs a number that is not a Sophie Germain prime
with probability O(4−tk2). As usual, k := len(M). 2

Exercise 10.8. Improve the algorithm in the previous exercise, so that
under the same assumptions, it runs in expected time O(k5 + tk3), and



242 Probabilistic Primality Testing

outputs a number that is not a Sophie Germain prime with proba-
bility O(4−tk2), or even better, show that this probability is at most
γ(M, t)π∗(M)/π(M) = O(γ(M, t)k), where π∗(M) is defined as in §5.5.5.
2

Exercise 10.9. Suppose in Algorithm RFN in §7.6 we implement algo-
rithm IsPrime(·) as MR(·, t), where t is a parameter satisfying 4−t(2 +
log M) ≤ 1/2, if M is the input to RFN. Show that the expected run-
ning time of Algorithm RFN in this case is O(k5 + tk4 len(k)). Hint: use
Exercise 7.16. 2

10.4.2 Trial division up to a small bound

In generating a random prime, most candidates n will in fact be composite,
and so it makes sense to cast these out as quickly as possible. Significant
efficiency gains can be achieved by testing if a given candidate n is divisible
by any small primes up to a given bound s, before we subject n to a Miller-
Rabin test. This strategy makes sense, since for a small, “single precision”
prime p, we can test if p | n essentially in time O(len(n)), while a single
iteration of the Miller-Rabin test takes time O(len(n)3) steps.

To be more precise, let us define the following algorithm MRS (n, t, s),
which takes as input positive integers n, t, and s, where s ≥ 2, and runs as
follows:

if n = 1 then return false
for each prime p ≤ s do

if p | n then
if p = n then return true else return false

repeat t times
α←R {1, . . . , n− 1}
if α 6∈ L′n return false

return true

In an implementation of the above algorithm, one would most likely use
the sieve of Eratosthenes (see §5.4) to generate the small primes.

Note that MRS (n, t, 2) is equivalent to MR(n, t). Also, it is clear that
the probability that MRS (n, t, s) makes a mistake is no more than the
probability that MR(n, t) makes a mistake. Therefore, using MRS in place
of MR will not increase the probability that the output of Algorithm RP is a
composite — indeed, it is likely that this probability decreases significantly.

Let us now analyze the impact on the running time. To do this, we need
to estimate the probability τ(M, s) that a randomly chosen number between
1 and M is not divisible by any primes up to s. If M is sufficiently large
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with respect to s, the following heuristic argument can be made rigorous,
as we will discuss below. The probability that a random number is divisible
by a prime p is about 1/p, so the probability that it is not divisible by p is
about 1− 1/p. Assuming that these events are essentially independent for
different values of p (this is the heuristic part), we estimate

τ(M, s) ≈
∏
p≤s

(1− 1/p) ∼ B1/ log s,

where B1 ≈ 0.56146 is the constant from Exercise 5.14 (see also Theo-
rem 5.21).

Of course, performing the trial division takes some time, so let us also
estimate the expected number κ(M, s) of trial divisions performed. If
p1, p2, . . . , pr are the primes up to s, then for i = 1, . . . , r, the probabil-
ity that we perform at least i trial divisions is precisely τ(M,pi− 1). From
this, it follows (see Theorem 6.8) that

κ(M, s) =
∑
p≤s

τ(M,p− 1) ≈
∑
p≤s

B1/ log p.

Using Exercise 5.9 and the Prime number theorem, we obtain

κ(M, s) ≈
∑
p≤s

B1/ log p ∼ B1π(s)/ log s ∼ B1s/(log s)2.

If k = len(M), for a random n ∈ {1, . . . ,M}, the expected amount
of time spent within MRS (n, t, s) performing the Miller-Rabin test is now
easily seen to be O(k3/ len(s)+tk2). Further, assuming that each individual
trial division step takes time O(len(n)), the expected running time of trial
division up to s is O(ks/ len(s)2). This estimate does not take into account
the time to generate the small primes using the sieve of Eratosthenes. These
values might be pre-computed, in which case this time is zero, but even
if we compute them on the fly, this takes time O(s len(len(s))), which is
dominated by O(ks/ len(s)2)) for any reasonable value of s (in particular,
for s ≤ kO(1)).

So provided s = o(k2 len(k)), the running time of MRS will be domi-
nated by the Miller-Rabin test, which is what we want, of course — if we
spend as much time on trial division as the time it would take to perform
a single Miller-Rabin test, we might as well just perform the Miller-Rabin
test. In practice, one should use a very conservative bound for s, probably
no more than k2, since getting s arbitrarily close to optimal does not really
provide that much benefit, while if we choose s too large, it can actually
do significant harm.

From the above estimates, we can conclude that with k ≤ s ≤ k2, the
expected running time W ′

M of MRS (n, t, s), with respect to a randomly



244 Probabilistic Primality Testing

chosen n between 1 and M , is

W ′
M = O(k3/ len(k) + tk2). (10.7)

From this, it follows that the expected running time of Algorithm RP on
input M is O(k4/ len(k) + tk3). Thus, we effectively reduce the running
time by a factor proportional to len(k), which is a very real and noticeable
improvement in practice.

The reader may have noticed that in our analysis of MRS , we as-
sumed that computing n rem p for a “small” prime p takes time
O(len(n)). However, if we strictly followed the rules established in
Theorem 3.3, we should charge time O(len(n) len(p)) for this divi-
sion step. To answer this charge that we have somehow “cheated,”
we offer the following remarks:

• first, in practice the primes p are so small that they surely will fit
into a single digit in the underlying representation of integers as
vectors of digits, and so estimating the cost as O(len(n)) rather
than O(len(n) len(p)) seems more realistic;

• second, even if one uses the bound O(len(n) len(p)), one can
carry out a similar analysis, obtaining the same result (namely,
a speedup by a factor proportional to len(k)) except that one
should choose s from a slightly smaller range (namely, s =
o(k2)).

As we already mentioned, the above analysis is heuristic, but the results
are correct. We shall now discuss how this analysis can be made rigorous;
however, we should remark that any such rigorous analysis is mainly of
theoretical interest only — in any practical implementation, the optimal
choice of the parameter s is best determined by experiment, with the anal-
ysis being used only as a rough guide. Now, to make the analysis rigorous,
we need prove that the estimate τ(M, s) ≈

∏
p≤s(1 − 1/p) is sufficiently

accurate. Proving such estimates takes us into the realm of “sieve theory.”
The larger M is with respect to s, the easier it is to prove such estimates.
We shall prove only the simplest and most naive such estimate, but it is
still good enough for our purposes, if we do not care too much about hidden
big-O constants.

Before stating any results, let us restate the problem slightly. For real
y ≥ 0, let us call a positive integer “y-rough” if it is not divisible by any
prime p up to y. For real x ≥ 0, let us define R(x, y) to be the number of
y-rough integers up to x. Thus, τ(M, s) = R(M, s)/M .

Theorem 10.8. For any real x ≥ 0 and y ≥ 0, we have∣∣∣∣R(x, y)− x
∏
p≤y

(1− 1/p)
∣∣∣∣ ≤ 2π(y).
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Proof. To simplify the notation, we shall use the Möbius function µ
(see §2.6). Also, for a real number u, let us write u = buc + {u}, where
0 ≤ {u} < 1. Let P be the product of the primes up to the bound y.

Now, there are bxc positive integers up to x, and of these, for each
prime p dividing P , precisely bx/pc are divisible by p, for each pair p, p′

of distinct primes dividing P , precisely bx/pp′c are divisible by pp′, and so
on. By inclusion/exclusion (see Exercise 6.2), we have

R(x, y) =
∑
d|P

µ(d)bx/dc =
∑
d|P

µ(d)(x/d)−
∑
d|P

µ(d){x/d}.

Moreover, ∑
d|P

µ(d)(x/d) = x
∑
d|P

µ(d)/d = x
∏
p≤y

(1− 1/p),

and ∣∣∣∣ ∑
d|P

µ(d){x/d}
∣∣∣∣ ≤∑

d|P

1 = 2π(y).

That proves the theorem. 2

This theorem only says something non-trivial when y is quite small.
Nevertheless, using Chebyshev’s theorem on the density of primes, along
with Mertens’ theorem, it is not hard to see that this theorem implies
that τ(M, s) = O(1/ log s) when s = O(log M log log M), which implies the
estimate (10.7) above. We leave the details as an exercise for the reader.

Exercise 10.10. Prove the claim made above that τ(M, s) = O(1/ log s)
when s = O(log M log log M). More precisely, show that there exist con-
stants c, d, and s0, such that for all M and d satisfying s0 ≤ s ≤
c log M log log M , we have τ(M, s) ≤ d/ log s. From this, derive the es-
timate (10.7) above. 2

Exercise 10.11. Let f be a polynomial with integer coefficients. For
real x ≥ 0 and y ≥ 0, define Rf (x, y) to be the number of integers m up to
x such that f(m) is y-rough. For positive integer M , define ωf (M) to be
the number of integers m ∈ {0, . . . ,M − 1} such that f(m) ≡ 0 (mod M).
Show that ∣∣∣∣Rf (x, y)− x

∏
p≤y

(1− ωf (p)/p)
∣∣∣∣ ≤ ∏

p≤y

(1 + ωf (p)).

2
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Exercise 10.12. Consider again the problem of generating a random So-
phie Germain prime, as discussed in Exercises 10.7 and 10.8. A useful idea
is to first test if either n or 2n + 1 are divisible by any small primes up
to some bound s, before performing any more expensive tests. Using this
idea, design and analyze an algorithm that improves the running time of
the algorithm in Exercise 10.8 to O(k5/ len(k)2 + tk3) — under the same
assumptions, and achieving the same error probability bound as in that ex-
ercise. Hint: first show that the previous exercise implies that the number
of positive integers m up to x such that both m and 2m + 1 are y-rough is
at most

x · 1
2

∏
2<p≤y

(1− 2/p) + 3π(y).

2

Exercise 10.13. Design an algorithm that takes as input a prime q and
a bound M , and outputs a random prime p between 1 and M such that
p ≡ 1 (mod q). Clearly, we need to assume that M is sufficiently large with
respect to q. Analyze your algorithm assuming Conjecture 5.24. State how
large M must be with respect to q, and under these assumptions, show
that your algorithm runs in time O(k4/ len(k) + tk3), and that its output
is incorrect with probability O(4−tk). As usual, k := len(M). 2

10.4.3 Generating a random k-bit prime

In some applications, we want to generate a random prime of fixed size —
a random 1024-bit prime, for example. More generally, let us consider the
following problem: given integer k ≥ 2, generate a random k-bit prime,
that is, a prime in the interval [2k−1, 2k).

Bertrand’s postulate (Theorem 5.7) implies that there exists a constant
c > 0 such that π(2k)− π(2k−1) ≥ c2k−1/k for all k ≥ 2.

Now let us modify Algorithm RP so that it takes as input integer k ≥ 2,
and repeatedly generates a random n in the interval {2k−1, . . . , 2k−1} until
IsPrime(n) returns true. Let us call this variant Algorithm RP′. Further,
let us implement IsPrime(·) as MR(·, t), for some auxiliary parameter t,
and define γ′(k, t) to be the probability that the output of Algorithm RP′

— with this implementation of IsPrime — is composite.
Then using exactly the same reasoning as above,

γ′(k, t) ≤ 4−t 2k−1

π(2k)− π(2k−1)
= O(4−tk).

As before, if the output of Algorithm RP′ is prime, then every k-bit prime
is equally likely, and the expected running time is O(k4 + tk3). By do-
ing some trial division as in the previous section, this can be reduced to
O(k4/ len(k) + tk3).
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The function γ′(k, t) has been studied a good deal; for example, the
following is known:

Theorem 10.9. For all k ≥ 2, we have

γ′(k, 1) ≤ k242−
√

k.

Proof. Literature — see §10.7. 2

Upper bounds for γ′(k, t) for specific values of k and t have been
computed. The following table lists some known lower bounds for
− log2(γ′(k, t)) for various values of k and t:

t\k 200 300 400 500 600
1 11 19 37 56 75
2 25 33 46 63 82
3 34 44 55 70 88
4 41 53 63 78 95
5 47 60 72 85 102

Using exactly the same reasoning as the derivation of (10.6), one sees
that

γ′(k, t) ≤ γ′(k, 1)
1− γ′(k, 1)

4−t+1.

10.5 Perfect Power Testing and Prime Power
Factoring

Consider the following problem: we are given a integer n ≥ 2, and want to
determine if n is a perfect power, which means that n = de for integers
d and e, both greater than 1. Certainly, if such d and e exist, then it must
be the case that 2e ≤ n, so we can try all possible candidate values of e,
running from 2 to blog2 nc. For each such candidate value of e, we can
test if n = de for some d as follows. Suppose n is a k-bit number, that is,
2k−1 ≤ n < 2k. Then 2(k−1)/e ≤ n1/e < 2k/e. So any integer eth root of n
must lie in the set {u, . . . , v − 1}, where u := 2b(k−1)/ec and v := 2dk/ee.
Using u and v as starting values, we can perform a binary search:
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repeat
w ← b(u + v)/2c
z ← we

if z = n then
declare than n = we is an a perfect eth power, and stop

else if z < n
u← w + 1

else
v ← w

until u ≥ v
declare that n is not a perfect eth power

If n = de for some integer d, then the following invariant holds (verify):
at the beginning of each loop iteration, we have u ≤ d < v. Thus, if n is a
perfect eth power, this will be discovered. That proves the correctness of
the algorithm.

As to its running time, note that with each loop iteration, the length
v − u of the search interval decreases by a factor of at least 2 (verify).
Therefore, after t iterations the interval will be of length at most 2k/e+1/2t,
so after at most k/e + 2 iterations, the interval will be of length less than
1, and hence of length zero, and the algorithm will halt. So the number
of loop iterations is O(k/e). The power we computed in each iteration is
no more than 2(k/e+1)e = 2k+e ≤ 22k, and hence can be computed in time
O(k2) (see Exercise 3.22). Hence the overall cost of testing if n is an eth
power using this algorithm is O(k3/e).

Trying all candidate values of e from 1 to blog2 nc yields an overall
running time for perfect power testing of O(

∑
e k3/e), which is O(k3 len(k)).

To find the largest possible value of e for which n is an eth power, we should
examine the candidates from highest to lowest.

Using the above algorithm for perfect power testing and an efficient
primality test, we can determine if an integer n is a prime power pe, and
if so, compute p and e: we find the largest positive integer e (possibly 1)
such that n = de for integer d, and test if d is a prime using an efficient
primality test.

10.6 Factoring and Computing Euler’s Phi
Function

In this section, we use some of the ideas developed to analyze the Miller-
Rabin test to prove that the problem of factoring n and the problem of
computing φ(n) are equivalent. By equivalent, we mean that given an
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efficient algorithm to solve one problem, we can efficiently solve the other,
and vice versa.

Clearly, one direction is easy: if we can factor n into primes, so

n = pe1
1 · · · per

r , (10.8)

then we can simply compute φ(n) using the formula

φ(n) = pe1−1
1 (p1 − 1) · · · per−1

r (pr − 1).

For the other direction, first consider the special case where n = pq, for
distinct primes p and q. Suppose we are given n and φ(n), so that we have
two equations in the unknowns p and q:

n = pq and φ(n) = (p− 1)(q − 1).

Substituting n/p for q in the second equation, and simplifying, we obtain

p2 + (φ(n)− n− 1)p + n,

which can be solved using the quadratic formula.

For the general case, it is just as easy to prove a stronger result: given
any non-zero multiple of the exponent of Z∗n, we can efficiently factor n. In
particular, this will show that we can efficiently factor Carmichael numbers.

Before stating the algorithm in its full generality, we can convey the
main idea by considering the special case where n = pq, where p and q are
distinct primes, with p ≡ q ≡ 3 (mod 4). Suppose we are given such an
n, along with f 6= 0 that is a common multiple of p − 1 and q − 1. The
algorithm works as follows: let f = 2hm, where m is odd; choose a random,
non-zero element α of Zn; test if either gcd(rep(α), n) or gcd(rep(αm)+1, n)
splits n (recall that rep(α) denotes the canonical representative of α).

The assumption that p ≡ 3 (mod 4) means that (p − 1)/2 is an odd
integer, and since f is a multiple of p − 1, it follows that gcd(m, p − 1) =
(p−1)/2, and hence the image of Z∗p under the m-power map is the subgroup
of Z∗p of order 2, which is {±1}. Likewise, the image of Z∗q under the m-
power map is {±1}. Let θ : Zp × Zq → Zn be the ring isomorphism from
the Chinese remainder theorem. Now, if α in the above algorithm does not
lie in Z∗n, then certainly gcd(rep(α), n) splits n. Otherwise, condition on
the event that α ∈ Z∗n. In this conditional probability distribution, α is
uniformly distributed over Z∗n, and β := αm is uniformly distributed over
θ(±1,±1). Let us consider each of these four possibilities:

• β = θ(1, 1) implies β + 1 = θ(2, 2), and hence gcd(rep(β) + 1, n) = 1;

• β = θ(−1,−1) implies β +1 = θ(0, 0), and hence gcd(rep(β)+1, n) =
n;
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• β = θ(−1, 1) implies β+1 = θ(0, 2), and hence gcd(rep(β)+1, n) = p;

• β = θ(1,−1) implies β+1 = θ(2, 0), and hence gcd(rep(β)+1, n) = q.

Thus, if β = θ(−1, 1) or β = θ(1,−1), which happens with probability 1/2,
then gcd(rep(β) + 1, n) splits n. Thus, the overall probability that we split
n is at least 1/2.

We now present the algorithm in its full generality. We first introduce
some notation; namely, let λ(n) denote the exponent of Z∗n. If the prime
factorization of n is as in (10.8), then by the Chinese remainder theorem,
we have

λ(n) = lcm(λ(pe1
1 ), . . . , λ(per

r )).

Moreover, for any prime power pe, by Theorem 10.1, we have

λ(pe) =
{

pe−1(p− 1) if p 6= 2 or e ≤ 2,
2e−2 if p = 2 and e ≥ 3.

In particular, if m | n, then λ(m) | λ(n).
Now, returning to our factorization problem, we are given n and a non-

zero multiple f of λ(n), and want to factor n. We may as well assume that
n is odd; otherwise, we can pull out all the factors of 2, obtaining n′ such
that n = 2en′, where n′ is odd and f is a multiple of λ(n′), thus, reducing
to the odd case.

So now, assume n is odd and f is a multiple of λ(n). Assume that f is
of the form f = 2hm, where m is odd. Our factoring algorithm, which we
describe recursively, runs as follows.

if n is a prime power pe then
output e copies of p and return

generate a random, non-zero element α of Zn

d1 ← gcd(rep(α), n)
if d1 6= 1, then recursively factor d1 and n/d1 (using the same f),

and return
α← αm

for j ← 0 to h− 1 do
d2 ← gcd(rep(α) + 1, n)
if d2 /∈ {1, n}, then recursively factor d2 and n/d2

(using the same f), and return
α← α2

recursively factor n (using the same f)

It is clear that when the algorithm terminates, its output consists of the
list of all primes (including duplicates) dividing n, assuming the primality
test does not make a mistake.
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To analyze the running time of the algorithm, assume that the prime
factorization of n is as in (10.8). By the Chinese remainder theorem, we
have a ring isomorphism

θ : Zp
e1
1
× · · · × Zper

r
→ Zn.

Let λ(pei
i ) = mi2hi , where mi is odd, for i = 1, . . . , r, and let ` :=

max{h1, . . . , hr}. Note that since λ(n) | f , we have ` ≤ h.
Consider one execution of the body of the recursive algorithm. If n is

a prime power, this will be detected immediately, and the algorithm will
return. Here, even if we are using probabilistic primality test, such as the
Miller-Rabin test, that always says that a prime is a prime, the algorithm
will certainly halt. So assume that n is not a prime power, which means
that r ≥ 2. If the chosen value of α is not in Z∗n, then d1 will be a non-
trivial divisor of n. Otherwise, conditioning on the event that α ∈ Z∗n, the
distribution of α is uniform over Z∗n. Consider the value β := αm2`−1

.
We claim that with probability at least 1/2, gcd(rep(β) + 1, n) is a

non-trivial divisor of n. To prove this claim, let us write

β = θ(β1, . . . , βr),

where βi ∈ Z∗
p

ei
i

for i = 1, . . . , r. Note that for those i with hi < `,

the m2`−1-power map kills the group Z∗
p

ei
i

, while for those i with hi = `,

the image of Z∗
p

ei
i

under the m2`−1-power map is {±1}. Without loss of
generality, assume that the indices i such that hi = ` are numbered 1, . . . , r′,
where 1 ≤ r′ ≤ r. The values βi for i = 1, . . . , r′ are uniformly and
independently distributed over {±1}, while for all i > r′, βi = 1. Thus,
the value of gcd(rep(β) + 1, n) is the product of all prime powers pei

i , with
βi = −1, which will be non-trivial unless either (1) all the βi are 1, or (2)
r′ = r and all the βi are −1. Consider two cases. First, if r′ < r, then only
event (1) is possible, and this occurs with probability 2−r′ ≤ 1/2. Second,
if r′ = r, then each of events (1) and (2) occur with probability 2−r, and so
the probability that either occurs is 2−r+1 ≤ 1/2. That proves the claim.

From the claim, it follows that with probability at least 1/2, we will
obtain a non-trivial divisor d2 of n when j = `− 1 (if not before).

So we have shown that with probability at least 1/2, one execution of
the body will succeed in splitting n into non-trivial factors. After at most
log2 n such successes, we will have completely factored n. Therefore, the
expected number of recursive invocations of the algorithm is O(len(n)), and
hence the expected running time of the algorithm is O(len(n)4).

Exercise 10.14. Suppose you are given an integer n of the form n = pq,
where p and q are distinct, `-bit primes, with p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are themselves prime. Suppose that you are also given an
integer m such that gcd(m, p′q′) 6= 1. Show how to efficiently factor n. 2
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Exercise 10.15. Suppose there is a probabilistic algorithm A that takes
as input an integer n of the form n = pq, where p and q are distinct, `-bit
primes, with p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are prime. The
algorithm also takes as input α, β ∈ (Z∗n)2. It outputs either “failure,” or
integers x, y, not both zero, such that αxβy = 1. Furthermore, assume that
A runs in strict polynomial time, and that for all n of the above form, and
for randomly chosen α, β ∈ (Z∗n)2, A succeeds in finding x, y as above with
probability ε(n). Here, the probability is taken over the random choice of
α and β, as well as the random choices made during the execution of A.

Show how to use A to construct another probabilistic algorithm A′ that
takes as input n as above, runs in expected polynomial time, and which
satisfies the following property:

if ε(n) ≥ 0.001, then A′ factors n with probability at least 0.999.

2

10.7 Notes

The Miller-Rabin test is due to Miller [59], and Rabin [71]. The paper by
Miller defined the set L′n, but did not give a probabilistic analysis. Rather,
Miller showed that under a generalization of the Riemann hypothesis, for
composite n, the least positive integer a such that [a mod n] ∈ Zn \L′n is at
most O((log n)2), thus giving rise to a deterministic primality test whose
correctness depends on the above unproved hypothesis. The later paper by
Rabin re-interprets Miller’s result in the context of probabilistic algorithms.

Bach [9] gives an explicit version of Miller’s result, showing that under
the same assumptions, the least positive integer a such that [a mod n] ∈
Zn \L′n is at most 2(log n)2; more generally, Bach shows the following holds
under a generalization of the Riemann hypothesis:

For any positive integer n, and any proper subgroup G ( Z∗n,
the least positive integer a such that [a mod n] ∈ Zn \ G is
at most 2(log n)2, and the least positive integer b such that
[b mod n] ∈ Z∗n \G is at most 3(log n)2.

The first efficient probabilistic primality test was invented by Solovay and
Strassen [90] (their paper was actually submitted for publication in 1974).
Later, in Chapter 22, we shall discuss a recently discovered, deterministic,
polynomial-time (though not very practical) primality test, whose analysis
does not rely on any unproved hypothesis.

Carmichael numbers are named after R. D. Carmichael, who was the
first to discuss them in work published in the early 20th century. Al-
ford, Granville, and Pomerance [6] proved that there are infinitely many
Carmichael numbers.
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Exercise 10.6 is based on Lehmann [51].
Theorem 10.7, as well as the table of values just below it, are from Kim

and Pomerance [49]. In fact, these bounds hold for the weaker test based
on Ln.

Our analysis in §10.4.2 is loosely based on a similar analysis in §4.1
of Maurer [57]. Theorem 10.8 and its generalization in Exercise 10.11 are
certainly not the best results possible in this area. The general goal of
“sieve theory” is to prove useful upper and lower bounds for quantities like
Rf (x, y) that hold when y is as large as possible with respect to x. For
example, using a technique known as Brun’s pure sieve, one can show that
for log y <

√
log x, there exist β and β′, both of absolute value at most 1,

such that

Rf (x, y) = (1 + βe−
√

log x)x
∏
p≤y

(1− ωf (p)/p) + β′
√

x.

Thus, this gives us very sharp estimates for Rf (x, y) when x tends to infin-
ity, and y is bounded by any fixed polynomial in log x. For a proof of this
result, see §2.2 of Halberstam and Richert [37] (the result itself is stated
as equation 2.16). Brun’s pure sieve is really just the first non-trivial sieve
result, developed in the early 20th century; even stronger results, extending
the useful range of y (but with larger error terms), have subsequently been
proved.

Theorem 10.9, as well as the table of values immediately below it, are
from Damg̊ard, Landrock, and Pomerance [27].

The algorithm presented in §10.6 for factoring an integer given a mul-
tiple of φ(n) (or, for that matter, λ(n)) is essentially due to Miller [59].
However, just as for his primality test, Miller presents his algorithm as a
deterministic algorithm, which he analyzes under a generalization of the
Riemann hypothesis. The probabilistic version of Miller’s factoring algo-
rithm appears to be “folklore.”



Chapter 11

Finding Generators and
Discrete Logarithms in Z∗p

As we have seen in Theorem 9.16, for a prime p, Z∗p is a cyclic group of
order p− 1. This means that there exists a generator γ ∈ Z∗p, such that for
all α ∈ Z∗p, α can be written uniquely as α = γx, where x is an integer with
0 ≤ x < p− 1; the integer x is called the discrete logarithm of α to the
base γ, and is denoted logγ α.

This chapter discusses some computational problems in this setting;
namely, how to efficiently find a generator γ, and given γ and α, how to
compute logγ α.

More generally, if γ generates a subgroup G of Z∗p of order q, where
q | (p − 1), and α ∈ G, then logγ α is defined to be the unique integer x
with 0 ≤ x < q and α = γx. In some situations it is more convenient to view
logγ α as an element of Zq. Also for x ∈ Zq, with x = [a mod q], one may
write γx to denote γa. There can be no confusion, since if x = [a′ mod q],
then γa′ = γa. However, in this chapter, we shall view logγ α as an integer.

Although we work in the group Z∗p, all of the algorithms discussed in
this chapter trivially generalize to any finite cyclic group that has a suitably
compact representation of group elements and an efficient algorithm for
performing the group operation on these representations.

11.1 Finding a Generator for Z∗p
There is no efficient algorithm known for this problem, unless the prime
factorization of p−1 is given, and even then, we must resort to the use of a
probabilistic algorithm. Of course, factoring in general is believed to be a
very difficult problem, so it may not be easy to get the prime factorization
of p− 1. However, if our goal is to construct a large prime p, together with
a generator for Z∗p, then we may use Algorithm RFN in §7.6 to generate
a random factored number n in some range, test n + 1 for primality, and

254
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then repeat until we get a factored number n such that p = n + 1 is prime.
In this way, we can generate a random prime p in a given range along with
the factorization of p− 1.

We now present an efficient probabilistic algorithm that takes as input
an odd prime p, along with the prime factorization

p− 1 =
r∏

i=1

qei
i ,

and outputs a generator for Z∗p. It runs as follows:

for i← 1 to r do
repeat

choose α ∈ Z∗p at random
compute β ← α(p−1)/qi

until β 6= 1

γi ← α(p−1)/q
ei
i

γ ←
∏r

i=1 γi

output γ

First, let us analyze the correctness of this algorithm. When the ith
loop iteration terminates, by construction, we have

γ
q

ei
i

i = 1 but γ
q

ei−1
i

i 6= 1.

It follows (see Theorem 8.37) that γi has multiplicative order qei
i . From

this, it follows (see Theorem 8.38) that γ has multiplicative order p− 1.
Thus, we have shown that if the algorithm terminates, its output is

always correct.
Let us now analyze the running time of this algorithm. Consider the

repeat/until loop in the ith iteration of the outer loop, for i = 1, . . . , r, and
let Xi be the random variable whose value is the number of iterations of
this repeat/until loop. Since α is chosen at random from Z∗p, the value of
β is uniformly distributed over the image of the (p− 1)/qi-power map (see
Exercise 8.20), and since the latter is a subgroup of Z∗p of order qi, we see
that β = 1 with probability 1/qi. Thus, Xi has a geometric distribution
with associated success probability 1− 1/qi, and therefore, E[Xi] = 1/(1−
1/qi) ≤ 2. Set X := X1 + · · ·+Xr. Note that E[X] = E[X1]+ · · ·+E[Xr] ≤
2r. The running time T of the entire algorithm is O(X · len(p)3), and hence
the expected running is E[T ] = O(r len(p)3), and since r ≤ log2 p, we have
E[T ] = O(len(p)4).

Although this algorithm is quite practical, there are asymptotically
faster algorithms for this problem (see Exercise 11.2).
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Exercise 11.1. Suppose we are not given the prime factorization of p−1,
but rather, just a prime q dividing p − 1, and we want to find an element
of multiplicative order q in Z∗p. Design and analyze an efficient algorithm
to do this. 2

Exercise 11.2. Suppose we are given a prime p, along with the prime
factorization p− 1 =

∏r
i=1 qei

i .

(a) If, in addition, we are given α ∈ Z∗p, show how to compute the multi-
plicative order of α in time O(r len(p)3). Hint: use Exercise 8.23.

(b) Improve the running time bound to O(len(r) len(p)3). Hint: use Ex-
ercise 3.29.

(c) Modifying the algorithm you developed for part (b), show how to
construct a generator for Z∗p in expected time O(len(r) len(p)3).

2

Exercise 11.3. Suppose we are given a positive integer n, along with its
prime factorization n = pe1

1 · · · per
r , and that for each i = 1, . . . , r, we are

also given the prime factorization of pi−1. Show how to efficiently compute
the multiplicative order of any element α ∈ Z∗n. 2

Exercise 11.4. Suppose there is an efficient algorithm that takes as in-
put a positive integer n and an element α ∈ Z∗n, and computes the multi-
plicative order of α. Show how to use this algorithm to be build an efficient
integer factoring algorithm. 2

11.2 Computing Discrete Logarithms Z∗p
In this section, we consider algorithms for computing the discrete logarithm
of α ∈ Z∗p to a given base γ. The algorithms we present here are, in the
worst case, exponential-time algorithms, and are by no means the best
possible; however, in some special cases, these algorithms are not so bad.

11.2.1 Brute-force search

Suppose that γ ∈ Z∗p generates a subgroup G of Z∗p of order q > 1 (not
necessarily prime), and we are given p, q, γ, and α ∈ G, and wish to
compute logγ α.

The simplest algorithm to solve the problem is brute-force search:
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β ← 1
i← 0
while β 6= α do

β ← β · γ
i← i + 1

output i

This algorithm is clearly correct, and the main loop will always halt
after at most q iterations (assuming, as we are, that α ∈ G). So the total
running time is O(q len(p)2).

11.2.2 Baby step/giant step method

As above, suppose that γ ∈ Z∗p generates a subgroup G of Z∗p of order q > 1
(not necessarily prime), and we are given p, q, γ, and α ∈ G, and wish to
compute logγ α.

A faster algorithm than brute-force search is the baby step/giant step
method. It works as follows.

Let us choose an approximation m to q1/2. It does not have to be a very
good approximation — we just need m = Θ(q1/2). Also, let m′ = bq/mc,
so that m′ = Θ(q1/2) as well.

The idea is to compute all the values γi for i = 0, . . . ,m− 1 (the “baby
steps”) and to build a “lookup table” L that contains all the pairs (γi, i),
and that supports fast lookups on the first component of these pairs. That
is, given β ∈ Z∗p, we should be able to quickly determine if β = γi for some
i = 0, . . . ,m−1, and if so, determine the value of i. Let us define L(β) := i
if β = γi for some i = 0, . . . ,m− 1; otherwise, define L(β) := −1.

Using an appropriate data structure, we can build the table L in time
O(q1/2 len(p)2) (just compute successive powers of γ, and insert them in
the table), and we can perform a lookup in time O(len(p)). One such data
structure is a radix tree (also called a search trie); other data structures
may be used (for example, a hash table or a binary search tree), but these
may yield slightly different running times for building the table and/or for
table lookup.

After building the lookup table, we execute the following procedure (the
“giant steps”):



258 Finding Generators and Discrete Logarithms in Z∗p

γ′ ← γ−m

β ← α, j ← 0, i← L(β)
while i = −1 do

β ← β · γ′, j ← j + 1, i← L(β)

x← jm + i
output x

To analyze this procedure, suppose that α = γx with 0 ≤ x < q. Now,
x can be written in a unique way as x = vm+u, where u and v are integers
with 0 ≤ u < m and 0 ≤ v ≤ m′. In the jth loop iteration, for j = 0, 1, . . . ,
we have

β = αγ−mj = γ(v−j)m+u.

So we will detect i 6= −1 precisely when j = v, in which case i = u. Thus,
the output will be correct, and the total running time of the algorithm
(for both the “baby steps” and “giant steps” parts) is easily seen to be
O(q1/2 len(p)2).

While this algorithm is much faster than brute-force search, it has the
drawback that it requires a table Θ(q1/2) elements of Zp. Of course, there
is a “time/space trade-off” here: by choosing m smaller, we get a table of
size O(m), but the running time will be proportional to O(q/m). In §11.2.5
below, we discuss an algorithm that runs (at least heuristically) in time
O(q1/2 len(q) len(p)2), but which requires space for only a constant number
of elements of Zp.

11.2.3 Groups of order qe

Suppose that γ ∈ Z∗p generates a subgroup G of Z∗p of order qe, where q > 1
and e ≥ 1, and we are given p, q, e, γ, and α ∈ G, and wish to compute
logγ α.

There is a simple algorithm that allows one to reduce this problem to
the problem of computing discrete logarithms in the subgroup of Z∗p of order
q.

It is perhaps easiest to describe the algorithm recursively. The base case
is when e = 1, in which case, we use an algorithm for the subgroup of Z∗p of
order q. For this, we might employ the algorithm in §11.2.2, or if q is very
small, the algorithm in §11.2.1.

Suppose now that e > 1. We choose an integer f with 0 < f < e.
Different strategies for choosing f yield different algorithms — we discuss
this below. Suppose α = γx, where 0 ≤ x < qe. Then we can write
x = qfv +u, where u and v are integers with 0 ≤ u < qf and 0 ≤ v < qe−f .
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Therefore,
αqe−f

= γqe−f u.

Note that γqe−f

has multiplicative order qf , and so if we recursively com-
pute the discrete logarithm of αqe−f

to the base γqe−f

, we obtain u.
Having obtained u, observe that

α/γu = γqf v.

Note also that γqf

has multiplicative order qe−f , and so if we recursively
compute the discrete logarithm of α/γu to the base γqf

, we obtain v, from
which we then compute x = qfv + u.

Let us put together the above ideas succinctly in a recursive procedure
RDL(p, q, e, γ, α) that runs as follows:

if e = 1 then
return logγ α // base case: use a different algorithm

else
select f ∈ {1, . . . , e− 1}
u← RDL(p, q, f, γqe−f

, αqe−f

) // 0 ≤ u < qf

v ← RDL(p, q, e− f, γqf

, α/γu) // 0 ≤ v < qe−f

return qfv + u

To analyze the running time of this recursive algorithm, note that the
running time of the body of one recursive invocation (not counting the
running time of the recursive calls it makes) is O(e len(q) len(p)2). To cal-
culate the total running time, we have to sum up the running times of all
the recursive calls plus the running times of all the base cases.

Regardless of the strategy for choosing f , the total number of base case
invocations is e. Note that all the base cases compute discrete logarithms
to the base γqe−1

. Assuming we implement the base case using the baby
step/giant step algorithm in §11.2.2, the total running time for all the base
cases is therefore O(eq1/2 len(p)2).

The total running time for the recursion (not including the base case
computations) depends on the strategy used to choose the split f .

• If we always choose f = 1 or f = e − 1, then the total running time
for the recursion is O(e2 len(q) len(p)2). Note that if f = 1, then the
algorithm is essentially tail recursive, and so may be easily converted
to an iterative algorithm without the need for a stack.

• If we use a “balanced” divide-and-conquer strategy, choosing
f ≈ e/2, then the total running time of the recursion is
O(e len(e) len(q) len(p)2). To see this, note that the depth of the “re-
cursion tree” is O(len(e)), while the running time per level of the
recursion tree is O(e len(q) len(p)2).



260 Finding Generators and Discrete Logarithms in Z∗p

Assuming we use the faster, balanced recursion strategy, the total run-
ning time, including both the recursion and base cases, is:

O((eq1/2 + e len(e) len(q)) · len(p)2).

11.2.4 Discrete logarithms in Z∗
p

Suppose that we are given a prime p, along with the prime factorization

p− 1 =
r∏

i=1

qei
i ,

a generator γ for Z∗p, and α ∈ Z∗p. We wish to compute logγ α.
Suppose that α = γx, where 0 ≤ x < p − 1. Then for i = 1, . . . , r, we

have
α(p−1)/q

ei
i = γ(p−1)/q

ei
i x.

Note that γ(p−1)/q
ei
i has multiplicative order qei

i , and if xi is the discrete
logarithm of α(p−1)/q

ei
i to the base γ(p−1)/q

ei
i , then we have 0 ≤ xi < qei

i

and x ≡ xi (mod qei
i ).

Thus, if we compute the values x1, . . . , xr, using the algorithm in §11.2.3,
we can obtain x using the algorithm of the Chinese remainder theorem (see
Theorem 4.5). If we define q := max{q1, . . . , qr}, then the running time
of this algorithm will be bounded by q1/2 len(p)O(1). Thus, the difficulty of
computing discrete logarithms in Z∗p is determined by the size of the largest
prime dividing p− 1.

11.2.5 A space-efficient square-root time algorithm

We present a more space-efficient alternative to the algorithm in §11.2.2,
the analysis of which we leave as a series of exercises to the reader.

The algorithm makes a somewhat heuristic assumption that we have a
function that “behaves” for all practical purposes like a random function.
Such functions can indeed be constructed using cryptographic techniques
under reasonable intractability assumptions.

Let p be a prime, q a prime dividing p − 1, γ an element of Z∗p that
generates a subgroup G of Z∗p of order q, and α ∈ G. Let F be a function
mapping elements of G to {0, . . . , q − 1}. Define H : G → G to be the
function that sends β to βαγF (β).

The algorithm runs as follows:
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i← 1
x← 0, β ← α,
x′ ← F (β), β′ ← H(β)
while β 6= β′ do

x← (x + F (β)) rem q, β ← H(β)
x′ ← (x′ + F (β′)) rem q, β′ ← H(β′)
x′ ← (x′ + F (β′)) rem q, β′ ← H(β′)
i← i + 1

if i < q then
output (x− x′)i−1 rem q

else
output “fail”

To analyze this algorithm, let us define β1, β2, . . . , as follows: β1 := α
and for i > 1, βi := H(βi−1).

Exercise 11.5. Show that each time the main loop of the algorithm is
entered, we have β = βi = γxαi, and β′ = β2i = γx′α2i. 2

Exercise 11.6. Show that if the loop terminates with i < q, the value
output is equal to logγ α. 2

Exercise 11.7. Let j be the smallest index such that βj = βk for some
index k < j. Show that j ≤ q + 1 and that the loop terminates with i < j
(and in particular, i ≤ q). 2

Exercise 11.8. Assume that F is a random function, meaning that it
is chosen at random, uniformly from among all functions from G into
{0, . . . , q−1}. Show that this implies that H is a random function, meaning
that it is uniformly distributed over all functions from G into G. 2

Exercise 11.9. Assuming that F is a random function as in the previ-
ous exercise, apply the result of Exercise 6.22 to conclude that the expected
running time of the algorithm is O(q1/2 len(q) len(p)2), and that the prob-
ability that the algorithm fails is exponentially small in q. 2

11.3 The Diffie-Hellman Key Establishment
Protocol

One of the main motivations for studying algorithms for computing discrete
logarithms is the relation between this problem and the problem of break-
ing a protocol called the Diffie-Hellman key establishment protocol,
named after its inventors.
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In this protocol, Alice and Bob need never to have talked to each other
before, but nevertheless, can establish a shared secret key that nobody else
can easily compute. To use this protocol, a third party must provide a
“telephone book,” which contains the following information:

• p, q, and γ, where p and q are primes with q | (p − 1), and γ is an
element generating a subgroup G of Z∗p of order q;

• an entry for each user, such as Alice or Bob, that contains the user’s
name, along with a “public key” for that user, which is an element of
the group G.

To use this system, Alice posts her public key in the telephone book,
which is of the form α = γx, where x ∈ {0, . . . , q − 1} is chosen by Alice at
random. The value of x is Alice’s “secret key,” which Alice never divulges
to anybody. Likewise, Bob posts his public key, which is of the form β = γy,
where y ∈ {0, . . . , q− 1} is chosen by Bob at random, and is his secret key.

To establish a shared key known only between them, Alice retrieves
Bob’s public key β from the bulletin board, and computes κA := βx.
Likewise, Bob retrieves Alice’s public key α, and computes κB := αy. It
is easy to see that

κA = βx = (γy)x = γxy = (γx)y = αy = κB ,

and hence Alice and Bob share the same secret key κ := κA = κB .
Using this shared secret key, they can then use standard methods for

encryption and message authentication to hold a secure conversation. We
shall not go any further into how this is done; rather, we briefly (and only
superficially) discuss some aspects of the security of the key establishment
protocol itself. Clearly, if an attacker obtains α and β from the telephone
book, and computes x = logγ α, then he can compute Alice and Bob’s
shared key as κ = βx — in fact, given x, an attacker can efficiently compute
any key shared between Alice and another user.

Thus, if this system is to be secure, it should be very difficult to com-
pute discrete logarithms. However, the assumption that computing discrete
logarithms is hard is not enough to guarantee security. Indeed, it is not
entirely inconceivable that the discrete logarithm problem is hard, and yet
the problem of computing κ from α and β is easy. The latter problem —
computing κ from α and β — is called the Diffie-Hellman problem.

As in the discussion of the RSA cryptosystem in §7.7, the reader is
warned that the above discussion about security is a bit of an oversimplifi-
cation. A complete discussion of all the security issues related to the above
protocol is beyond the scope of this text.

For the following exercise, we need the following notions from complexity
theory:
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• We say problem A is deterministic poly-time reducible to prob-
lem B if there exists a deterministic algorithm R for solving problem
A that makes calls to a subroutine for problem B, where the running
time of R (not including the running time for the subroutine for B)
is polynomial in the input length.

• We say that A and B are deterministic poly-time equivalent if
A is deterministic poly-time reducible to B and B is deterministic
poly-time reducible to A.

Exercise 11.10. Show that the following problems are deterministic
poly-time equivalent:

(a) Given a prime p, a prime q that divides p − 1, an element γ ∈ Z∗p
generating a subgroup G of Z∗p of order q, and two elements α, β ∈ G,
compute γxy, where x := logγ α and y := logγ β. (This is just the
Diffie-Hellman problem.)

(b) Given a prime p, a prime q that divides p − 1, an element γ ∈ Z∗p
generating a subgroup G of Z∗p of order q, and an element α ∈ G,
compute γx2

, where x := logγ α.

(c) Given a prime p, a prime q that divides p − 1, an element γ ∈ Z∗p
generating a subgroup G of Z∗p of order q, and two elements α, β ∈ G,
with β 6= 1, compute γxy′ , where x := logγ α, y′ := y−1 rem q, and
y := logγ β.

(d) Given a prime p, a prime q that divides p − 1, an element γ ∈ Z∗p
generating a subgroup G of Z∗p of order q, and an element α ∈ G,
with α 6= 1, compute γx′ , where x′ := x−1 rem q and x := logγ α.

2

Exercise 11.11. In the previous exercise, in reducing one problem A to
another problem B, you most likely used the same values of p and q for
both problems A and B, but not necessarily the same value of γ. If you did
not use the same value of γ, try re-working the previous problems so that
all of your reductions do in fact use the same value of γ. Your reductions
may be a bit less efficient. 2

Exercise 11.12. Suppose there is a probabilistic algorithm A that takes
as input a prime p, a prime q that divides p − 1, and an element γ ∈ Z∗p
generating a subgroup G of Z∗p of order q. The algorithm also takes as input
α ∈ G. It outputs either “failure,” or logγ α. Furthermore, assume that
A runs in strict polynomial time, and that for all p, q, and γ of the above
form, and for randomly chosen α ∈ G, A succeeds in computing logγ α with
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probability ε(p, q, γ). Here, the probability is taken over the random choice
of α, as well as the random choices made during the execution of A.

Show how to use A to construct another probabilistic algorithm A′ that
takes as input p, q, and γ as above, as well as α ∈ G, runs in expected
polynomial time, and which satisfies the following property:

if ε(p, q, γ) ≥ 0.001, then for all α ∈ G, A′ computes logγ α with
probability at least 0.999.

2

The algorithm A′ in the previous exercise is another example of a ran-
dom self reduction.

Exercise 11.13. Let p be a prime, q a prime that divides p− 1, γ ∈ Z∗p
an element that generates a subgroup G of Z∗p of order q, and α ∈ G. For
δ ∈ G, a representation of δ with respect to γ and α is a pair of
integers (r, s), with 0 ≤ r < q and 0 ≤ s < q, such that γrαs = δ.

(a) Show that for any δ ∈ G, there are precisely q representations (r, s)
of δ with respect to γ and α, and among these, there is precisely one
with s = 0.

(b) Show that given a representation (r, s) of 1 with respect to γ and α
such that s 6= 0, we can efficiently compute logγ α.

(c) Suppose there is an efficient algorithm that takes as input p, q, γ, α, δ
as above, and for all such inputs, computes some representation of δ
with respect to γ and α. Show how to use this algorithm to efficiently
compute logγ α.

2

Exercise 11.14. Let p be a prime and let p−1 = qe1
1 · · · qer

r be the prime
factorization of p − 1. Let γ be a generator for Z∗p. Let X, Y be positive
numbers. Let Q be the product of all the prime powers qei

i with qi ≤ Y .
Suppose you are given p, the primes qi dividing p−1 with qi ≤ Y , along

with γ and an element α of Z∗p. Assuming that x := logγ α < X, show
how to compute x in time

(Y 1/2 + (X/Q)1/2) · len(p)O(1).

2

Exercise 11.15. Continuing with the previous exercise, let Q′ be the
product of all the primes qi dividing p− 1 with qi ≤ Y . Note that Q′ | Q.
The goal of this exercise is to heuristically estimate the expected value of
log Q′, assuming p is a large, random prime. The heuristic part is this: we
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shall assume that for any prime q ≤ Y , the probability that q divides p− 1
for a randomly chosen “large” prime p is ∼ 1/q. Under this assumption,
show that

E[log Q′] ∼ log Y.

2

The results of the previous two exercises caution against the use of
“short exponents” in cryptographic schemes based on the discrete logarithm
problem for Z∗p. Indeed, suppose that p is a random 1024-bit prime, and
that for reasons of efficiency, one chooses X ≈ 2160, thinking that a method
such as the baby step/giant step method would require ≈ 280 steps to
recover x. However, if we choose Y ≈ 280, then we have reason to expect
Q to be at least about 280, in which case X/Q is at most about 280, and
so we can in fact recover x in roughly 240 steps, which may be a feasible
number of steps, whereas 280 steps may not be. Of course, none of these
issues arise if one works in a subgroup of Z∗p of large prime order.

11.4 Notes

The probabilistic algorithm in §11.1 for finding a generator for Z∗p can
be made deterministic under a generalization of the Riemann hypothesis.
Indeed, as discussed in §10.7, under such a hypothesis, Bach’s result [9]
implies that for each prime q | (p−1), the least positive integer a such that
[a mod p] ∈ Z∗p \ (Z∗p)q is at most 2 log p.

Related to the problem of constructing a generator for Z∗p is the question
of how big is the smallest positive integer g such that [g mod p] is a generator
for Z∗p; that is, how big is the smallest (positive) primitive root modulo p.
The best bounds on the least primitive root are also obtained using the
same generalization of the Riemann hypothesis mentioned above. Under
this hypothesis, Wang [93] showed that the least primitive root modulo p
is O(r6 len(p)2), where r is the number of distinct prime divisors of p − 1.
Shoup [86] improved Wang’s bound to O(r4 len(r)4 len(p)2) by adapting
a result of Iwaniec [43, 44] and applying it to Wang’s proof. The best
unconditional bound on the smallest primitive root modulo p is p1/4+o(1)

(this bound is also in Wang [93]). Of course, just because there exists
a small primitive root, there is no known way to efficiently recognize a
primitive root modulo p without knowing the prime factorization of p− 1.

As we already mentioned, all of the algorithms presented in this chapter
are completely “generic,” in the sense that they work in any finite cyclic
group — we really did not exploit any properties about Z∗p other than the
fact that it is a cyclic group. In fact, as far as such “generic” algorithms
go, the algorithms presented here for discrete logarithms are optimal [63,
89]. However, there are faster, “non-generic” algorithms (though still not
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polynomial time) for discrete logarithms in Z∗p. We shall examine one such
algorithm later, in Chapter 16.

The “baby step/giant step” algorithm in §11.2.2 is due to Shanks [82].
See, for example, the book by Cormen, Leiserson, Rivest, and Stein [25]
for appropriate data structures to implement the lookup table used in that
algorithm. In particular, see Problem 12-2 in [25] for a brief introduction
to radix trees, which is the data structure that yields the best running time
(at least in principle) for our application.

The algorithms in §11.2.3 and §11.2.4 are variants of an algorithm pub-
lished by Pohlig and Hellman [67]. See Chapter 4 of [25] for details on how
one analyzes recursive algorithms, such as the one presented in §11.2.3; in
particular, Section 4.2 in [25] discusses in detail the notion of a recursion
tree, which will be the approach we shall use in this text for analyzing
recursive algorithms.

The algorithm in §11.2.5 is a variant of an algorithm of Pollard [68]; in
fact, Pollard’s algorithm is a bit more efficient than the one presented here,
but the analysis of its running time depends on stronger heuristics. Pol-
lard’s paper also describes an algorithm for computing discrete logarithms
that lie in a restricted interval — if the interval has width w, this algo-
rithm runs (heuristically) in time w1/2 len(p)O(1), and requires space for
O(len(w)) elements of Zp. This algorithm is useful in reducing the space
requirement for the algorithm of Exercise 11.14.

The key establishment protocol in §11.3 is from Diffie and Hellman [28].
That paper initiated the study of public key cryptography, which has
proved to be a very rich field of research.

Exercises 11.14 and 11.15 are based on van Oorschot and Wiener [66].



Chapter 12

Quadratic Residues and
Quadratic Reciprocity

12.1 Quadratic Residues

For positive integer n, an integer a is called a quadratic residue modulo
n if gcd(a, n) = 1 and x2 ≡ a (mod n) for some integer x; in this case, we
say that x is a square root of a modulo n.

The quadratic residues modulo n correspond exactly to the subgroup of
squares (Z∗n)2 of Z∗n; that is, a is a quadratic residue modulo n if and only
if [a mod n] ∈ (Z∗n)2.

Let us first consider the case where n = p, where p is an odd prime. In
this case, we know that Z∗p is cyclic of order p−1 (see Theorem 9.16). Recall
that the subgroups any finite cyclic group are in one-to-one correspondence
with the positive divisors of the order of the group (see Theorem 8.31). For
any d | (p − 1), consider the d-power map on Z∗p that sends α ∈ Z∗p to αd.
The image of this map is the unique subgroup of Z∗p of order (p − 1)/d,
and the kernel of this map is the unique subgroup of order d. This means
that the image of the 2-power map is of order (p − 1)/2 and must be the
same as the kernel of the (p − 1)/2-power map. Since the image of the
(p− 1)/2-power map is of order 2, it must be equal to the subgroup {±1}.
The kernel of the 2-power map is of order 2, and so must also be equal to
the subgroup {±1}.

Translating from group-theoretic language to the language of congru-
ences, we have shown:

Theorem 12.1. For an odd prime p, the number of quadratic residues
a modulo p, with 0 ≤ a < p, is (p − 1)/2. Moreover, if x is a square
root of a modulo p, then so is −x, and any square root y of a modulo p
satisfies y ≡ ±x (mod p). Also, for any integer a 6≡ 0 (mod p), we have
a(p−1)/2 ≡ ±1 (mod p), and moreover, a is a quadratic residue modulo p if
and only if a(p−1)/2 ≡ 1 (mod p).

267
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Now consider the case where n = pe, where p is an odd prime and
e > 1. We also know that Z∗pe is a cyclic group of order pe−1(p − 1) (see
Theorem 10.1), and so everything that we said in discussing the case Z∗p
applies here as well. In particular, for a 6≡ 0 (mod p), a is a quadratic
residue modulo pe if and only if ape−1(p−1)/2 ≡ 1 (mod pe). However,
we can simplify this a bit. Note that ape−1(p−1)/2 ≡ 1 (mod pe) implies
ape−1(p−1)/2 ≡ 1 (mod p), and by Fermat’s little theorem, this implies
a(p−1)/2 ≡ 1 (mod p). Conversely, by Theorem 10.2, a(p−1)/2 ≡ 1 (mod p)
implies ape−1(p−1)/2 ≡ 1 (mod pe). Thus, we have shown:

Theorem 12.2. For an odd prime p and integer e > 1, the number of
quadratic residues a modulo pe, with 0 ≤ a < pe, is pe−1(p−1)/2. Moreover,
if x is a square root of a modulo pe, then so is −x, and any square root y of a
modulo pe satisfies y ≡ ±x (mod pe). Also, for any integer a 6≡ 0 (mod p),
we have ape−1(p−1)/2 ≡ ±1 (mod p), and moreover, a is a quadratic residue
modulo pe iff ape−1(p−1)/2 ≡ 1 (mod pe) iff a(p−1)/2 ≡ 1 (mod p) iff a is a
quadratic residue modulo p.

Now consider an arbitrary odd integer n > 1, and let n =
∏r

i=1 pei
i

be its prime factorization. Recall the group isomorphism implied by the
Chinese remainder theorem:

Z∗n ∼= Z∗
p

e1
1
× · · · × Z∗per

r
.

Now,
(α1, . . . , αr) ∈ Z∗

p
e1
1
× · · · × Z∗per

r

is a square if and only if there exist β1, . . . , βr with βi ∈ Z∗
p

ei
i

and αi = β2
i

for i = 1, . . . , r, in which case, we see that the square roots of (α1, . . . , αr)
comprise the 2r elements (±β1, . . . ,±βr). Thus we have:

Theorem 12.3. Consider an odd, positive integer n with prime factor-
ization n =

∏r
i=1 pei

i . The number of quadratic residues a modulo n, with
0 ≤ a < n, is φ(n)/2r. Moreover, if a is a quadratic residue modulo n,
then there are precisely 2r distinct integers x, with 0 ≤ x < n, such that
x2 ≡ a (mod n). Also, an integer a is a quadratic residue modulo n if and
only if it is a quadratic residue modulo pi for i = 1, . . . , r.

That completes our investigation of the case where n is odd. We shall
not investigate the case where n is even, as it is a bit messy, and is not of
particular importance.
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12.2 The Legendre Symbol

For an odd prime p and an integer a with gcd(a, p) = 1, the Legendre
symbol (a | p) is defined to be 1 if a is a quadratic residue modulo p, and
−1 otherwise. For completeness, one defines (a | p) = 0 if p | a.

Theorem 12.4. Let p be an odd prime, and let a, b ∈ Z. Then we have

(i) (a | p) ≡ a(p−1)/2 (mod p); in particular, (−1 | p) = (−1)(p−1)/2;

(ii) (a | p)(b | p) = (ab | p);

(iii) a ≡ b (mod p) implies (a | p) = (b | p);

(iv) (2 | p) = (−1)(p
2−1)/8;

(v) if q is an odd prime, then

(p | q) = (−1)
p−1
2

q−1
2 (q | p).

Part (v) of this theorem is called the law of quadratic reciprocity.
Note that when p = q, both (p | q) and (q | p) are zero, and so the statement
of part (v) is trivially true — the interesting case is when p 6= q, and in this
case, part (v) is equivalent to saying that

(p | q)(q | p) = (−1)
p−1
2

q−1
2 .

Part (i) of this theorem follows from Theorem 12.1. Part (ii) is an
immediate consequence of part (i), and part (iii) is clear from the definition.

The rest of this section is devoted to a proof of parts (iv) and (v) of this
theorem. The proof is completely elementary, although a bit technical.

Theorem 12.5 (Gauss’ Lemma). Let p be an odd prime and let a be
an integer not divisible by p. Define αj := ja rem p for j = 1, . . . , (p−1)/2,
and let n be the number of indices j for which αj > p/2. Then (a | p) =
(−1)n.

Proof. Let r1, . . . , rn denote the values αj that exceed p/2, and let
s1, . . . , sk denote the remaining values αj . The ri and si are all distinct and
non-zero. We have 0 < p− ri < p/2 for i = 1, . . . , n, and no p− ri is an sj ;
indeed, if p−ri = sj , then sj ≡ −ri (mod p), and writing sj = ua rem p and
ri = va rem p, for some u, v = 1, . . . , (p− 1)/2, we have ua ≡ −va (mod p),
which implies u ≡ −v (mod p), which is impossible.

It follows that the sequence of numbers s1, . . . , sk, p − r1, . . . , p − rn is
just a re-ordering of 1, . . . , (p− 1)/2. Then we have

((p− 1)/2)! ≡ s1 · · · sk(−r1) · · · (−rn)
≡ (−1)ns1 · · · skr1 · · · rn

≡ (−1)n((p− 1)/2)! a(p−1)/2 (mod p),
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and canceling the factor ((p− 1)/2)!, we obtain a(p−1)/2 ≡ (−1)n (mod p),
and the result follows from the fact that (a | p) ≡ a(p−1)/2 (mod p). 2

Theorem 12.6. If p is an odd prime and gcd(a, 2p) = 1, then (a | p) =
(−1)t where t =

∑(p−1)/2
j=1 bja/pc. Also, (2 | p) = (−1)(p

2−1)/8.

Proof. Let a be an integer not divisible by p, but which may be even,
and let us adopt the same notation as in the statement and proof of The-
orem 12.5; in particular, α1, . . . , α(p−1)/2, r1, . . . , rn, and s1, . . . , sk are as
defined there. Note that ja = pbja/pc+ αj , for j = 1, . . . , (p− 1)/2, so we
have

(p−1)/2∑
j=1

ja =
(p−1)/2∑

j=1

pbja/pc+
n∑

j=1

rj +
k∑

j=1

sj . (12.1)

Also, we saw in the proof of Theorem 12.5 that the integers s1, . . . , sk, p−
r1, . . . , p− rn are a re-ordering of 1, . . . , (p− 1)/2, and hence

(p−1)/2∑
j=1

j =
n∑

j=1

(p− rj) +
k∑

j=1

sj = np−
n∑

j=1

rj +
k∑

j=1

sj . (12.2)

Subtracting (12.2) from (12.1), we get

(a− 1)
(p−1)/2∑

j=1

j = p

( (p−1)/2∑
j=1

bja/pc − n

)
+ 2

n∑
j=1

rj . (12.3)

Note that
(p−1)/2∑

j=1

j =
p2 − 1

8
, (12.4)

which together with (12.3) implies

(a− 1)
p2 − 1

8
≡

(p−1)/2∑
j=1

bja/pc − n (mod 2). (12.5)

If a is odd, (12.5) implies

n ≡
(p−1)/2∑

j=1

bja/pc (mod 2). (12.6)

If a = 2, then b2j/pc = 0 for j = 1, . . . , (p− 1)/2, and (12.5) implies

n ≡ p2 − 1
8

(mod 2). (12.7)
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The theorem now follows from (12.6) and (12.7), together with Theo-
rem 12.5. 2

Note that this last theorem proves part (iv) of Theorem 12.4. The next
theorem proves part (v).

Theorem 12.7. If p and q are distinct odd primes, then

(p | q)(q | p) = (−1)
p−1
2

q−1
2 .

Proof. Let S be the set of pairs of integers (x, y) with 1 ≤ x ≤ (p − 1)/2
and 1 ≤ y ≤ (q−1)/2. Note that S contains no pair (x, y) with qx = py, so
let us partition S into two subsets: S1 contains all pairs (x, y) with qx > py,
and S2 contains all pairs (x, y) with qx < py. Note that (x, y) ∈ S1 if and
only if 1 ≤ x ≤ (p − 1)/2 and 1 ≤ y ≤ bqx/pc. So |S1| =

∑(p−1)/2
x=1 bqx/pc.

Similarly, |S2| =
∑(q−1)/2

y=1 bpy/qc. So we have

p− 1
2

q − 1
2

= |S| = |S1|+ |S2| =
(p−1)/2∑

x=1

bqx/pc+
(q−1)/2∑

y=1

bpy/qc,

and Theorem 12.6 implies

(p | q)(q | p) = (−1)
p−1
2

q−1
2 .

2

12.3 The Jacobi Symbol

Let a, n be integers, where n is positive and odd, so that n = q1 · · · qk,
where the qi are odd primes, not necessarily distinct. Then the Jacobi
symbol (a | n) is defined as

(a | n) := (a | q1) · · · (a | qk),

where (a | qj) is the Legendre symbol. Note that (a | 1) = 1 for all a ∈ Z.
Thus, the Jacobi symbol essentially extends the domain of definition of the
Legendre symbol. Note that (a | n) ∈ {0,±1}, and that (a | n) = 0 if and
only if gcd(a, n) > 1. Also, note that if a is a quadratic residue modulo n,
then (a | n) = 1; however, (a | n) = 1 does not imply that a is a quadratic
residue modulo n.

Theorem 12.8. Let m,n be odd, positive integers, an let a, b be integers.
Then

(i) (ab | n) = (a | n)(b | n);
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(ii) (a | mn) = (a | m)(a | n);

(iii) a ≡ b (mod n) implies (a | n) = (b | n);

(iv) (−1 | n) = (−1)(n−1)/2;

(v) (2 | n) = (−1)(n
2−1)/8;

(vi) (m | n) = (−1)
m−1

2
n−1

2 (n | m).

Proof. Parts (i)–(iii) follow directly from the definition (exercise).
For parts (iv) and (vi), one can easily verify (exercise) that for odd

integers n1, . . . , nk,

k∑
i=1

(ni − 1)/2 ≡ (n1 · · ·nk − 1)/2 (mod 2).

Part (iv) easily follows from this fact, along with part (ii) of this theorem
and part (i) of Theorem 12.4 (exercise). Part (vi) easily follows from this
fact, along with parts (i) and (ii) of this theorem, and part (v) of Theo-
rem 12.4 (exercise).

For part (v), one can easily verify (exercise) that for odd integers
n1, . . . , nk, ∑

1≤i≤k

(n2
i − 1)/8 ≡ (n2

1 · · ·n2
k − 1)/8 (mod 2).

Part (v) easily follows from this fact, along with part (ii) of this theorem,
and part (iv) of Theorem 12.4 (exercise). 2

As we shall see later, this theorem is extremely useful from a computa-
tional point of view — with it, one can efficiently compute (a | n), without
having to know the prime factorization of either a or n. Also, in applying
this theorem it is useful to observe that for odd integers m,n,

• (−1)(n−1)/2 = 1 iff n ≡ 1 (mod 4);

• (−1)(n
2−1)/8 = 1 iff n ≡ ±1 (mod 8);

• (−1)((m−1)/2)((n−1)/2) = 1 iff m ≡ 1 (mod 4) or n ≡ 1 (mod 4).

It is sometimes useful to view the Jacobi symbol as a group homomor-
phism. Let n be an odd, positive integer. Define the Jacobi map

Jn : Z∗n → {±1}
[a mod n] 7→ (a | n).
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First, we note that by part (iii) of Theorem 12.8, this definition is unam-
biguous. Second, we note that since gcd(a, n) = 1 implies (a | n) = ±1, the
image of Jn is indeed contained in {±1}. Third, we note that by part (i)
of Theorem 12.8, Jn is a group homomorphism.

Since Jn is a group homomorphism, it follows that its kernel, ker(Jn),
is a subgroup of Z∗n.

Exercise 12.1. Let n be an odd, positive integer. Show that [Z∗n :
(Z∗n)2] = 2r, where r is the number of distinct prime divisors of n. 2

Exercise 12.2. Let n be an odd, positive integer, and consider the Jacobi
map Jn.

(a) Show that (Z∗n)2 ⊆ ker(Jn).

(b) Show that if n is the square of an integer, then ker(Jn) = Z∗n.

(c) Show that if n is not the square of an integer, then [Z∗n : ker(Jn)] = 2
and [ker(Jn) : (Z∗n)2] = 2r−1, where r is the number of distinct prime
divisors of n.

2

Exercise 12.3. Let p and q be distinct primes, with p ≡ q ≡ 3 (mod 4),
and let n := pq.

(a) Show that [−1] ∈ ker(Jn) \ (Z∗n)2, and from this, conclude that
the cosets of (Z∗n)2 in ker(Jn) are the two distinct cosets (Z∗n)2 and
[−1](Z∗n)2.

(b) Show that the squaring map on (Z∗n)2 is a group automorphism.

(c) Let δ ∈ Z∗n\ker(Jn). Show that the map from {0, 1}×{0, 1}×(Z∗n)2 →
Z∗n that sends (a, b, γ) to δa(−1)bγ is a bijection.

2

12.4 Notes

The proof we present here of Theorem 12.4 is essentially the one from Niven
and Zuckerman [64]. Our proof of Theorem 12.8 is essentially the one found
in Bach and Shallit [11].



Chapter 13

Computational Problems
Related to Quadratic Residues

13.1 Computing the Jacobi Symbol

Suppose we are given an odd, positive integer n, along with an integer a,
and we want to compute the Jacobi symbol (a | n). Theorem 12.8 suggests
the following algorithm:

t← 1
repeat

// loop invariant: n is odd and positive

a← a rem n
if a = 0

if n = 1 return t else return 0

compute a′, h such that a = 2ha′ and a′ is odd
if h 6≡ 0 (mod 2) and n 6≡ ±1 (mod 8) then t← −t
if a′ 6≡ 1 (mod 4) and n 6≡ 1 (mod 4) then t← −t
(a, n)← (n, a′)

forever

That this algorithm correctly computes the Jacobi symbol (a | n) fol-
lows directly from Theorem 12.8. Using an analysis similar to that of
Euclid’s algorithm, one easily sees that the running time of this algorithm
is O(len(a) len(n)).

Exercise 13.1. Develop a “binary” Jacobi symbol algorithm, that is, one
that uses only addition, subtractions, and “shift” operations, analogous to
the binary gcd algorithm in Exercise 4.1. 2

274
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Exercise 13.2. This exercise develops a probabilistic primality test
based on the Jacobi symbol. For odd integer n > 1, define

Gn := {α ∈ Z∗n : α(n−1)/2 = [Jn(α)]},

where Jn : Z∗n → {±1} is the Jacobi map.

(a) Show that Gn is a subgroup of Z∗n.

(b) Show that if n is prime, then Gn = Z∗n.

(c) Show that if n is composite, then Gn ( Z∗n.

(d) Based on parts (a)–(c), design and analyze an efficient probabilistic
primality test that works by choosing a random, non-zero element
α ∈ Zn, and testing if α ∈ Gn.

2

13.2 Testing Quadratic Residuosity

In this section, we consider the problem of testing whether a is a quadratic
residue modulo n, for given integers a and n, from a computational per-
spective.

13.2.1 Prime modulus

For an odd prime p, we can test if an integer a is a quadratic residue
modulo p by either performing the exponentiation a(p−1)/2 rem p or by
computing the Legendre symbol (a | p). Assume that 0 ≤ a < p. Using
a standard repeated squaring algorithm, the former method takes time
O(len(p)3), while using the Euclidean-like algorithm of the previous section,
the latter method takes time O(len(p)2). So clearly, the latter method is
to be preferred.

13.2.2 Prime-power modulus

For an odd prime p, we know that a is a quadratic residue modulo pe if and
only if a is a quadratic residue modulo p. So this case immediately reduces
to the previous case.

13.2.3 Composite modulus

For odd, composite n, if we know the factorization of n, then we can also
determine if a is a quadratic residue modulo n by determining if it is a
quadratic residue modulo each prime divisor p of n. However, without
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knowledge of this factorization (which is in general believed to be hard
to compute), there is no efficient algorithm known. We can compute the
Jacobi symbol (a | n); if this is −1 or 0, we can conclude that a is not a
quadratic residue; otherwise, we cannot conclude much of anything.

13.3 Computing Modular Square Roots

In this section, we consider the problem of computing a square root of a
modulo n, given integers a and n, where a is a quadratic residue modulo n.

13.3.1 Prime modulus

Let p be an odd prime, and let a be an integer such that 0 < a < p and
(a | p) = 1. We would like to compute a square root of a modulo p. Let
α := [a mod p] ∈ Z∗p, so that we can restate our problem of that of finding
β ∈ Z∗p such that β2 = α, given α ∈ (Z∗p)2.

We first consider the special case where p ≡ 3 (mod 4), in which it turns
out that this problem can be solved very easily. Indeed, we claim that in
this case

β := α(p+1)/4

is a square root of α — note that since p ≡ 3 (mod 4), the number (p+1)/4
is an integer. To show that β2 = α, suppose α = β̃2 for some β̃ ∈ Z∗p. We
know that there is such a β̃, since we are assuming that α ∈ (Z∗p)2. Then
we have

β2 = α(p+1)/2 = β̃p+1 = β̃2 = α,

where we used Fermat’s little theorem for the third equality. Using a
repeated-squaring algorithm, we can compute β in time O(len(p)3).

Now we consider the general case, where we may have p 6≡ 3 (mod 4).
Here is one way to efficiently compute a square root of α, assuming we are
given, in addition to α, an auxiliary input γ ∈ Z∗p \ (Z∗p)2 (how one obtains
such a γ is discussed below).

Let us write p − 1 = 2hm, where m is odd. For any δ ∈ Z∗p, δm has
multiplicative order dividing 2h. Since α2h−1m = 1, αm has multiplicative
order dividing 2h−1. Since γ2h−1m = −1, γm has multiplicative order pre-
cisely 2h. Since there is only one subgroup of Z∗p of order 2h, it follows that
γm generates this subgroup, and that αm = γmx for 0 ≤ x < 2h and x is
even. We can find x by computing the discrete logarithm of αm to the base
γm, using the algorithm in §11.2.3. Setting κ = γmx/2, we have

κ2 = αm.



13.3 Computing Modular Square Roots 277

We are not quite done, since we now have a square root of αm, and
not of α. Since m is odd, we may write m = 2t + 1 for some non-negative
integer t. It then follows that

(κα−t)2 = κ2α−2t = αmα−2t = αm−2t = α.

Thus, κα−t is a square root of α.
Let us summarize the above algorithm for computing a square root of

α ∈ (Z∗p)2, assuming we are given γ ∈ Z∗p \ (Z∗p)2, in addition to α:

Compute positive integers m,h such that p− 1 = 2hm with m odd
γ′ ← γm, α′ ← αm

Compute x← logγ′ α
′ // note that 0 ≤ x < 2h and x is even

β ← (γ′)x/2α−bm/2c

output β

The total amount of work done outside the discrete logarithm calcu-
lation amounts to just a handful of exponentiations modulo p, and so
takes time O(len(p)3). The time to compute the discrete logarithm is
O(h len(h) len(p)2). So the total running time of this procedure is

O(len(p)3 + h len(h) len(p)2).

The above procedure assumed we had at hand a non-square γ. If h = 1,
which means that p ≡ 3 (mod 4), then (−1 | p) = −1, and so we are done.
However, we have already seen how to efficiently compute a square root in
this case.

If h > 1, we can find a non-square γ using a probabilistic search algo-
rithm. Simply choose γ at random, test if it is a square, and if so, repeat.
The probability that a random element of Z∗p is a square is 1/2; thus, the
expected number of trials until we find a non-square is 2, and hence the
expected running time of this probabilistic search algorithm is O(len(p)2).

Exercise 13.3. Let p be an odd prime, and let f ∈ Zp[X] be a polyno-
mial with 0 ≤ deg(f) ≤ 2. Design and analyze an efficient, probabilistic
algorithm that determines if f has any roots in Zp, and if so, finds all of
the roots. Hint: see Exercise 9.10. 2

Exercise 13.4. Show that the following two problems are deterministic,
poly-time equivalent (see discussion just above Exercise 11.10 in §11.3):

(a) Given an odd prime p and α ∈ (Z∗p)2, find β ∈ Z∗p such that β2 = α.

(b) Given an odd prime p, find an element of Z∗p \ (Z∗p)2.
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2

Exercise 13.5. Design and analyze an efficient, deterministic algorithm
that takes as input primes p and q, such that q | (p − 1), along with an
element α ∈ Z∗p, and determines whether or not α ∈ (Z∗p)q. 2

Exercise 13.6. Design and analyze an efficient, deterministic algorithm
that takes as input primes p and q, such that q | (p − 1) but q2 - (p − 1),
along with an element α ∈ (Z∗p)q, and computes a qth root of α, that is, an
element β ∈ Z∗p such that βq = α. 2

Exercise 13.7. We are given a positive integer n, two elements α, β ∈
Zn, and integers e and f such that αe = βf and gcd(e, f) = 1. Show how
to efficiently compute γ ∈ Zn such that γe = β. Hint: use the extended
Euclidean algorithm. 2

Exercise 13.8. Design and analyze an algorithm that takes as input
primes p and q, such that q | (p− 1), along with an element α ∈ (Z∗p)q, and
computes a qth root of α. (Unlike Exercise 13.6, we now allow q2 | (p−1).)
Your algorithm may be probabilistic, and should have an expected run-
ning time that is bounded by q1/2 times a polynomial in len(p). Hint: the
previous exercise may be useful. 2

13.3.2 Prime-power modulus

Let p be an odd prime, let a be an integer relatively prime to p, and let e > 1
be an integer. We know that a is a quadratic residue modulo pe if and only
if a is a quadratic residue modulo p. Suppose that a is a quadratic residue
modulo p, and that we have found an integer z such that z2 ≡ a (mod p),
using, say, one of the procedures described in §13.3.1. From this, we can
easily compute a square root of a modulo pe using the following technique,
which is known as Hensel lifting.

More generally, suppose we have computed an integer z such that z2 ≡
a (mod pf ), for some f ≥ 1, and we want to find an integer ẑ such that
ẑ2 ≡ a (mod pf+1). Clearly, if ẑ2 ≡ a (mod pf+1), then ẑ2 ≡ a (mod pf ),
and so ẑ ≡ ±z (mod pf ). So let us set ẑ = z + pfu, and solve for u. We
have

ẑ2 ≡ (z + pfu)2 ≡ z2 + 2zpfu + p2fu2 ≡ z2 + 2zpfu (mod pf+1).

So we want to find integer u such that

2zpfu ≡ a− z2 (mod pf+1).

Since pf | (z2−a), by Theorem 2.5, the above congruence holds if and only
if

2zu ≡ a− z2

pf
(mod p).
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From this, we can easily compute the desired value u, since gcd(2z, p) = 1.
By iterating the above procedure, starting with a square root of a mod-

ulo p, we can quickly find a square root of a modulo pe. We leave a detailed
analysis of the running time of this procedure to the reader.

Exercise 13.9. Suppose you are given a polynomial f ∈ Z[X], along with
a prime p and a root z of f modulo p, that is, an integer z such that
f(z) ≡ 0 (mod p). Further, assume that z is simple root of f modulo p,
meaning that D(f)(z) 6≡ 0 (mod p), where D(f) is the formal derivative of
f . Show that for any integer e ≥ 1, f has a root modulo pe, and give an
efficient procedure to find it. Also, show that the root modulo pe is uniquely
determined, in the following sense: if two such roots are congruent modulo
p, then they are congruent modulo pe. 2

13.3.3 Composite modulus

To find square roots modulo n, where n is an odd composite modulus, if we
know the prime factorization of n, then we can use the above procedures
for finding square roots modulo primes and prime powers, and then use the
algorithm of the Chinese remainder theorem to get a square root modulo
n.

However, if the factorization of n is not known, then there is no efficient
algorithm known for computing square roots modulo n. In fact, one can
show that the problem of finding square roots modulo n is at least as hard
as the problem of factoring n, in the sense that if there is an efficient
algorithm for computing square roots modulo n, then there is an efficient
(probabilistic) algorithm for factoring n.

Here is an algorithm to factor n, using a modular square-root algorithm
as a subroutine. For simplicity, we assume that n is of the form n = pq,
where p and q are distinct, odd primes. Choose β to be a random, non-
zero element of Zn. If d := gcd(rep(β), n) > 1, then output d (recall that
rep(β) denotes the canonical representative of β). Otherwise, set α := β2,
and feed n and α to the modular square-root algorithm, obtaining a square
root β′ ∈ Z∗n of α. If the square-root algorithm returns β′ ∈ Z∗n such
that β′ = ±β, then output “failure”; otherwise, output gcd(rep(β−β′), n),
which is a non-trivial divisor of n.

Let us analyze this algorithm. If d > 1, we split n, so assume that
d = 1, which means that β ∈ Z∗n. In this case, β is uniformly distributed
over Z∗n, and α is uniformly distributed over (Z∗n)2. Let us condition on
an a fixed value of α, and on fixed random choices made by the modular
square-root algorithm (in general, this algorithm may be probabilistic).
In this conditional probability distribution, the value β′ returned by the
algorithm is completely determined. If θ : Zp × Zq → Zn is the ring
isomorphism of the Chinese remainder theorem, and β′ = θ(β′1, β

′
2), then
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in this conditional probability distribution, β is uniformly distributed over
the four square roots of α, which we may write as θ(±β′1,±β′2).

With probability 1/4, we have β = θ(β′1, β
′
2) = β′, and with probability

1/4, we have β = θ(−β′1,−β′2) = −β′, and so with probability 1/2, we have
β = ±β′, in which case we fail to factor n. However, with probability 1/4,
we have β = θ(−β′1, β

′
2), in which case β−β′ = θ(−2β′1, 0), and since 2β′1 6=

0, we have p - rep(β−β′) and q | rep(β−β′), and so gcd(rep(β−β′), n) = q.
Similarly, with probability 1/4, we have β = θ(β′1,−β′2), in which case
β − β′ = θ(0,−2β′2), and since 2β′2 6= 0, we have p | rep(β − β′) and
q - rep(β − β′), and so gcd(rep(β − β′), n) = p. Thus, with probability 1/2,
we have β 6= ±β′, and gcd(rep(β − β′), n) splits n.

Since we split n with probability 1/2 conditioned on any fixed choice α ∈
(Z∗n)2 and any fixed random choices of the modular square-root algorithm,
it follows that we split n with probability 1/2 conditioned simply on the
event that β ∈ Z∗n. Also, conditioned on the event that β /∈ Z∗n, we split n
with certainty, and so we may conclude that the above algorithm splits n
with probability at least 1/2.

Exercise 13.10. Generalize the algorithm above to efficiently factor ar-
bitrary integers, given a subroutine that computes arbitrary modular square
roots. 2

13.4 The Quadratic Residuosity Assumption

Loosely speaking, the quadratic residuosity (QR) assumption is the
assumption that it is hard to distinguish squares from non-squares in Z∗n,
where n is of the form n = pq, and p and q are distinct primes. This
assumption plays an important role in cryptography. Of course, since the
Jacobi symbol is easy to compute, for this assumption to make sense, we
have to restrict our attention to elements of ker(Jn), where Jn : Z∗n → {±1}
is the Jacobi map. We know that (Z∗n)2 ⊆ ker(Jn) (see Exercise 12.2).
Somewhat more precisely, the QR assumption is the assumption that it is
hard to distinguish a random element in ker(Jn) \ (Z∗n)2 from a random
element in (Z∗n)2, given n (but not its factorization!).

To give a rough idea as to how this assumption may be used in cryp-
tography, assume that p ≡ q ≡ 3 (mod 4), so that [−1] ∈ ker(Jn) \ (Z∗n)2,
and moreover, ker(Jn)\(Z∗n)2 = [−1](Z∗n)2 (see Exercise 12.3). The value n
can be used as a public key in a public-key cryptosystem (see §7.7). Alice,
knowing the public key, can encrypt a single bit b ∈ {0, 1} as β := (−1)bα2,
where Alice chooses α ∈ Z∗n at random. The point is, if b = 0, then β is uni-
formly distributed over (Z∗n)2, and if b = 1, then β is uniformly distributed
over ker(Jn) \ (Z∗n)2. Now Bob, knowing the secret key, which is the fac-
torization of n, can easily determine if β ∈ (Z∗n)2 or not, and hence deduce
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the value of the encrypted bit b. However, under the QR assumption, an
eavesdropper, seeing just n and β, cannot effectively figure out what b is.

Of course, the above scheme is much less efficient than the RSA cryp-
tosystem presented in §7.7, but nevertheless, has attractive properties; in
particular, its security is very closely tied to the QR assumption, whereas
the security of RSA is a bit less well understood.

Exercise 13.11. Suppose that A is a probabilistic algorithm that takes
as input n of the form n = pq, where p and q are distinct primes such that
p ≡ q ≡ 3 (mod 4). The algorithm also takes as input α ∈ ker(Jn), and
outputs either 0 or 1. Furthermore, assume that A runs in strict polynomial
time. Define two random variables, Xn and Yn, as follows: Xn is defined
to be the output of A on input n and a value α chosen at random from
ker(Jn) \ (Z∗n)2, and Yn is defined to be the output of A on input n and
a value α chosen at random from (Z∗n)2. In both cases, the value of the
random variable is determined by the random choice of α, as well as the
random choices made by the algorithm. Define ε(n) := |P[Xn = 1]−P[Yn =
1]|.

Show how to use A to design a probabilistic, expected polynomial time
algorithm A′ that takes as input n as above and α ∈ ker(Jn), and outputs
either “square” or “non-square,” with the following property:

if ε(n) ≥ 0.001, then for all α ∈ ker(Jn), the probability that
A′ correctly identifies whether α ∈ (Z∗n)2 is at least 0.999.

Hint: use the Chernoff Bound. 2

Exercise 13.12. Assume the same notation as in the previous exercise.
Define the random variable X ′

n to be the output of A on input n and a
value α chosen at random from ker(Jn). Show that |P[X ′

n = 1] − P[Yn =
1]| = ε(n)/2. Thus, the problem of distinguishing ker(Jn) from (Z∗n)2 is
essentially equivalent to the problem of distinguishing ker(Jn) \ (Z∗n)2 from
(Z∗n)2. 2

13.5 Notes

Exercise 13.2 is based on Solvay and Strassen [90].
The probabilistic algorithm in §13.3.1 for computing square roots mod-

ulo p can be made deterministic under a generalization of the Riemann
hypothesis. Indeed, as discussed in §10.7, under such a hypothesis, Bach’s
result [9] implies that the least positive integer that is not a quadratic
residue modulo p is at most 2 log p (this follows by applying Bach’s result
with the subgroup (Z∗p)2 of Z∗p). Thus, we may find the required element
γ ∈ Z∗p \ (Z∗n)2 in deterministic polynomial time, just by brute-force search.
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The best unconditional bound on the smallest positive integer that is not
a quadratic residue modulo p is due to Burgess [19], who gives a bound of
pα+o(1), where α := 1/(4

√
e) ≈ 0.15163.

Goldwasser and Micali [34] introduced the quadratic residuosity as-
sumption to cryptography (as discussed in §13.4). This assumption has
subsequently been used as the basis for numerous cryptographic schemes.



Chapter 14

Modules and Vector Spaces

In this chapter, we introduce the basic definitions and results concerning
modules over a ring R and vector spaces over a field F . The reader may
have seen some of these notions before, but perhaps only in the context of
vector spaces over a specific field, such as the real or complex numbers, and
not in the context of, say, finite fields like Zp.

14.1 Definitions, Basic Properties, and Ex-
amples

Throughout this section, R denotes a ring.

Definition 14.1. An R-module is an abelian group M , which we shall
write using additive notation, together with a scalar multiplication op-
eration that maps a ∈ R and α ∈ M to an element aα ∈ M , such that the
following properties are satisfied for all a, b ∈ R and α, β ∈M :

(i) a(bα) = (ab)α,

(ii) (a + b)α = aα + bα,

(iii) a(α + β) = aα + aβ,

(iv) 1Rα = α.

One may also call an R-module M a module over R. Elements of R
are often referred to as scalars, and elements of M may be called vectors.

Note that for an R-module M , for fixed a ∈ R, the map that sends
α ∈ M to aα ∈ M is a group homomorphism with respect to the additive
group operation of M ; likewise, for fixed α ∈M , the map that sends a ∈ R
to aα ∈ M is a group homomorphism from the additive group of R into
the additive group of M .

283
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The following theorem summarizes a few basic facts which follow di-
rectly from the observations in the previous paragraph, and basic facts
about group homomorphisms (see Theorem 8.20):

Theorem 14.2. If M is a module over R, then for all a ∈ R, α ∈ M ,
and m ∈ Z, we have:

(i) 0Rα = 0M ,

(ii) a0M = 0M ,

(iii) (−a)α = −(aα) = a(−α),

(iv) (ma)α = m(aα) = a(mα).

Proof. Exercise. 2

The definition of a module includes the trivial module, consisting of
just the zero element 0M . If R is the trivial ring, then any R-module is
trivial, since for all α ∈M , we have α = 1Rα = 0Rα = 0M .

Example 14.1. A simple but extremely important example of an R-
module is the set R×n of n-tuples of elements of R, where addition
and scalar multiplication are defined component-wise — that is, for α =
(a1, . . . , an) ∈ R×n, β = (b1, . . . , an) ∈ R×n, and a ∈ R, we have

α + β = (a1 + b1, . . . , an + bn) and aα = (aa1, . . . , aan).

2

Example 14.2. The ring of polynomials R[X] over R forms an R-module
in the natural way, with addition and scalar multiplication defined in terms
of the addition and multiplication operations of the polynomial ring. 2

Example 14.3. As in Example 9.34, let f be a monic polynomial over R
of degree ` ≥ 0, and consider the quotient ring E := R[X]/(f). Then E is
a module over R, with addition defined in terms of the addition operation
of R, and scalar multiplication defined by a[g mod f ] := [ag mod f ], for
a ∈ R and g ∈ R[X]. If f = 1, then E is trivial. 2

Example 14.4. If E is any ring containing R as a subring (i.e., E is
an extension ring of R), then E is a module over R, with addition and
scalar multiplication defined in terms of the addition and multiplication
operations of E. 2

Example 14.5. If M1, . . . ,Mn are R-modules, then so is the direct
product M1 × · · · × Mn, where addition and scalar product are defined
component-wise. 2
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Example 14.6. Any abelian group G, written additively, can be viewed
as a Z-module, with scalar multiplication defined in terms of the usual
integer multiplication map (see parts (vi)–(viii) of Theorem 8.3). 2

Example 14.7. Let G be any group, written additively, whose exponent
divides n. Then we may define a scalar multiplication that maps [m mod
n] ∈ Zn and α ∈ G to mα. That this map is unambiguously defined follows
from the fact that G has exponent dividing n, so that if m ≡ m′ (mod n),
we have mα−m′α = (m−m′)α = 0G, since n | (m−m′). It is easy to check
that this scalar multiplication operation indeed makes G into a Zn-module.
2

Example 14.8. Of course, viewing a group as a module does not depend
on whether or not we happen to use additive notation for the group oper-
ation. If we specialize the previous example to the group G = Z∗p, where
p is prime, then we may view G as a Zp−1-module. However, since the
group operation itself is written multiplicatively, the “scalar product” of
[m mod (p− 1)] ∈ Zp−1 and α ∈ Z∗p is the power αm. 2

14.2 Submodules and Quotient Modules

Again, throughout this section, R denotes a ring. The notions of subgroups
and quotient groups extend in the obvious way to R-modules.

Definition 14.3. Let M be an R-module. A subset N is a submodule
of M if

(i) N is a subgroup of the additive group M , and

(ii) N is closed under scalar multiplication; that is, for all a ∈ R and
α ∈ N , we have aα ∈ N .

It is easy to see that a submodule N of an R-module M is also an R-
module in its own right, with addition and scalar multiplication operations
inherited from M .

Expanding the above definition, we see that a subset N of M is a sub-
module if and only if for all a ∈ R and all α, β ∈ N , we have

α + β ∈ N, −α ∈ N, and aα ∈ N.

Observe that the condition −α ∈ N is redundant, as it is implied by the
condition aα ∈ N with a = −1R.

For m ∈ Z, it is easy to see (verify) that not only are mM and M{m}
subgroups of M (see Theorems 8.6 and 8.7), they are also submodules of
M . Moreover, for a ∈ R, aM := {aα : α ∈ M} and M{a} := {α ∈ M :
aα = 0M} are also submodules of M (verify).
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Let α1, . . . , αn be elements of M . In general, the subgroup 〈α1, . . . , αn〉
will not be a submodule of M . Instead, let us consider the set 〈α1, . . . , αn〉R,
consisting of all R-linear combinations of α1, . . . , αn, with coefficients
taken from R:

〈α1, . . . , αn〉R := {a1α1 + · · ·+ anαn : a1, . . . , an ∈ R}.

It is not hard to see (verify) that 〈α1, . . . , αn〉R is a submodule of M con-
taining α1, . . . , αn; it is called the submodule spanned or generated by
α1, . . . , αn. Moreover, it is easy to see (verify) that any submodule con-
taining α1, . . . , αn must contain 〈α1, . . . , αn〉R.

If N1 and N2 are submodules of M , then N1 + N2 and N1 ∩N2 are not
only subgroups of M , they are also submodules of M (verify).

Example 14.9. For integer ` ≥ 0, define R[X]<` to be the set of poly-
nomials of degree less than `. The reader may verify that R[X]<` is a
submodule of the R-module R[X]. If ` = 0, then this submodule is the
trivial submodule {0R}. 2

Example 14.10. Let G be an abelian group. As in Example 14.6, we can
view G as a Z-module in a natural way. Subgroups of G are just the same
thing as submodules of G, and for a1, . . . , an ∈ G, the subgroup 〈a1, . . . , an〉
is the same as the submodule 〈a1, . . . , an〉Z. 2

Example 14.11. Any ring R can be viewed as an R-module in the ob-
vious way, with addition and scalar multiplication defined in terms of the
addition and multiplication operations of R. With respect to this module
structure, ideals of R are just the same thing as submodules of R, and for
a1, . . . , an, the ideal (a1, . . . , an) is the same as the submodule 〈a1, . . . , an〉R.
2

If N is a submodule of M , then in particular, it is also a subgroup
of M , and we can form the quotient group M/N in the usual way (see
§8.3). Moreover, because N is closed under scalar multiplication, we can
also define a scalar multiplication on M/N in a natural way. Namely, for
a ∈ R and α ∈M , we define

a · (α + N) := (aα) + N.

As usual, one must check that this definition is unambiguous, that is, if
α ≡ α′ (mod N), then aα ≡ aα′ (mod N). But this follows from the fact
that N is closed under scalar multiplication (verify). One can also easily
check (verify) that with scalar multiplication defined in this way, M/N is
an R-module; it is called the quotient module of M modulo N .
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14.3 Module Homomorphisms and Isomor-
phisms

Again, throughout this section, R is a ring. The notion of a group homo-
morphism extends in the obvious way to R-modules.

Definition 14.4. Let M and M ′ be modules over R. An R-module ho-
momorphism from M to M ′ is a map ρ : M →M ′, such that

(i) ρ is a group homomorphism from M to M ′, and

(ii) for all a ∈ R and α ∈M , we have ρ(aα) = aρ(α).

An R-module homomorphism is also called an R-linear map. We shall
use this terminology from now on. Expanding the definition, we see that a
map ρ : M →M ′ is an R-linear map if and only if ρ(α + β) = ρ(α) + ρ(β)
and ρ(aα) = aρ(α) for all α, β ∈M and all a ∈ R.

Since an R-module homomorphism is also a group homomorphism on
the underlying additive groups, all of the statements in Theorem 8.20 apply.
In particular, an R-linear map is injective if and only if the kernel is trivial
(i.e., contains only the zero element). However, in the case of R-module
homomorphisms, we can extend Theorem 8.20, as follows:

Theorem 14.5. Let ρ : M →M ′ be an R-linear map.

(i) For any submodule N of M , ρ(N) is a submodule of M ′.

(ii) ker(ρ) is a submodule of M .

(iii) For any submodule N ′ of M ′, ρ−1(N ′) is a submodule of M .

Proof. Exercise. 2

Theorems 8.21, 8.22, and 8.23 have natural R-module analogs:

Theorem 14.6. If ρ : M → M ′ and ρ′ : M ′ → M ′′ are R-linear maps,
then so is their composition ρ′ ◦ ρ : M →M ′′.

Proof. Exercise. 2

Theorem 14.7. Let ρi : M → Mi, for i = 1, . . . , n, be R-linear
maps. Then the map ρ : M → M1 × · · · × Mn that sends α ∈ M to
(ρ1(α), . . . , ρn(α)) is an R-linear map.

Proof. Exercise. 2
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Theorem 14.8. Let ρi : Mi → M , for i = 1, . . . , n, be R-linear maps.
Then the map ρ : M1 × · · · ×Mn →M that sends (α1, . . . , αn) to ρ1(α1) +
· · ·+ ρn(αn) is an R-linear map.

Proof. Exercise. 2

If an R-linear map ρ : M → M ′ is bijective, then it is called an R-
module isomorphism of M with M ′. If such an R-module isomorphism ρ
exists, we say that M is isomorphic to M ′, and write M ∼= M ′. Moreover,
if M = M ′, then ρ is called an R-module automorphism on M .

Analogous to Theorem 8.24, we have:

Theorem 14.9. If ρ is a R-module isomorphism of M with M ′, then the
inverse function ρ−1 is an R-module isomorphism of M ′ with M .

Proof. Exercise. 2

Theorems 8.25, 8.26, 8.27, and 8.28 generalize immediately to R-
modules:

Theorem 14.10. If N is a submodule of an R-module M , then the nat-
ural map ρ : M → M/N given by ρ(α) = α + N is a surjective R-linear
map whose kernel is N .

Proof. Exercise. 2

Theorem 14.11. Let ρ be an R-linear map from M into M ′. Then
the map ρ̄ : M/ ker(ρ) → img(ρ) that sends the coset α + ker(ρ) for
α ∈M to ρ(α) is unambiguously defined and is an R-module isomorphism
of M/ ker(ρ) with img(ρ).

Proof. Exercise. 2

Theorem 14.12. Let ρ be an R-linear map from M into M ′. Then for
any submodule N contained in ker(ρ), the map ρ̄ : M/N → img(ρ) that
sends the coset α + N for α ∈ M to ρ(α) is unambiguously defined and is
an R-linear map from M/N onto img(ρ) with kernel ker(ρ)/N .

Proof. Exercise. 2

Theorem 14.13. Let M be an R-module with submodules N1, N2. Then
the map ρ : N1 × N2 → N1 + N2 that sends (α1, α2) to α1 + α2 is a
surjective R-linear map. Moreover, if N1 ∩ N2 = {0M}, then ρ is an R-
module isomorphism of N1 ×N2 with N1 + N2.
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Proof. Exercise. 2

Example 14.12. Let M be an R-module, and let m be an integer. Then
the m-multiplication on M is not only a group homomorphism, but it is an
R-linear map. 2

Example 14.13. Let M be an R-module, and let a be an element of
R. The a-multiplication map on M is the map that sends α ∈ M to
aα ∈M . This is an R-linear map whose image is aM , and whose kernel is
M{a}. The set of all a ∈ R for which aM = {0M} is called the R-exponent
of M , and is easily seen to be an ideal of R (verify). 2

Example 14.14. Let M be an R-module, and let α be an element of M .
Then the map ρ : R → M given by ρ(a) = aα is an R-linear map. The
image of this map is 〈α〉R. The kernel of this map is called the R-order of
α, and is easily seen to be an ideal of R (verify). 2

Example 14.15. Consider again the R-module R[X]/(f) discussed in Ex-
ample 14.3, where f is monic of degree `. As an R-module, R[X]/(f) is iso-
morphic to R[X]<` (see Example 14.9). Indeed, based on the observations
in Example 9.34, the map ρ : R[X]<` → R[X]/(f) that sends a polynomial
g ∈ R[X] of degree less than ` to [g mod f ] ∈ R[X]/(f) is an isomorphism of
R[X]<` with R[X]/(f). Furthermore, R[X]<` is isomorphic as an R-module to
R×`. Indeed, the map ρ′ : R[X]<` → R×` that sends g =

∑`−1
i=0 giXi ∈ R[X]<`

to (g0, . . . , g`−1) ∈ R×` is an isomorphism of R[X]<` with R×`. 2

Example 14.16. Let E and E′ be ring extensions of the ring R. As we
saw in Example 14.4, E and E′ may be viewed as R-modules in a natural
way. Suppose that ρ : E → E′ is a ring homomorphism whose restriction
to R is the identity map (i.e., ρ(a) = a for all a ∈ R). Then ρ is an R-linear
map. Indeed, for any a ∈ R and α, β ∈ E, we have ρ(α + β) = ρ(α) + ρ(β)
and ρ(aα) = ρ(a)ρ(α) = aρ(α). 2

14.4 Linear Independence and Bases

Throughout this section, R denotes a non-trivial ring.

Definition 14.14. We say that an R-module M is finitely generated
(over R) if it is spanned by a finite number of elements, which is to say
that M = 〈α1, . . . , αn〉R for some α1, . . . , αn ∈M .

We say that a collection of elements α1, . . . , αn in M is linearly de-
pendent (over R) if there exist a1, . . . , an ∈ R, not all zero, such that
a1α1 + · · · anαn = 0M ; otherwise, we say that α1, . . . , αn are linearly in-
dependent (over R).

We say that a collection α1, . . . , αn of elements in M is a basis for M
(over R) if it is linearly independent and spans M .
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As a matter of definition, we consider the submodule spanned by the
empty set of elements to be the trivial submodule {0M}. If M itself is the
trivial module, then the empty set is a basis for M .

Example 14.17. Consider the R-module R×n. Define α1, . . . , αn ∈ R×n

as follows:

α1 := (1, 0, . . . , 0), α2 := (0, 1, 0, . . . , 0), . . . , αn := (0, . . . , 0, 1);

that is, αi has a 1 in position i and is zero everywhere else. It is easy to
see that α1, . . . , αn form a basis for R×n. Indeed, for any a1, . . . , an ∈ R,
we have a1α1 + · · ·+anαn = (a1, . . . , an), from which it is clear that the αi

span R×n and are linearly independent. The vectors α1, . . . , αn form what
is called the standard basis for R×n. 2

Example 14.18. Consider the R-module R×3. In addition to the stan-
dard basis

(1, 0, 0), (0, 1, 0), (0, 0, 1),

the reader may verify that the vectors

(1, 1, 1), (0, 1, 0), (−1, 0, 1)

also form a basis. The vectors

(1, 1, 1), (0, 1, 0), (1, 0, 1)

do not form a basis, as they are linearly dependent: the third vector is
equal to the first minus the second. 2

Example 14.19. The ring of polynomials R[X] is not finitely generated
as an R-module, since any finite set of polynomials spans only polynomials
of some bounded degree. 2

Example 14.20. Consider the submodule R[X]<` of R[X], where ` ≥ 0.
If ` = 0, then R[X]<` is trivial; otherwise, 1, X, . . . , X`−1 form a basis. 2

Example 14.21. Consider again the ring E = R[X]/(f), where f ∈ R[X]
is monic of degree ` ≥ 0. If f = 1, then E is trivial; otherwise,
1, η, η2, . . . , η`−1, where η := [X mod f ] ∈ E, form a basis for E over R. 2

Theorem 14.15. If α1, . . . , αn form a basis for M , then the map ρ :
R×n → M that sends (a1, . . . , an) ∈ R×n to a1α1 + · · ·+ anαn ∈ M is an
R-module isomorphism of R×n with M .

In particular, every element of M can be expressed in a unique way as
a1α1 + · · ·+ anαn, for a1, . . . , an ∈ R.
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Proof. To show this, one has to show (1) that ρ is an R-linear map,
which follows immediately from the definitions, (2) that ρ is injective, which
follows immediately from the linear independence of α1, . . . , αn, and (3)
that ρ is surjective, which follows immediately from the fact that α1, . . . , αn

span M . 2

Theorem 14.16. Suppose that α1, . . . , αn span an R-module M and that
ρ : M →M ′ is an R-linear map.

(i) ρ is surjective if and only if ρ(α1), . . . , ρ(αn) span M ′.

(ii) If ρ(α1), . . . , ρ(αn) are linearly independent, then ρ is injective.

Proof. Since the αi span M , every element of M can be expressed as∑
i aiαi, where the ai are in R. It follows that the image of ρ consists of all

elements of M ′ of the form ρ(
∑

i aiαi) =
∑

i aiρ(αi). That is, the image of
ρ is the submodule of M ′ spanned by ρ(α1), . . . , ρ(αn), which implies (i).

For (ii), suppose that ρ is not injective. Then ρ(α) = 0M ′ for some
α 6= 0M , and since the αi span M , we can write α =

∑
i aiαi, where the ai

are in R. Since α is non-zero, some of the ai must be non-zero. So we have
0M ′ = ρ(

∑
i aiαi) =

∑
i aiρ(αi), and hence ρ(α1), . . . , ρ(αn) are linearly

dependent. 2

Theorem 14.17. Suppose ρ : M →M ′ is an injective R-linear map and
that α1, . . . , αn ∈ M are linearly independent. Then ρ(α1), . . . , ρ(αn) are
linearly independent.

Proof. Suppose that 0M ′ =
∑

i aiρ(αi) = ρ(
∑

i aiαi). Then, as ker(ρ) =
{0M}, we must have

∑
i aiαi = 0M , and as the αi are linearly independent,

all the ai must be zero. 2

Theorem 14.18. Let α1, . . . , αn be a basis for an R-module M , and let
ρ : M →M ′ be an R-linear map.

(i) ρ is surjective if and only if ρ(α1), . . . , ρ(αn) span M ′.

(ii) ρ is injective if and only if ρ(α1), . . . , ρ(αn) are linearly independent.

(iii) ρ is an isomorphism if and only if ρ(α1), . . . , ρ(αn) form a basis for
M ′.

Proof. (i) follows immediately from part (i) of Theorem 14.16. (ii) follows
from part (ii) of Theorem 14.16 and Theorem 14.17. (iii) follows from (i)
and (ii). 2

Exercise 14.1. Show that if a finite set S of elements of an R-module is
linearly independent, then any subset of S is also linearly independent. 2
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Exercise 14.2. Show that if a finite collection of elements of an R-
module contains the zero element, or contains two identical elements, then
it is not linearly independent. 2

Exercise 14.3. Show that if S and S′ are finite sets of elements of an
R-module with S ⊆ S′, then the submodule spanned by S is contained in
the submodule spanned by S′. 2

Exercise 14.4. Show that if S and S′ are finite sets of elements of an
R-module such that every element of S can be expressed as an R-linear
combination of elements in S′, then the submodule spanned by S is con-
tained in the submodule spanned by S′. 2

Exercise 14.5. Let ρ : M → M ′ be an R-linear map. Show that if
α1, . . . , αn ∈ M are linearly dependent, then ρ(α1), . . . , ρ(αn) ∈ M ′ are
also linearly dependent. 2

14.5 Vector Spaces and Dimension

Throughout this section, F denotes a field.
A module over a field is also called a vector space. In particular, an

F -module is called an F -vector space, or a vector space over F .
For vector spaces over F , one typically uses the terms subspace and

quotient space, instead of (respectively) submodule and quotient module;
likewise, one usually uses the terms F -vector space homomorphism,
isomorphism and automorphism, as appropriate.

Throughout the rest of this section, V denotes a vector space over F .
We now develop the basic theory of dimension for finitely generated

vector spaces. The following two theorems provide the keys to this theory.

Theorem 14.19. If V is finitely generated, then any finite set of vectors
that spans V contains a subset that is a basis.

Proof. We give an “algorithmic” proof. Let α1, . . . , αn be a given set of
vectors that spans V . Let S0 be the empty set, and for i = 1, . . . , n, do
the following: if αi does not belong to the subspace spanned by Si−1, set
Si := Si−1 ∪ {αi}, and otherwise, set Si := Si−1. We claim that Sn is a
basis for V .

First, we show that Sn spans V . To do this, first note that for i =
1, . . . , n, if αi is not in Sn, then by definition, αi is a linear combination
of vectors in Si−1 ⊆ Sn. In any case, each αi is a linear combination of
the vectors in Sn. Since any element β of V is a linear combination of
α1, . . . , αn, and each αi is a linear combination of elements of Sn, it follows
(see Exercise 14.4) that β is a linear combination of elements of Sn.
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Second, we show that Sn is linearly independent. Suppose it were not.
Then we could express 0V as a non-trivial linear combination of elements
in Sn. Let us write this as

0V = a1α1 + a2α2 + · · ·+ anαn,

where the only non-zero coefficients ai are those with αi ∈ Sn. If j is the
highest index with aj 6= 0F , then by definition αj ∈ Sn. However, we see
that αj is in fact in the span of Sj−1; indeed,

αj = (−a−1
j a1)α1 + · · ·+ (−a−1

j aj−1)αj−1,

and by definition, the only terms with non-zero coefficients are those corre-
sponding to the vectors in Sj−1. This means that we would not have added
αj to Sj at step j, which means αj is not in Sn, a contradiction. 2

Theorem 14.20. If V has a basis of size n, then any collection of n + 1
elements of V is linearly dependent.

Proof. Let α1, . . . , αn be a basis, and let β1, . . . , βn+1 be any collection of
n + 1 vectors. We wish to show that β1, . . . , βn+1 are linearly dependent.

Since the αi span V , we know that β1 is a linear combination of the
αi, say, β1 = a1α1 + · · · anαn. If all the ai were zero, then we would have
β1 = 0V , and so trivially, β1, . . . , βn+1 would be linearly dependent (see
Exercise 14.2). So assume that not all ai are zero, and for convenience,
let us say that a1 6= 0F . It follows that α1 is a linear combination of
β1, α2, . . . , αn; indeed,

α1 = a−1
1 β1 + (−a−1

1 a2)α2 + · · ·+ (−a−1
1 an)αn.

It follows that β1, α2, . . . , αn span V (see Exercise 14.4).
Next, consider β2. This is a linear combination of β1, α2, . . . , αn, and

we may assume that in this linear combination, the coefficient of one of
α2, . . . , αn is non-zero (otherwise, we find a linear dependence among the
βj), and for convenience, let us say that the coefficient of α2 is non-zero.
As in the previous paragraph, it follows that β1, β2, α3, . . . , αn span V .

Continuing in this way, we find that β1, . . . , βn are either linearly de-
pendent or they span V . In the latter case, we find that βn+1 is a linear
combination of β1, . . . , βn, and hence, the vectors β1, . . . , βn, βn+1 are lin-
early dependent. 2

We stress that the proofs of Theorems 14.19 and 14.20 both made crit-
ical use of the assumption that F is a field. An important corollary of
Theorem 14.20 is the following:

Theorem 14.21. If V is finitely generated, then any two bases have the
same size.
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Proof. If one basis had more elements than another, then Theorem 14.20
would imply that the first basis was linearly dependent, which contradicts
the definition of a basis. 2

Theorem 14.21 allows us to make the following definition:

Definition 14.22. If V is finitely generated, the common size of any basis
is called the dimension of V , and is denoted dimF (V ).

Note that from the definitions, we have dimF (V ) = 0 if and only if V is
the trivial vector space (i.e., V = {0V }). We also note that one often refers
to a finitely generated vector space as a finite dimensional vector space.
We shall give preference to this terminology from now on.

To summarize the main results in this section up to this point: if V is fi-
nite dimensional, it has a basis, and any two bases have the same size, which
is called the dimension of V . The next theorem is simple consequences of
these results.

Theorem 14.23. Suppose that V is of finite dimension n, and let
α1, . . . , αn ∈ V . The following are equivalent:

(i) α1, . . . , αn are linearly independent.

(ii) α1, . . . , αn span V .

(iii) α1, . . . , αn form a basis for V .

Proof. Let W be the subspace spanned by α1, . . . , αn.
First, let us show that (i) implies (ii). Suppose α1, . . . , αn are linearly

independent. Also, by way of contradiction, suppose that W ( V . Choose
β ∈ V \W . Then it follows that α1, . . . , αn, β are linearly independent;
indeed, if we had a relation 0V = a1α1 + · · ·+anαn +bβ, then we must have
b = 0F (otherwise, β ∈ W ), and by the linear independence of α1, . . . , αn,
all the ai must be zero as well. But then we have a set of n + 1 linearly
independent vectors in V , which is impossible by Theorem 14.20.

Second, let us prove that (ii) implies (i). Let us assume that α1, . . . , αn

are linearly dependent, and prove that W ( V . By Theorem 14.19, we can
find a basis for W among the αi, and since the αi are linearly dependent,
this basis must contain strictly fewer than n elements. Hence, dimF (W ) <
dimF (V ), and therefore, W ( V .

The theorem now follows from the above arguments, and the fact that,
by definition, (iii) holds if and only if both (i) and (ii) hold. 2

We next examine the dimension of subspaces of finite dimensional vector
spaces.
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Theorem 14.24. If V is finite dimensional, and W is a subspace of V ,
then W is also finite dimensional, and dimF (W ) ≤ dimF (V ). Moreover,
dimF (W ) = dimF (V ) if and only if W = V .

Proof. To see this, suppose dimF (V ) = n, and assume that W is non-
trivial. We shall construct a basis α1, . . . , αm for W , where m ≤ n. We
can take α1 to be any non-zero vector in W , α2 to be any vector in W
not in the subspace spanned by α1, and so on. More generally, at stage
i = 1, 2, . . . , we take αi to be any element of W not in the subspace spanned
by α1, . . . , αi−1. It is easy to see that at each stage i, the vectors α1, . . . , αi

are linearly independent: if we had a relation a1α1 + · · · ajαj = 0V , where
j ≤ i and aj 6= 0F , this would imply that αj lies in the subspace generated
by α1, . . . , αj−1, which contradicts the definition of how αj was selected.
Because of Theorem 14.20, this process must halt at some stage m ≤ n,
and since the process does halt, it must be the case that α1, . . . , αm span
W .

That proves that W is finite dimensional with dimF (W ) ≤ dimF (V ). It
remains to show that these dimensions are equal if and only if W = V . Now,
if W = V , then clearly dimF (W ) = dimF (V ). Conversely, if dimF (W ) =
dimF (V ), then by Theorem 14.23, any basis for W must already span V .
2

Theorem 14.25. If V is finite dimensional, and W is a subspace of V ,
then the quotient space V/W is also finite dimensional, and

dimF (V/W ) = dimF (V )− dimF (W ).

Proof. Suppose that S is a finite set of vectors that spans V . Then
{α + W : α ∈ S} is a finite set of vectors that spans V/W . It follows from
Theorem 14.19 that V/W has a basis, say, α1 + W, . . . , α` + W . Suppose
that β1, . . . , βm is a basis for W . The theorem will follow immediately from
the following:

Claim. The vectors
α1, . . . , α`, β1, . . . , βm (14.1)

form a basis for V .
To see that these vectors span V , consider any element γ of V . Then

since α1 + W, . . . , α` + W span V/W , we have γ ≡
∑

i aiαi (mod W )
for some a1, . . . , a` ∈ F . If we set β := γ −

∑
i aiαi ∈ W , then since

β1, . . . , βm span W , we have β =
∑

j bjβj for some b1, . . . , bm ∈ F , and
hence γ =

∑
i aiαi +

∑
j bjβj . That proves that the vectors (14.1) span V .

To prove they are linearly independent, suppose we have a relation of the
form

∑
i aiαi +

∑
j bjβj = 0V , where a1, . . . , a` ∈ F and b1, . . . , bm ∈ F .

If any of the ai were non-zero, this would contradict the assumption that
α1 +W, . . . , α` +W are linearly independent. So assume that all the ai are
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zero. If any of the bj were non-zero, this would contradict the assumption
that β1, . . . , βm are linearly independent. Thus, all the ai and all the bj

must be zero, which proves that the vectors (14.1) are linearly independent.
That proves the claim. 2

Theorem 14.26. If V is of finite dimension, then any linearly indepen-
dent set of elements of V can be extended to form a basis for V .

Proof. This is actually implicit in the proof of the previous theorem.
Let β1, . . . , βm ∈ V be linearly independent. Let W be the subspace of
V spanned by β1, . . . , βm, so that β1, . . . , βm form a basis for W . As in
the proof of the previous theorem, we can choose α1, . . . , α` ∈ V such that
α1 + W, . . . , α` + W form a basis for the quotient space V/W , so that

α1, . . . , α`, β1, . . . , βm

form a basis for V . 2

Example 14.22. Suppose that F is finite, say |F | = q, and that V is
finite dimensional, say dimF (V ) = n. Then clearly |V | = qn. If W is
a subspace with dimF (W ) = m, then |W | = qm, and by Theorem 14.25,
dimF (V/W ) = n−m, and hence |V/W | = qn−m. Just viewing V and W as
additive groups, we know that the index of W in V is [V : W ] = |V/W | =
|V |/|W | = qn−m, which agrees with the above calculations. 2

We next consider the relation between the notion of dimension and
linear maps.

Theorem 14.27. If V is of finite dimension n, and V is isomorphic to
V ′, then V ′ is also of finite dimension n.

Proof. If α1, . . . , αn is a basis for V , then by Theorem 14.18,
ρ(α1), . . . , ρ(αn) is a basis for V ′. 2

Theorem 14.28. If ρ : V → V ′ is an F -linear map, and if V and V ′ are
finite dimensional with dimF (V ) = dimF (V ′), then we have:

ρ is injective if and only if ρ is surjective.

Proof. Let α1, . . . , αn be a basis for V . By Theorem 14.18, we know that
ρ is injective if and only if ρ(α1), . . . , ρ(αn) are linearly independent, and
that ρ is surjective if and only if ρ(α1), . . . , ρ(αn) span V ′. Moreover, by
Theorem 14.23, we know that the vectors ρ(α1), . . . , ρ(αn) are linearly inde-
pendent if and only if they span V ′. The theorem now follows immediately.
2
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This last theorem turns out to be extremely useful in a number of set-
tings. Generally, of course, if we have a function f : A → B, injectivity
does not imply surjectivity, nor does surjectivity imply injectivity. If A
and B are finite sets of equal size, then these implications do indeed hold.
Theorem 14.28 gives us another important setting where these implications
hold, with finite dimensionality playing the role corresponding to finiteness.

Theorem 14.28 may be generalized as follows:

Theorem 14.29. If V is finite dimensional, and ρ : V → V ′ is an F -
linear map, then img(ρ) is a finite dimensional vector space, and

dimF (V ) = dimF (img(ρ)) + dimF (ker(ρ)).

Proof. As the reader may verify, this follows immediately from Theo-
rem 14.25, together with Theorems 14.27 and 14.11. 2

Intuitively, one way to think of Theorem 14.29 is as a “law of conser-
vation” for dimension: any “dimensionality” going into ρ that is not “lost”
to the kernel of ρ must show up in the image of ρ.

Exercise 14.6. Show that if V1, . . . , Vn are finite dimensional vector
spaces, then V1 × · · · × Vn has dimension

∑n
i=1 dimF (Vi). 2

Exercise 14.7. Show that if V is a finite dimensional vector space with
subspaces W1 and W2, such that W1 +W2 = V and W1 ∩W2 = {0V }, then
dimF (V ) = dimF (W1) + dimF (W2). 2

Exercise 14.8. The theory of dimension for finitely generated vector
spaces is quite elegant and powerful. There is a theory of dimension (of
sorts) for modules over an arbitrary, non-trivial ring, but it is much more
awkward and limited. This exercise develops a proof of one aspect of this
theory: if an R-module M has a basis at all, then any two bases have the
same size. To prove this, we need the fact that any non-trivial ring R has
a maximal ideal (this was proved in Exercise 9.24 for countable rings).

Let n, m be positive integers, let α1, . . . , αm be elements of R×n, and
let I be an ideal of R.

(a) Show that if α1, . . . , αm span R×n, then every element of I×n can be
expressed as a1α1 + · · · amαm, where a1, . . . , am belong to I.

(b) Show that if m > n and I is a maximal ideal, then there exist
a1, . . . , am ∈ R, not all in I, such that a1α1 + · · · amαm ∈ I×n.

(c) From (a) and (b), deduce that if m > n, then α1, . . . , αm cannot be
a basis for R×n.
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(d) From (c), conclude that any two bases for a given R-module M must
have the same size.

2



Chapter 15

Matrices

In this chapter, we discuss basic definitions and results concerning matrices.
We shall start out with a very general point of view, discussing matrices
whose entries lie in an arbitrary ring R. Then we shall specialize to the
case where the entries lie in a field F , where much more can be said.

One of the main goals of this chapter is to discuss “Gaussian elimina-
tion,” which is an algorithm that allows us to efficiently compute bases for
the image and kernel of an F -linear map.

In discussing the complexity of algorithms for matrices over a ring R, we
shall treat a ring R as an “abstract data type,” so that the running times of
algorithms will be stated in terms of the number of arithmetic operations in
R. If R is a finite ring, such as Zm, we can immediately translate this into
a running time on a RAM (in later chapters, we will discuss other finite
rings and efficient algorithms for doing arithmetic in them).

If R is, say, the field of rational numbers, a complete running time
analysis would require an additional analysis of the sizes of the numbers
that appear in the execution of the algorithm. We shall not attempt such
an analysis here — however, we note that all the algorithms discussed in
this chapter do in fact run in polynomial time when R = Q, assuming we
represent rational numbers as fractions in lowest terms. Another possible
approach for dealing with rational numbers is to use floating point approx-
imations. While this approach eliminates the size problem, it creates many
new problems because of round-off errors. We shall not address any of these
issues here.

15.1 Basic Definitions and Properties

Throughout this section, R denotes a ring.
For positive integers m and n, an m × n matrix A over a ring R is a

299
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rectangular array

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 ,

where each entry aij in the array is an element of R; the element aij is called
the (i, j) entry of A, which we may denote by A(i, j). For i = 1, . . . ,m,
the ith row of A is

(ai1, . . . , ain),

which we may denote by A(i), and for j = 1, . . . , n, the jth column of A
is 

a1j

a2j

...
amj

 ,

which we may denote by A(·, j). We regard a row of A as a 1× n matrix,
and a column of A as an m× 1 matrix.

The set of all m × n matrices over R is denoted by Rm×n. Elements
of R1×n are called row vectors (of dimension n) and elements of Rm×1

are called column vectors (of dimension m). Elements of Rn×n are
called square matrices (of dimension n). We do not make a distinction
between R1×n and R×n; that is, we view standard n-tuples as row vectors.
Also, where there can be no confusion, we may interpret an element of R1×1

simply as an element of R.

We can define the familiar operations of scalar multiplication, addition,
and multiplication on matrices:

• If A ∈ Rm×n and c ∈ R, then cA is the m × n matrix whose (i, j)
entry is cA(i, j).

• If A,B ∈ Rm×n, then A + B is the m×n matrix whose (i, j) entry is
A(i, j) + B(i, j).

• If A ∈ Rm×n and B ∈ Rn×p, then AB is the m × p matrix whose
(i, k) entry is

n∑
j=1

A(i, j)B(j, k).

We can also define the difference A−B := A+(−1R)B of matrices of the
same dimension, which is the same as taking the difference of corresponding
entries. These operations satisfy the usual properties:
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Theorem 15.1. If A,B, C ∈ Rm×n, U, V ∈ Rn×p, Z ∈ Rp×q, and c, d ∈
R, then

(i) c(dA) = (cd)A = d(cA),

(ii) (A + B) + C = A + (B + C),

(iii) A + B = B + A,

(iv) c(A + B) = cA + cB,

(v) (c + d)A = cA + dA,

(vi) (A + B)U = AU + BU ,

(vii) A(U + V ) = AU + AV ,

(viii) c(AU) = (cA)U = A(cU),

(ix) A(UZ) = (AU)Z.

Proof. All of these are trivial, except the last one which requires just a bit
of computation to show that the (i, `) entry of both A(UZ) and (AU)Z is
(verify)

n∑
j=1

p∑
k=1

A(i, j)U(j, k)Z(k, `).

2

Note that while matrix addition is commutative, matrix multiplication
in general is not.

Some simple but useful facts to keep in mind are the following:

• If A ∈ Rm×n and B ∈ Rn×p, then the kth column of AB is equal to
Av, where v = B(·, k); also, the ith row of AB is equal to wB, where
w = A(i).

• If A ∈ Rm×n and u = (u1, . . . , um) ∈ R1×m, then

uA =
m∑

i=1

uiA(i).

In words: uA is a linear combination of the rows of A, with coefficients
taken from the corresponding entries of u.

• If A ∈ Rm×n and

v =

 v1

...
vn

 ∈ Rn×1,
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then

Av =
n∑

j=1

vjA(·, j).

In words: Av is a linear combination of the columns of A, with coef-
ficients taken from the corresponding entries of v.

If A ∈ Rm×n, the transpose of A, denoted by A>, is defined to be the
n×m matrix whose (j, i) entry is A(i, j).

Theorem 15.2. If A,B ∈ Rm×n, C ∈ Rn×p, and c ∈ R, then

(i) (A + B)> = A> + B>,

(ii) (cA)> = cA>,

(iii) (A>)> = A,

(iv) (AC)> = C>A>.

Proof. Exercise. 2

An n × n matrix A is called a diagonal matrix if A(i, j) = 0R for
i 6= j, which is to say that the entries off the “main diagonal” of A are all
zero. A scalar matrix is a diagonal matrix whose diagonal entries are all
the same. The scalar matrix I, where all the entries on the main diagonal
are 1R, is called the n × n identity matrix. It is easy to see that if A is
an n× n matrix, then AI = IA = A.

If Ai is an ni × ni+1 matrix, for i = 1, . . . , k, then by associativity of
matrix multiplication (part (ix) of Theorem 15.1), we may write the product
matrix A1 · · ·Ak, which is an n1 × nk+1 matrix, without any ambiguity.
For an n×n matrix A, and a positive integer k, we write Ak to denote the
product A · · ·A, where there are k terms in the product. Note that A1 = A.
We may extend this notation to k = 0, defining A0 to be the n×n identity
matrix.

One may readily verify the usual rules of exponent arithmetic: for non-
negative integers k1, k2, we have

(Ak1)k2 = Ak1k2 and Ak1Ak2 = Ak1+k2 .

It is easy also to see that part (iv) of Theorem 15.2 implies that for all
non-negative integers k, we have

(Ak)> = (A>)k.
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Algorithmic issues

For computational purposes, matrices are represented in the obvious way
as arrays of elements of R. As remarked at the beginning of this chapter,
we shall treat R as an “abstract data type,” and not worry about how
elements of R are actually represented; in discussing the complexity of
algorithms, we shall simply count “operations in R,” by which we mean
additions, subtractions, multiplications; we shall sometimes also include
equality testing and computing multiplicative inverses as “operations in R.”
In any real implementation, there will be other costs, such as incrementing
counters, and so on, which we may safely ignore, as long as their number
is at most proportional to the number of operations in R.

The following statements are easy to verify:

• We can multiply an m×n matrix times a scalar using mn operations
in R.

• We can add two m× n matrices using mn operations in R.

• We can multiply an m×n matrix and an n× p matrix using O(mnp)
operations in R.

It is also easy to see that given an m×m matrix A, and a non-negative
integer e, we can adapt the repeated squaring algorithm discussed in §3.4
so as to compute Ae using O(len(e)) multiplications of m × m matrices,
and hence O(len(e)m3) operations in R.

15.2 Matrices and Linear Maps

Let R be a non-trivial ring. For positive integers m and n, we may naturally
view R1×m and Rn×1 as R-modules. If A is an m× n matrix over R, then
the map that sends v ∈ R1×m to vA ∈ R1×n is easily seen to be an R-linear
map. Likewise, the map that sends w ∈ Rn×1 to Aw ∈ Rm×1 is also an
R-linear map. Thus, the matrix A defines in a natural way two different
linear maps, one defined in terms of multiplying a row vector on the right
by A, and the other in terms multiplying a column vector on the left by A.

With either of the above interpretations as a linear map, matrix multipli-
cation has a natural interpretation as function composition. Let A ∈ Rm×n

and B ∈ Rn×p, and consider the product matrix C = AB. Let σA, σB , σC

be the maps defined by multiplication on the right by A,B,C, and let
τA, τB , τC be the maps defined by multiplication on the left by A,B, C.
Then it is easy to see (verify) that σC = σB ◦ σA and τC = τA ◦ τB .

We have seen how matrix/vector multiplication defines a linear map.
Conversely, we shall now see that the action of any R-linear map can be
viewed as a matrix/vector multiplication, provided the R-modules involved
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have bases (which will always be the case for finite dimensional vector
spaces).

Let M be a non-trivial R-module, and suppose that A = (α1, . . . , αm)
is a basis for M . In this setting, the ordering of the basis elements is
important, and so we refer to A as an ordered basis. Now, A defines
a canonical R-module isomorphism ε that sends (a1, . . . , am) ∈ R1×m to
a1α1+· · ·+amαm ∈M . Thus, elements of M can be represented concretely
as elements of R1×m; however, this representation depends on the choice A
of the ordered basis. The vector ε−1(α) is called the coordinate vector
of α (with respect to A).

Let N be a non-trivial R-module, and suppose B = (β1, . . . , βn) is an
ordered basis for N . Just as in the previous paragraph, B defines a canonical
R-module isomorphism δ : R1×n → N .

Now let ρ : M → N be an arbitrary R-linear map. For any α ∈ M , if
α = ε(a1, . . . , am), then because ρ is R-linear, we have

ρ(α) =
m∑

i=1

ρ(aiαi) =
m∑

i=1

aiρ(αi).

Thus, the action of ρ on M is completely determined by its action on the
αi.

Let us now define an m×n matrix T whose ith row, for i = 1, . . . ,m, is
defined to be δ−1(ρ(αi)), that is, the coordinate vector of ρ(αi) with respect
to the ordered basis B. With T defined in this way, then for any α ∈M we
have

δ−1(ρ(α)) = ε−1(α)T.

In words: if we multiply the coordinate vector of α on the right by T , we
get the coordinate vector of ρ(α).

A special case of the above is when M = R1×m and N = R1×n, and A
and B are the standard bases for M and N (i.e., for i = 1, . . . ,m, the ith
vector of A has a 1 in position i and is zero everywhere else, and similarly
for B). In this case, the ith row of the matrix T is just the value of ρ applied
to the ith vector in A.

To summarize, we see that an R-linear map ρ from M to N , together
with particular ordered bases for M and N , uniquely determine a matrix
T such that the action of multiplication on the right by T implements
the action of ρ with respect to the given ordered bases. There may be
many ordered bases for M and N to choose from, and different choices will
in general lead to different matrices. In any case, from a computational
perspective, the matrix T gives us an efficient way to compute the map ρ,
assuming elements of M and N are represented as coordinate vectors with
respect to the given ordered bases.
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Of course, if one prefers, by simply transposing everything, one can
equally well represent the action of ρ in terms of the action of multiplication
of a column vector on the left by a matrix.

Example 15.1. Consider again the ring E = R[X]/(f), where f ∈ R[X]
is monic of degree `, and suppose that ` > 0 (see Examples 9.34, 9.43, 14.3,
and 14.21). Let f = f0 + f1X + · · · f`−1X`−1 + X`, where f0, . . . , f`−1 ∈ R.
Consider the element η = [X mod f ] ∈ E. Let ρ : E → E be the η-
multiplication map, that is, the map that sends α ∈ E to ηα ∈ E. This is
an R-linear map, and the matrix T ∈ R`×` that represents this map with
respect to the ordered basis 1, η, η2, . . . , η`−1 for E over R is readily seen
to be

T =


0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1
−f0 −f1 −f2 · · · −f`−1

 ,

where for i = 1, . . . , ` − 1, the ith row of T contains a 1 in position i + 1,
and is zero everywhere else. This matrix is called the companion matrix
of f . 2

Exercise 15.1. Let F be a finite field, and let A be a non-zero m × n
matrix over F . Suppose one chooses a vector v ∈ F 1×m at random. Show
that the probability that vA is the zero vector is at most 1/|F |. 2

Exercise 15.2. Design and analyze a probabilistic algorithm that takes
as input matrices A,B,C ∈ Zm×m

p , where p is a prime. The algorithm
should run in time O(m2 len(p)2) and should output either “yes” or “no”
so that the following holds:

• if C = AB, then the algorithm should always output “yes”;

• if C 6= AB, then the algorithm should output “no” with probability
at least 0.999.

2

15.3 The Inverse of a Matrix

Let R be a non-trivial ring.
For a square matrix A ∈ Rn×n, we call a matrix X ∈ Rn×n an inverse

of A if XA = AX = I, where I is the n× n identity matrix.



306 Matrices

It is easy to see that if A has an inverse, then the inverse is unique: if
X and Y were inverses, then multiplying the equation I = AY on the left
by X, we obtain X = X(AY ) = (XA)Y = IY = Y .

Because the inverse of A is uniquely determined, we denote it by A−1.
If A has an inverse, we say that A is invertible, or non-singular. If A
is not invertible, it is sometimes called singular. We will use the terms
“invertible” and “not invertible.”

If A and B are invertible n × n matrices, then so is their product: in
fact, it is easy to see that (AB)−1 = B−1A−1 (verify). It follows that if A is
an invertible matrix, and k is a non-negative integer, then Ak is invertible
with inverse (A−1)k, which we also denote by A−k.

It is also easy to see that A is invertible if and only if the transposed
matrix A> is invertible, in which case (A>)−1 = (A−1)>. Indeed, AX =
I = XA holds if and only if X>A> = I = A>X>

Let us call X a left inverse of A if XA = I, and let us call Y a right
inverse of A if AY = I.

It is easy to see that if A has both a left inverse X and a right inverse
Y , then we must have X = Y , from which it follows that X = A−1. To
see this, again, multiply the equation I = AY on the left by X, obtaining
X = X(AY ) = (XA)Y = IY = Y .

One question that remains, the answer to which is not obvious from the
definitions, is whether or not the existence of either a left or right inverse
implies the existence of an inverse. The answer is yes, and we can argue
this as follows in the case where R = F is a field. Let A be the given square
matrix, and let ρ be the F -linear map from F 1×n to F 1×n that sends v to
vA. If A has a left inverse X (so that I = XA), then the map ρ is surjective:
indeed, for any v ∈ F 1×n, v = vI = vXA = ρ(vX). If A has a right inverse
Y (so that I = AY ), then the map ρ is injective: indeed, if ρ(v) = 01×n,
then v = vI = vAY = ρ(v)Y = 01×n. Now, by Theorem 14.28, the map ρ
is a bijection if and only if it is either surjective or injective. So if A has
either a left or a right inverse, the map ρ is a vector space isomorphism,
and hence its inverse ρ−1 is also a vector space isomorphism. If we let Z be
the matrix representing ρ−1 with respect to the standard basis for F 1×n,
it follows that both ZA and AZ represent the identity map, which means
that ZA = AZ = I.

We have shown that if A has either a left or right inverse, then the cor-
responding map ρ is an isomorphism, and this implies that A is invertible.
Conversely, if A has an inverse, then it is clear that the corresponding map
ρ is a vector space isomorphism.

The above discussion also reveals the following important fact:

Theorem 15.3. Let A be a square matrix over a field. Then the following
are equivalent:

(i) A is invertible;
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(ii) the rows of A are linearly independent;

(iii) the columns of A are linearly independent.

Proof. As we saw above, A has an inverse if and only if the map ρ,
defined by multiplication on the right by A, is bijective, which holds if and
only if ρ is injective, which holds if and only if the rows of A are linearly
independent.

That proves that the inverse exists if and only if the rows are linearly
independent. The corresponding statement about columns follows from the
statement about rows, applied to the transposed matrix A>. 2

We have shown above that when R = F is a field, a square matrix is
invertible if and only if it has a left inverse or a right inverse. The same is
true for arbitrary rings R, but the proof of this is non-trivial, and requires
the development of the theory of determinants, which we do not cover in
this text.

Exercise 15.3. Show that if A and B are two square matrices over a field
such that their product AB is invertible, then both A and B themselves
must be invertible. 2

15.4 Gaussian Elimination

Throughout this section, F denotes a field.
A matrix B ∈ Fm×n is said to be in reduced row echelon form

if there exists a sequence of integers (p1, . . . , pr), with 0 ≤ r ≤ m and
1 ≤ p1 < p2 < · · · < pr ≤ n, such that the following holds:

• for i = 1, . . . , r, all of the entries in row i of B to the left of entry
(i, pi) are zero (i.e., B(i, j) = 0 for j = 1, . . . , pi − 1);

• for i = 1, . . . , r, all of the entries in column pi of B above entry (i, pi)
are zero (i.e., B(i′, pi) = 0 for i′ = 1, . . . , i− 1);

• B(i, pi) = 1;

• all entries in rows r + 1, . . . ,m of B are zero (i.e., B(i, j) = 0 for
i = r + 1, . . . ,m and j = 1, . . . , n).

It is easy to see that if B is in reduced row echelon form, the sequence
(p1, . . . , pr) above is uniquely determined, and we call it the pivot se-
quence of B. Several further remarks are in order:
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• All of the entries of B are completely determined by the pivot se-
quence, except for the entries (i, j) with 1 ≤ i ≤ r and j > i with
j /∈ {pi+1, . . . , pr}, which may be arbitrary.

• If B is an n × n matrix in reduced row echelon form whose pivot
sequence is of length n, then B must be the n× n identity matrix.

• We allow for an empty pivot sequence (i.e., r = 0), which will be the
case precisely when B = 0m×n.

Example 15.2. The following 4× 6 matrix B over the rational numbers
is in reduced row echelon form:

B =


0 1 −2 0 0 3
0 0 0 1 0 2
0 0 0 0 1 −4
0 0 0 0 0 0

 .

The pivot sequence of B is (2, 4, 5). Notice that the first three rows of B
are linearly independent, that columns 2, 4, and 5 are linearly independent,
and that all of other columns of B are linear combinations of columns 2, 4,
and 5. Indeed, if we truncate the pivot columns to their first three rows,
we get the 3× 3 identity matrix. 2

Generalizing the previous example, if a matrix is in reduced row echelon
form, it is easy to deduce the following properties, which turn out to be
quite useful:

Theorem 15.4. If B is a matrix in reduced row echelon form with pivot
sequence (p1, . . . , pr), then

(i) rows 1, 2, . . . , r of B are linearly independent;

(ii) columns p1, . . . , pr of B are linearly independent, and all other
columns of B can be expressed as linear combinations of columns
p1, . . . , pr.

Proof. Exercise — just look at the matrix! 2

Gaussian elimination is an algorithm that transforms an arbitrary
m × n matrix A into a m × n matrix B, where B is a matrix in reduced
row echelon form obtained from A by a sequence of elementary row
operations. There are three types of elementary row operations:

Type I: swap two rows,

Type II: multiply a row by a non-zero scalar,
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Type III: add a scalar multiple of one row to a different row.

The application of any specific elementary row operation to an m ×
n matrix C can be affected by multiplying C on the left by a suitable
m × m matrix M . Indeed, the matrix M corresponding to a particular
elementary row operation is simply the matrix obtained by applying the
same elementary row operation to the m×m identity matrix. It is easy to
see that for any elementary row operation, the corresponding matrix M is
invertible.

We now describe the basic version of Gaussian elimination. The input
is an m× n matrix A. The algorithm works with a copy B of A (which we
do not need, if the original matrix A is not needed afterwards).

1. B ← A, r ← 0
2. for j ← 1 to n do
3. `← 0, i← r
4. while ` = 0 and i ≤ m do
5. i← i + 1
6. if B(i, j) 6= 0 then `← i
7. if ` 6= 0 then
8. r ← r + 1
9. swap rows B(r) and B(`)

// B(r, j) is non-zero
// now make B(r, j) one and clear all entries
// above and below B(r, j)

10. B(r)← B(r, j)−1B(r)
11. for i← 1 to m do
12. if i 6= r then
13. B(i)← B(i)−B(i, j)B(r)
14. output B

Note that the only steps in the algorithm where B is actually modified
are at steps 9, 10, and 13, where we perform (respectively) Type I, II,
and III elementary row operations. We leave it to the reader to verify
that the above algorithm indeed transforms A into a matrix B in reduced
row echelon form. To do this, one could make use of the following “loop
invariant”:

after the jth iteration of the main loop (for j = 0, . . . , n), the
first j columns of B are in reduced row echelon form with a
pivot sequence whose length is equal to the current value of r.

As for the complexity of the algorithm, it is easy to see that it performs
O(mn) elementary row operations, each of which takes O(n) operations in
F , so a total of O(mn2) operations in F .



310 Matrices

Suppose the above algorithm performs a total of t elementary row op-
erations. Then as discussed above, the application of the eth elementary
row operation, for e = 1, . . . , t, amounts to multiplying the current value
of the matrix B on the left by a particular invertible m × m matrix Me.
Therefore, the final, output value of B satisfies the equation

B = MA where M =
t∏

e=1

Me.

Since the product of invertible matrices is also invertible, we see that M
itself is invertible.

The above algorithm does not compute the matrix M , but it can be
easily modified to do so. The resulting algorithm, which we call extended
Gaussian elimination, is the same as plain Gaussian elimination, except
that we initialize the matrix M to be the m ×m identity matrix, and we
add the following steps:

• Just before step 9, we add the step: swap rows M(r) and M(`).

• Just before step 10, we add the step: M(r)← B(r, j)−1M(r).

• Just before step 13, we add the step: M(i)←M(i)−B(i, j)M(r).

At the end of the algorithm we output M in addition to B.
So we simply perform the same elementary row operations on M that we

perform on B. The reader may verify that the above algorithm is correct,
and that it uses O(mn(m + n)) operations in F .

Exercise 15.4. For each type of elementary row operation, describe the
matrix M which corresponds to it, as well as M−1. 2

Exercise 15.5. Given a matrix B ∈ Fm×n in reduced row echelon form,
show how to compute its pivot sequence using O(n) operations in F . 2

Exercise 15.6. In §4.4, we saw how to speed up matrix multiplication
over Z using the Chinese remainder theorem. In this exercise, you are to
do the same, but for performing Gaussian elimination over Zp, where p is
a large prime. Suppose you are given an m ×m matrix A over Zp, where
len(p) = Θ(m). Straightforward application of Gaussian elimination would
require O(m3) operations in Zp, each of which takes time O(m2), leading
to a total running time of O(m5). Show how to use the techniques of §4.4
to reduce the running time of Gaussian elimination to O(m4). 2
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15.5 Applications of Gaussian Elimination

Throughout this section, A is an arbitrary m×n matrix over a field F , and
MA = B, where M is an invertible m×m matrix, and B is in reduced row
echelon form with pivot sequence (p1, . . . , pr). This is precisely the infor-
mation produced by the extended Gaussian elimination algorithm, given A
as input (the pivot sequence can easily be “read” directly from B — see
Exercise 15.5).

Let V := F 1×m, W := F 1×n, and ρ : V → W be the F -linear map
that sends v ∈ V to vA ∈W .

Computing the image and kernel

Consider first the row space of A, that is, the vector space spanned by
the rows of A, or equivalently, the image of ρ.

We claim that the row space of A is the same as the row space of B. To
see this, note that for any v ∈ V , since B = MA, we have vB = v(MA) =
(vM)A, and so the row space of B is contained in the row space of A.
For the other containment, note that since M is invertible, we can write
A = M−1B, and apply the same argument.

Further, note that row space of B, and hence that of A, clearly has
dimension r. Indeed, as stated in Theorem 15.4, the first r rows of B form
a basis for the row space of B.

Consider next the kernel of ρ, or what we might call the row null
space of A. We claim that the last m − r rows of M form a basis for
ker(ρ). Clearly, just from the fact that MA = B and the fact that the last
m − r rows of B are zero, it follows that the last m − r rows of M are
contained in ker(ρ). Furthermore, as M is invertible, its rows are linearly
independent (see Theorem 15.3), and so it suffices to show that the last
m − r rows of M span the entire kernel. Now, since the rows of M are
linearly independent, they form a basis for V . Now, suppose there were a
vector v ∈ ker(ρ) which was not in the subspace spanned by the last m− r
rows of M . Further suppose that v = a1M(1)+· · ·+amM(m), where ai 6= 0
for some i = 1, . . . , r. Setting ṽ := (a1, . . . , am), we see that v = ṽM , and
so

ρ(v) = vA = (ṽM)A = ṽ(MA) = ṽB,

and from the fact that the first r rows of B are linearly independent and
the last m − r rows of B are zero, we see that ṽB is not the zero vector
(and because ṽ has a non-zero entry in one its first r positions). We have
derived a contradiction, and hence may conclude that the last m− r rows
of M span ker(ρ).

Finally, note that if m = n, then A is invertible if and only if its row
space has dimension m, which holds if and only if r = m, and in the latter
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case, B will be the identity matrix, and hence M is the inverse of A.
Let us summarize the above discussion:

• The first r rows of B form a basis for the row space of A (i.e., the
image of ρ).

• The last m − r rows of M form a basis for the row null space of A
(i.e., the kernel of ρ).

• If m = n, then A is invertible (i.e., ρ is an isomorphism) if and
only if r = m, in which case M is the inverse of A (i.e., the matrix
representing ρ−1).

So we see that from the output of the extended Gaussian elimination
algorithm, we can simply “read off” bases for both the image and the kernel,
as well as the inverse (if it exists), of a linear map represented as a matrix
with respect to some ordered bases. Also note that this procedure provides
a “constructive” version of Theorem 14.29.

Solving linear systems of equations

Suppose that in addition to the matrix A, we are given w ∈ W , and want
to find a solution v (or perhaps describe all solutions v), to the equation

vA = w. (15.1)

Equivalently, we can phrase the problem as finding an element (or describ-
ing all elements) of the set ρ−1(w).

Now, if there exists a solution at all, say v ∈ V , then since ρ(v) = ρ(ṽ)
if and only if v ≡ ṽ (mod ker(ρ)), it follows that the set of all solutions to
(15.1) is equal to the coset v + ker(ρ). Thus, given a basis for ker(ρ) and
any solution v to (15.1), we have a complete and concise description of the
set of solutions to (15.1).

As we have discussed above, the last m − r rows of M give us a basis
for ker(ρ), so it suffices to determine if w ∈ img(ρ), and if so, determine a
single pre-image v of w.

Also as we discussed, img(ρ), that is, the row space of A, is equal to
the row space of B, and because of the special form of B, we can quickly
and easily determine if the given w is in the row space of B, as follows. By
definition, w is in the row space of B iff there exists a vector v̄ ∈ V such
that v̄B = w. We may as well assume that all but the first r entries of v̄
are zero. Moreover, v̄B = w implies that for i = 1, . . . , r, the ith entry if v̄
is equal to the pith entry of w. Thus, the vector v̄, if it exists, is completely
determined by the entries of w at positions p1, . . . , pr. We can construct v̄
satisfying these conditions, and then test if v̄B = w. If not, then we may
conclude that (15.1) has no solutions; otherwise, setting v := v̄M , we see
that vA = (v̄M)A = v̄(MA) = v̄B = w, and so v is a solution to (15.1).
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One easily verifies that if we implement the above procedure as an algo-
rithm, the work done in addition to running the extended Gaussian elimi-
nation algorithm amounts to O(m(n + m)) operations in F .

A special case of the above procedure is when m = n and A is invertible,
in which case (15.1) has a unique solution, namely, v := wM , since in this
case, M = A−1.

The rank of a matrix

Define the row rank of A to be the dimension of its row space, which is
dimF (img(ρ)), and define the column rank of A to be the dimension of
its column space, that is, the space spanned by the columns of A.

Now, the column space A may not be the same as the column space of
B, but from the relation B = MA, and the fact that M is invertible, it
easily follows that these two subspaces are isomorphic (via the isomorphism
that sends v to Mv), and hence have the same dimension. Moreover, by
Theorem 15.4, the column rank of B is r, which is the same as the row
rank of A.

So we may conclude: The column rank and row rank of A are the same.
Because of this, we define the rank of a matrix to be the common value

of its row and column rank.

The orthogonal complement of a subspace

So as to give equal treatment to rows and columns, one can also define
the column null space of A to be the kernel of the linear map defined
by multiplication on the left by A. By applying the results above to the
transpose of A, we see that the column null space of A has dimension n−r,
where r is the rank of A.

Let U ⊆ W denote the row space of A, and let Ū ⊆ W denote the set
of all vectors ū ∈ W whose transpose ū> belong to the column null space
of A. Now, U is a subspace of W of dimension r and Ū is a subspace of W
of dimension n− r.

Moreover, if U ∩ Ū = {0V }, then by Theorem 14.13 we have an isomor-
phism of U × Ū with U + Ū , and since U × Ū has dimension n, it must
be the case that U + Ū = W . It follows that every element of W can be
expressed uniquely as u + ū, where u ∈ U and ū ∈ Ū .

Now, all of the conclusions in the previous paragraph hinged on the
assumption that U ∩ Ū = {0V }. The space Ū consists precisely of all
vectors ū ∈ W which are “orthogonal” to all vectors u ∈ U , in the sense
that the “inner product” uū> is zero. For this reason, Ū is sometimes
called the “orthogonal complement of U .” The condition U ∩ Ū = {0V } is
equivalent to saying that U contains no non-zero “self-orthogonal vectors”
u such that uu> = 0F . If F is the field of real numbers, then of course
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there are no non-zero self-orthogonal vectors, since uu> is the sum of the
squares of the entries of u. However, for other fields, there may very well
be non-zero self-orthogonal vectors. As an example, if F = Z2, then any
vector u with an even number of 1-entries is self orthogonal.

So we see that while much of the theory of vector spaces and matri-
ces carries over without change from familiar ground fields, like the real
numbers, to arbitrary ground fields F , not everything does. In particular,
the usual decomposition of a vector space into a subspace and its orthog-
onal complement breaks down, as does any other procedure that relies on
properties specific to “inner product spaces.”

For the following three exercises, as above, A is an arbitrary m × n
matrix over a field F , and MA = B, where M is an invertible m × m
matrix, and B is in reduced row echelon form.

Exercise 15.7. Show that the column null space of A is the same as the
column null space of B. 2

Exercise 15.8. Show how to compute a basis for the column null space
of A using O(r(n− r)) operations in F , given A and B. 2

Exercise 15.9. Show that the matrix B is uniquely determined by A;
more precisely, show that if M ′A = B′, where M ′ is an invertible m ×m
matrix, and B′ is in reduced row echelon form, then B′ = B. 2

In the following two exercises, the theory of determinants could be used;
however, they can all be solved directly, without too much difficulty, using
just the ideas developed so far in the text.

Exercise 15.10. Let p be a prime. A matrix A ∈ Zm×m is called in-
vertible modulo p if and only if there exists a matrix X ∈ Zm×m such that
AX ≡ XA ≡ I (mod p), where I is the m × m integer identity matrix.
Here, two matrices are considered congruent with respect to a given mod-
ulus if and only if their corresponding entries are congruent. Show that A
is invertible modulo p if and only if

• A is invertible over Q, and

• the entries of A−1 lie in Q(p) (see Example 9.23).

2

Exercise 15.11. You are given a matrix A ∈ Zm×m and a prime p such
that A is invertible modulo p. Suppose that you are also given w ∈ Z1×m.

(a) Show how to efficiently compute a vector v ∈ Z1×m such that vA =
w (mod p), and that v is uniquely determined modulo p.
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(b) Given a vector v as in part (a), along with an integer e ≥ 1, show
how to efficiently compute v̂ ∈ Z1×m such that v̂A = w (mod pe), and
that v̂ is uniquely determined modulo pe. Hint: mimic the “lifting”
procedure discussed in §13.3.2.

(c) Using parts (a) and (b), design and analyze an efficient algorithm
that takes the matrix A and the prime p as input, together with a
bound H on the absolute value of the numerator and denominator of
the entries of the vector v′ that is the unique (rational) solution to
the equation v′A = w. Your algorithm should run in time polynomial
in the length of H, the length of p, and the sum of the lengths of the
entries of A and w. Hint: use rational reconstruction, but be sure to
fully justify its application.

2

Note that in the previous exercise, one can use the theory of determi-
nants to derive good bounds, in terms of the lengths of the entries of A
and w, on the size of the least prime p such that A is invertible modulo p
(assuming A is invertible over the rationals), and the length of the numer-
ator and denominator of the entries of rational solution v′ to the equation
v′A = w. The interested reader who is familiar with the basic theory of
determinants is encouraged to establish such bounds.

15.6 Notes

While a trivial application of the defining formulas yields a simple algorithm
for multiplying two m×m matrices over a ring R that uses O(m3) operations
in R, this algorithm is not the best, asymptotically speaking. The currently
fastest algorithm for this problem, due to Coppersmith and Winograd [24],
uses O(mω) operations in R, where ω < 2.376. We note, however, that the
good old O(m3) algorithm is still the only one used in almost any practical
setting.



Chapter 16

Subexponential-time Discrete
Logarithms and Factoring

This chapter presents subexponential-time algorithms for computing dis-
crete logarithms and for factoring. These algorithms are based on a common
technique, which makes essential use of the notion of a smooth number.

16.1 Smooth Numbers

If y is a non-negative real number, and m is a positive integer, then we say
that m is y-smooth if all prime divisors of m are at most y.

For 0 ≤ y ≤ x, let us define Ψ(y, x) to be the number of y-smooth
integers up to x. The following theorem gives us a lower bound on Ψ(y, x),
which will be crucial in the analysis of our discrete logarithm and factoring
algorithms.

Theorem 16.1. Let y be a function of x such that

y

log x
→∞ and u :=

log x

log y
→∞

as x→∞. Then

Ψ(y, x) ≥ x · exp[(−1 + o(1))u log log x].

Proof. Let us write u = buc+ δ, where 0 ≤ δ < 1. Let us split the primes
up to y into two sets: the set V “very small” primes that are at most yδ/2,
and the other primes W that are greater than yδ/2 but at most y. To
simplify matters, let us also include the integer 1 in the set V .

By Bertrand’s postulate (Theorem 5.7), there exists a constant C > 0
such that |W | ≥ Cy/ log y for sufficiently large y. By the assumption that
y/ log x→∞ as x→∞, it follows that |W | ≥ 2buc for sufficiently large x.

316
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To derive the lower bound, we shall count those integers that can be
built up by multiplying together buc distinct elements of W , together with
one element of V . These products are clearly distinct, y-smooth numbers,
and each is bounded by x, since each is at most ybucyδ = yu = x.

If S denotes the set of all of these products, then for x sufficiently large,
we have

|S| =
(
|W |
buc

)
· |V |

=
|W |(|W | − 1) · · · (|W | − buc+ 1)

buc!
· |V |

≥
(
|W |
2u

)buc

· |V |

≥
(

Cy

2u log y

)buc

· |V |

=
(

Cy

2 log x

)u−δ

· |V |.

Taking logarithms, we have

log |S| ≥ (u− δ)(log y − log log x + log(C/2)) + log |V |
= log x− u log log x + (log |V | − δ log y) +

O(u + log log x). (16.1)

To prove the theorem, it suffices to show that

log |S| ≥ log x− (1 + o(1))u log log x.

Under our assumption that u → ∞, the term O(u + log log x) in (16.1) is
o(u log log x), and so it will suffice to show that the term log |V | − δ log y
is also o(u log log x). But by Chebyshev’s theorem (Theorem 5.1), for some
positive constant D, we have

Dyδ/ log y ≤ |V | ≤ yδ,

and taking logarithms, and again using the fact that u→∞, we have

log |V | − δ log y = O(log log y) = o(u log log x).

2

16.2 An Algorithm for Discrete Logarithms

We now present a probabilistic, subexponential-time algorithm for comput-
ing discrete logarithms. The input to the algorithm is p, q, γ, α, where p and
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q are primes, with q | (p− 1), γ is an element of Z∗p generating a subgroup
G of Z∗p of order q, and α ∈ G.

We shall make the simplifying assumption that q2 - (p − 1), which is
equivalent to saying that q - m := (p − 1)/q. This assumption greatly
simplifies the design and analysis of the algorithm, and moreover, for cryp-
tographic applications, this assumption is almost always satisfied. We note,
however, that this assumption may be lifted, but the algorithms in this case
are significantly more complicated and/or inefficient (see Exercise 16.1 be-
low).

At a high level, the main goal of our discrete logarithm algorithm is to
find a random representation of 1 with respect to γ and α — as discussed
in Exercise 11.13, this allows us to compute logγ α (with high probability).
More precisely, our main goal is to compute integers r and s in a proba-
bilistic fashion, such that γrαs = 1 and [s mod q] is uniformly distributed
over Zq. Having accomplished this, then with probability 1− 1/q, we shall
have s 6≡ 0 (mod q), which allows us to compute logγ α as −rs−1 rem q.

Let G′ be the subgroup of Z∗p of order m. Our assumption that q - m
implies that G ∩G′ = {1}, since the multiplicative order of any element in
the intersection must divide both q and m, and so the only possibility is
that the multiplicative order is 1. Therefore, the map ρ : G×G′ → Z∗p that
sends (β, δ) to βδ is injective (Theorem 8.28), and since |Z∗p| = qm, it must
be surjective as well.

We shall use this fact in the following way: if β is chosen uniformly
at random from G, and δ is chosen uniformly at random from G′ (and
independent of β), then βδ is uniformly distributed over Z∗p. Furthermore,
since G′ is the image of the q-power map on Z∗p, we may generate a random
δ ∈ G′ simply by choosing δ̂ ∈ Z∗p at random, and setting δ := δ̂q.

The discrete logarithm algorithm uses a “smoothness parameter” y,
whose choice will be discussed below when we analyze the running time
of the algorithm; for now, we only assume that y < p. Let p1, . . . , pk be
an enumeration of the primes up to y. Let πi := [pi mod p] ∈ Z∗p for
i = 1, . . . , k. Let us write ā to denote the image of an integer a in Zq, and
similarly, for a vector v with integer entries, v̄ denotes its image as a vector
with entries in Zq.

The algorithm has two stages.
In the first stage, we find relations of the form

γriαsiδi = πei1
1 . . . πeik

k , (16.2)

for integers ri, si, ei1, . . . , eik, and δi ∈ G′, and i = 1, . . . , k + 1.
We obtain one such relation by a randomized search, as follows: we

choose ri, si ∈ {0, . . . , q − 1} at random, as well as δ̂i ∈ Z∗p at random; we
then compute δi := δ̂q

i , βi := γriαsi , and mi := rep(βiδi). Now, the
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value βi is uniformly distributed over G, while δi is uniformly distributed
over G′; therefore, the product βiδi is uniformly distributed over Z∗p, and
hence mi is uniformly distributed over {1, . . . , p− 1}. Next, we simply try
to factor mi by trial division, trying all the primes p1, . . . , pk up to y. If we
are lucky, we completely factor mi in this way, obtaining a factorization

mi = pei1
1 · · · p

eik

k ,

for some exponents ei1, . . . , eik, and we get the relation (16.2). If we are
unlucky, then we simply try (and try again) until we are lucky.

For i = 1, . . . , k + 1, let vi := (ei1, . . . , eik) ∈ Z×k. The vectors
v̄1, . . . , v̄k+1 ∈ Z×k

q must be linearly dependent, and the second stage
uses Gaussian elimination over the field Zq (see §15.4) to find integers
c1, . . . , ck+1 ∈ {0, . . . , q−1}, not all zero, such that c̄1v̄1+· · ·+c̄k+1v̄k+1 = 0.
Let

(e1, . . . , ek) := c1v1 + · · · ck+1vk+1 ∈ qZ×k.

Raising each equation (16.2) to the power ci, and multiplying them all
together, we obtain

γrαsδ = πe1
1 · · ·π

ek

k ,

where

r :=
k+1∑
i=1

ciri, s :=
k+1∑
i=1

cisi, and δ :=
k+1∏
i=1

δci
i .

Now, δ ∈ G′, and since each ei is a multiple of q, we also have πei
i ∈ G′

for i = 1, . . . , k. It follows that γrαs ∈ G′. But since γrαs ∈ G as well, and
G∩G′ = {1}, it follows that γrαs = 1. If we are lucky (and we will be with
overwhelming probability, as we discuss below), we will have s 6≡ 0 (mod q),
in which case, we can compute s′ := s−1 rem q, obtaining

α = γ−rs′ ,

and hence −rs′ rem q is the discrete logarithm of α to the base γ. If we
are very unlucky, we will have s ≡ 0 (mod q), at which point the algorithm
simply quits, reporting “failure.”

The entire algorithm, called Algorithm SEDL, is presented in Fig-
ure 16.1.

As already argued above, if Algorithm SEDL does not output “failure,”
then its output is indeed the discrete logarithm of α to the base γ. There
remain three questions to answer:

1. What is the expected running time of Algorithm SEDL?

2. How should the smoothness parameter y be chosen so as to minimize
the expected running time?
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i← 0
repeat

i← i + 1
repeat

choose ri, si ∈ {0, . . . , q − 1} at random
choose δ̂i ∈ Z∗p at random
βi ← γriαsi , δi ← δ̂q

i , mi ← rep(βiδi)
test if mi is y-smooth (trial division)

until mi = pei1
1 · · · p

eik

k for some integers ei1, . . . , eik

until i = k + 1

set vi ← (ei1, . . . , eik) ∈ Z×k for i = 1, . . . , k + 1

apply Gaussian elimination over Zq to find integers c1, . . . , ck+1 ∈
{0, . . . , q − 1}, not all zero, such that
c̄1v̄1 + · · ·+ c̄k+1v̄k+1 = 0.

r ←
∑k+1

i=1 ciri, s←
∑k+1

i=1 cisi

if s ≡ 0 (mod q) then
output “failure”

else
output −rs−1 rem q

Figure 16.1: Algorithm SEDL

3. What is the probability that Algorithm SEDL outputs “failure”?

Let us address these questions in turn. As for the expected running
time, let σ be the probability that a random element of {1, . . . , p− 1} is y-
smooth. Then the expected number of attempts needed to produce a single
relation is σ−1, and so the expected number of attempts to produce k + 1
relations is (k + 1)σ−1. In each attempt, we perform trial division using
p1, . . . , pk, along with a few other minor computations, leading to a total
expected running time in stage 1 of k2σ−1 · len(p)O(1). The running time in
stage 2 is dominated by that of the Gaussian elimination step, which takes
time k3 · len(p)O(1). Thus, if T is the total running time of the algorithm,
then we have

E[T ] ≤ (k2σ−1 + k3) · len(p)O(1). (16.3)
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Let us assume for the moment that

y = exp[(log p)λ+o(1)] (16.4)

for some constant λ with 0 < λ < 1. Our final choice of y will indeed satisfy
this assumption. Consider the probability σ. We have

σ = Ψ(y, p− 1)/(p− 1) = Ψ(y, p)/(p− 1) ≥ Ψ(y, p)/p,

where for the second equality we use the assumption that y < p, so p is not
y-smooth. With our assumption (16.4), we may apply Theorem 16.1 (with
the given value of y and x := p), obtaining

σ ≥ exp[(−1 + o(1))(log p/ log y) log log p].

By Chebyshev’s theorem (Theorem 5.1), we know that k = Θ(y/ log y), and
so log k = (1 + o(1)) log y. Moreover, assumption (16.4) implies that the
factor len(p)O(1) in (16.3) is of the form exp[o(min(log y, log p/ log y))], and
so we have

E[T ] ≤ exp[(1 + o(1))max{(log p/ log y) log log p + 2 log y, 3 log y}]. (16.5)

Let us find the value of y that minimizes the right-hand side of (16.5),
ignoring the “o(1)” terms. Let µ := log y, A := log p log log p, S1 :=
A/µ + 2µ, and S2 := 3µ. We want to find µ that minimizes max{S1, S2}.
Using a little calculus, one sees that S1 is minimized at µ = (A/2)1/2. With
this choice of µ, we have S1 = (2

√
2)A1/2 and S2 = (3/

√
2)A1/2 < S1.

Thus, choosing
y = exp[(1/

√
2)(log p log log p)1/2],

we obtain
E[T ] ≤ exp[(2

√
2 + o(1))(log p log log p)1/2].

That takes care of the first two questions, although strictly speaking,
we have only obtained an upper bound for the expected running time, and
we have not shown that the choice of y is actually optimal, but we shall
nevertheless content ourselves (for now) with these results. Finally, we
deal with the third question, on the probability that the algorithm outputs
“failure.”

Lemma 16.2. The probability that the algorithm outputs “failure” is 1/q.

Proof. Consider the values ri, si, and βi generated in the inner loop
in stage 1. It is easy to see that, as random variables, the values si and
βi are independent, since conditioned on any fixed choice of si, the value
ri is uniformly distributed over {0, . . . , q − 1}, and hence βi is uniformly
distributed over G. Turning this around, we see that conditioned on any
fixed choice of βi, the value si is uniformly distributed over {0, . . . , q − 1}.
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So now let us condition on any fixed choice of values βi and δi, for
i = 1, . . . , k + 1, that give rise to y-smooth integers. By the remarks in the
previous paragraph, we see that in this conditional probability distribution,
the variables s̄i are mutually independent and uniformly distributed over
Zq, and moreover, the behavior of the algorithm is completely determined,
and in particular, the values c̄1, . . . , c̄k+1 ∈ Z×k

q are fixed. Therefore, in
this conditional probability distribution, the probability that the algorithm
outputs failure is just the probability that

∑
i s̄ic̄i = 0, which is 1/q, since

not all the c̄i are zero. Since this equality holds for every choice of βi and
δi, the lemma follows. 2

Let us summarize the above discussion in the following theorem.

Theorem 16.3. With the smoothness parameter set as

y := exp[(1/
√

2)(log p log log p)1/2],

the expected running time of Algorithm SEDL is

exp[(2
√

2 + o(1))(log p log log p)1/2].

The probability that Algorithm SEDL outputs “failure” is 1/q.

In the description and analysis of Algorithm SEDL, we have assumed
that the primes p1, . . . , pk were pre-computed. Of course, we can construct
this list of primes using, for example, the sieve of Eratosthenes (see §5.4),
and the running time of this pre-computation will be dominated by the
running time of Algorithm SEDL.

In the analysis of Algorithm SEDL, we relied crucially on the fact that
in generating a relation, each candidate element γriαsiδi was uniformly
distributed over Z∗p. If we simply left out the δi, then the candidate element
would be uniformly distributed over the subgroup G, and Theorem 16.1
simply would not apply. Although the algorithm might anyway work as
expected, we would not be able to prove this. Of course, this problem
would go away if we instead worked with a generator for the whole group
Z∗p, rather than just the prime-order subgroup G. However, this approach
creates other problems; namely, instead of doing linear algebra over the
field Zq, we would have to do linear algebra over the ring Zp−1, and this
leads to a whole host of technical difficulties, all of which can be overcome,
but the resulting algorithms are significantly more complicated than the
one presented here.

Exercise 16.1. Assume that Gaussian elimination over Q runs in poly-
nomial time — this is in fact true, but we have not proved this here. Based
on this assumption, show how to modify Algorithm SEDL to work in the
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more general case where p − 1 = qem, q - m, γ generates the subgroup G
of Z∗p of order qe, and α ∈ G. That is, show how to compute logγ α in
expected time

exp[(c + o(1))(log p log log p)1/2]

for some constant c. While this gives us a subexponential-time algorithm,
it is not nearly as efficient as Algorithm SEDL, as the integers computed
during the Gaussian elimination may be quite huge. 2

Exercise 16.2. Let n = pq, where p and q are distinct, large primes. Let
e be a prime, with e < n and e - (p− 1)(q− 1). Let x be a positive integer,
with x < n. Suppose you are given n (but not its factorization!) along with
e and x. In addition, you are given access to two “oracles,” which you may
invoke as often as you like.

The first oracle is a “challenge oracle”: each invocation of the oracle
produces a “challenge” a ∈ {1, . . . , x} — distributed uniformly and inde-
pendently of all other challenges.

The second oracle is a “solution oracle”: you invoke this oracle with the
index of a previous challenge oracle; if the corresponding challenge was a,
the solution oracle returns the eth root of a modulo n; that is, the solution
oracle returns b ∈ {1, . . . , n − 1} such that be ≡ a (mod n) — note that b
always exists and is uniquely determined.

Let us say that you “win” if you are able to compute the eth root
modulo n of any challenge, but without invoking the solution oracle with the
corresponding index of the challenge (otherwise, winning would be trivial,
of course).

(a) Design a probabilistic algorithm that wins the above game, using an
expected number of

exp[(c + o(1))(log x log log x)1/2] · len(n)O(1)

steps, for some constant c, where a “step” is either a computation step
or an oracle invocation (either challenge or solution). Hint: Gaussian
elimination over the field Ze.

(b) Suppose invocations of the challenge oracle are “cheap,” while invo-
cations of the solution oracle are relatively “expensive.” How would
you modify your strategy in part (a)?

2

Exercise 16.2 has implications in cryptography. A popular way of im-
plementing a public-key primitive known as a “digital signature” works as
follows: to digitally sign a message M (which may be an arbitrarily long
bit string), first apply a “hash function” or “message digest” H to M , ob-
taining an integer a in some fixed range {1, . . . , x}, and then compute the
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signature of M as the eth root b of a modulo n. Anyone can verify that
such a signature b is correct by checking that be ≡ H(M) mod n; however,
it would appear to be difficult to “forge” a signature without knowing the
factorization of n. Indeed, one can prove the security of this signature
scheme by assuming that it is hard to compute the eth root of a random
number modulo n, and by making the heuristic assumption that H is a
random function (see §16.5). However, for this proof to work, the value of
x must be close to n; otherwise, if x is significantly smaller than n, as the
result of this exercise, one can break the signature scheme at a cost that
is roughly the same as the cost of factoring numbers around the size of x,
rather than the size of n.

16.3 An Algorithm for Factoring Integers

We now present a probabilistic, subexponential-time algorithm for factor-
ing integers. The algorithm uses techniques very similar to those used in
Algorithm SEDL in §16.2.

Let n > 1 be the integer we want to factor. We make a few simplifying
assumptions. First, we assume that n is odd — this is not a real restriction,
since we can always pull out any factors of 2 in a pre-processing step.
Second, we assume that n is not a perfect power, that is, not of the form ab

for integers a > 1 and b > 1 — this is also not a real restriction, since we
can always partially factor n using the algorithm in §10.5 if n is a perfect
power. Third, we assume that n is not prime — this may be efficiently
checked using, say, the Miller-Rabin test (see §10.3). Fourth, we assume
that n is not divisible by any primes up to a “smoothness parameter” y —
we can ensure this using trial division, and it will be clear that the running
time of this pre-computation is dominated by that of the algorithm itself.

With these assumptions, the prime factorization of n is of the form

n = qf1
1 · · · qfw

w ,

where the qi are distinct, odd primes, all greater than y, the fi are positive
integers, and w > 1.

The main goal of our factoring algorithm is to find a random square
root of 1 in Zn. Let

θ : Z
q

f1
1
× · · · × Zqfw

w
→ Zn

be the ring isomorphism of the Chinese remainder theorem. The square
roots of 1 in Zn are precisely those elements of the form θ(±1, . . . ,±1), and
if β is a random square root of 1, then with probability 1−2−w+1 ≥ 1/2, it
will be of the form β = θ(β1, . . . , βw), where the βi are neither all 1 nor all
−1 (i.e., β 6= ±1). If this happens, then β − 1 = θ(β1 − 1, . . . , βw − 1), and
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so we see that some, but not all, of the values βi−1 will be zero. The value
of gcd(rep(β − 1), n) is precisely the product of the prime powers qfi

i such
that βi − 1 = 0, and hence this gcd will yield a non-trivial factorization of
n, unless β = ±1.

Let p1, . . . , pk be the primes up to the smoothness parameter y men-
tioned above. Let πi := [pi mod n] ∈ Z∗n for i = 1, . . . , k. Let us write ā
to denote the image of an integer a in Z2, and likewise, for a vector v with
integer entries, v̄ denotes its image as a vector with entries in Z2.

We first describe a simplified version of the algorithm, after which we
modify the algorithm slightly to deal with a technical problem. Like Algo-
rithm SEDL, this algorithm proceeds in two stages. In the first stage, we
find relations of the form

α2
i = πei1

1 · · ·π
eik

k , (16.6)

for αi ∈ Z∗n, and i = 1, . . . , k + 1.
We can obtain such a relation by randomized search, as follows: we

select αi ∈ Z∗n at random, square it, and try to factor mi := rep(α2
i ) by

trial division, trying all the primes p1, . . . , pk up to y. If we are lucky, we
obtain a factorization

mi = pei1
1 · · · p

eik

k ,

for some exponents ei1, . . . , eik, yielding the relation (16.6); if not, we just
keep trying.

For i = 1, . . . , k + 1, let vi := (ei1, . . . , eik) ∈ Z×k. The vectors
v̄1, . . . , v̄k+1 ∈ Z×k

2 must be linearly independent, and the second stage uses
Gaussian elimination over the field Z2 to find integers c1, . . . , ck+1 ∈ {0, 1},
not all zero, such that c̄1v̄1 + · · ·+ c̄k+1v̄k+1 = 0. Let

(e1, . . . , ek) := c1v1 + · · · ck+1vk+1 ∈ 2Z×k.

Raising each equation (16.6) to the power ci, and multiplying them all
together, we obtain

α2 = πe1
1 · · ·π

ek

k ,

where

α :=
k+1∏
i=1

αci
i .

Since each ei is even, we can compute

β := π
e1/2
1 · · ·πek/2

k α−1,

and we see that β is a square root of 1 in Zn. A more careful analysis (see
below) shows that in fact, β is uniformly distributed over all square roots of
1, and hence, with probability at least 1/2, if we compute gcd(rep(β−1), n),
we get a non-trivial factor of n.
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That is the basic idea of the algorithm. There is, however, a technical
problem. Namely, in the method outlined above for generating a relation,
we attempt to factor mi := rep(α2

i ). Thus, the running time of the algo-
rithm will depend in a crucial way on the probability that a random square
modulo n is y-smooth. Unfortunately for us, Theorem 16.1 does not say
anything about this situation — it only applies to the situation where a
number is chosen at random from an interval [1, x]. There are (at least)
three different ways to address this problem:

1. Ignore it, and just assume that the bounds in Theorem 16.1 apply to
random squares modulo n (taking x := n in the theorem).

2. Prove a version of Theorem 16.1 that applies to random squares mod-
ulo n.

3. Modify the factoring algorithm, so that Theorem 16.1 applies.

The first choice, while not completely unreasonable, is not very satisfying
mathematically. It turns out that the second choice is a indeed a viable
option (i.e., the theorem is true and is not so difficult to prove), but we opt
for the third choice, as it is somewhat easier to carry out, and illustrates a
probabilistic technique that is more generally useful.

So here is how we modify the basic algorithm. Instead of generating
relations of the form (16.6), we generate relations of the form

α2
i δ = πei1

1 · · ·π
eik

k , (16.7)

for δ ∈ Z∗n, αi ∈ Z∗n, and i = 1, . . . , k +2. Note that the value δ is the same
in all relations.

We generate these relations as follows. For the very first relation (i.e.,
i = 1), we repeatedly choose α1 and δ in Z∗n at random, until rep(α2

1δ) is
y-smooth. Then, after having found the first relation, we find subsequent
relations (i.e., for i > 1) by repeatedly choosing αi in Z∗n at random until
rep(α2

i δ) is y-smooth, where δ is the same value that was used in the first
relation. Now, Theorem 16.1 will apply directly to determine the success
probability of each attempt to generate the first relation. Having found
this relation, the value α2

1δ will be uniformly distributed over all y-smooth
elements of Z∗n (i.e., elements whose integer representations are y-smooth).
Consider the various cosets of (Z∗n)2 in Z∗n. Intuitively, it is much more
likely that a random y-smooth element of Z∗n lies in a coset that contains
many y-smooth elements, rather than a coset with very few, and indeed,
it is reasonably likely that the fraction of y-smooth elements in the coset
containing δ is not much less than the overall fraction of y-smooth elements
in Z∗n. Therefore, for i > 1, each attempt to find a relation should succeed
with reasonably high probability. This intuitive argument will be made
rigorous in the analysis to follow.
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The second stage is then modified as follows. For i = 1, . . . , k + 2, let
vi := (ei1, . . . , eik, 1) ∈ Z×(k+1). The vectors v̄1, . . . , v̄k+2 ∈ Z×(k+1)

2 must
be linearly independent, and we use Gaussian elimination over Z2 to find
integers c1, . . . , ck+2 ∈ {0, 1}, not all zero, such that c̄1v̄1 + · · ·+ c̄k+2v̄k+2 =
0. Let

(e1, . . . , ek+1) := c1v1 + · · ·+ ck+2vk+2 ∈ 2Z×(k+1).

Raising each equation (16.7) to the power ci, and multiplying them all
together, we obtain

α2δek+1 = πe1
1 · · ·π

ek

k ,

where

α :=
k+2∏
i=1

αci
i .

Since each ei is even, we can compute

β := π
e1/2
1 · · ·πek/2

k δ−ek+1/2α−1,

which is a square root of 1 in Zn.
The entire algorithm, called Algorithm SEF, is presented in Figure 16.2.
Now the analysis. From the discussion above, it is clear that Algo-

rithm SEF either outputs “failure,” or outputs a non-trivial factor of n. So
we have the same three questions to answer as we did in the analysis of
Algorithm SEDL:

1. What is the expected running time of Algorithm SEF?

2. How should the smoothness parameter y be chosen so as to minimize
the expected running time?

3. What is the probability that Algorithm SEF outputs “failure”?

To answer the first question, let σ denote the probability that (the
canonical representative of) a random element of Z∗n is y-smooth. For
i = 1, . . . , k + 2, let Xi denote the number iterations of the inner loop of
stage 1 in the ith iteration of the main loop; that is, Xi is the number of
attempts made in finding the ith relation.

Lemma 16.4. For i = 1, . . . , k + 2, we have E[Xi] = σ−1.

Proof. We first compute E[X1]. As δ is chosen uniformly from Z∗n and
independent of α1, at each attempt to find a relation, α2

1δ is uniformly
distributed over Z∗n, and hence the probability that the attempt succeeds
is precisely σ. This means E[X1] = σ−1.

We next compute E[Xi] for i > 1. To this end, let us denote the cosets
of (Z∗n)2 by Z∗n as C1, . . . , Ct. As it happens, t = 2w, but this fact plays no
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i← 0
repeat

i← i + 1
repeat

choose αi ∈ Z∗n at random
if i = 1 then choose δ ∈ Z∗n at random
mi ← rep(α2

i δ)
test if mi is y-smooth (trial division)

until mi = pei1
1 · · · p

eik

k for some integers ei1, . . . , eik

until i = k + 2

set vi ← (ei1, . . . , eik, 1) ∈ Z×(k+1) for i = 1, . . . , k + 2

apply Gaussian elimination over Z2 to find integers c1, . . . , ck+2 ∈
{0, 1}, not all zero, such that c̄1v̄1 + · · ·+ c̄k+2v̄k+2 = 0.

set (e1, . . . , ek+1)← c1v1 + · · ·+ ck+2vk+2

α←
∏k+2

i=1 αci
i , β ← π

e1/2
1 · · ·πek/2

k δ−ek+1/2α−1

if β = ±1 then
output “failure”

else
output gcd(rep(β − 1), n)

Figure 16.2: Algorithm SEF

role in the analysis. For j = 1, . . . , t, let σj denote the probability that a
random element of Cj is y-smooth, and let τj denote the probability that
the final value of δ belongs to Cj .

We claim that for j = 1, . . . , t, we have τj = σjσ
−1t−1. To see this, note

that each coset Cj has the same number of elements, namely, |Z∗n|t−1, and
so the number of y-smooth elements in Cj is equal to σj |Z∗n|t−1. Moreover,
the final value of α2

1δ is equally likely to be any one of the y-smooth numbers
in Z∗n, of which there are σ|Z∗n|, and hence

τj =
σj |Z∗n|t−1

σ|Z∗n|
= σjσ

−1t−1,

which proves the claim.
Now, for a fixed value of δ and a random choice of αi ∈ Z∗n, one sees

that α2
i δ is uniformly distributed over the coset containing δ. Therefore,
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for j = 1, . . . , t, we have

E[Xi | δ ∈ Cj ] = σ−1
j .

It follows that

E[Xi] =
t∑

j=1

E[Xi | δ ∈ Cj ] · P[δ ∈ Cj ]

=
t∑

j=1

σ−1
j · τj

=
t∑

j=1

σ−1
j · σjσ

−1t−1

= σ−1,

which proves the lemma. 2

So in stage 1, the expected number of attempts made in generating a
single relation is σ−1, each such attempt takes time k · len(n)O(1), and we
have to generate k+2 relations, leading to a total expected running time in
stage 1 of σ−1k2 · len(n)O(1). Stage 2 is dominated by the cost of Gaussian
elimination, which takes time k3 · len(n)O(1). Thus, if T is the total running
time of the algorithm, we have

E[T ] ≤ (σ−1k2 + k3) · len(n)O(1).

By our assumption that n is not divisible by any primes up to y, all
y-smooth integers up to n− 1 are in fact relatively prime to n. Therefore,
the number of y-smooth elements of Z∗n is equal to Ψ(y, n − 1), and since
n itself is not y-smooth, this is equal to Ψ(y, n). From this, it follows that

σ = Ψ(y, n)/|Z∗n| ≥ Ψ(y, n)/n.

The rest of the running time analysis is essentially the same as in the
analysis of Algorithm SEDL; that is, assuming y = exp[(log n)λ+o(1)] for
some constant 0 < λ < 1, we obtain

E[T ] ≤ exp[(1+o(1))max{(log n/ log y) log log n+2 log y, 3 log y}]. (16.8)

Setting y = exp[(1/
√

2)(log n log log n)1/2], we obtain

E[T ] ≤ exp[(2
√

2 + o(1))(log n log log n)1/2].

That basically takes care of the first two questions. As for the third, we
have:
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Lemma 16.5. The probability that the algorithm outputs “failure” is
2−w+1 ≤ 1/2.

Proof. Let ρ be the squaring map on Z∗n. By part (b) of Exercise 8.20,
if we condition on any fixed values of δ, α2

1, . . . , α
2
k+2 that give rise to y-

smooth integers, then in the resulting conditional probability distribution,
the values α1, . . . , αk+2 are mutually independent, with each αi uniformly
distributed over ρ−1({α2

i }). Moreover, these fixed values of δ, α2
1, . . . , α

2
k+2

completely determine the behavior of the algorithm, and in particular, the
values of c1, . . . , ck+2, α2, and e1, . . . , ek+1. By part (d) of Exercise 8.20,
it follows that α is uniformly distributed over ρ−1({α2}), and also that β
is uniformly distributed over ρ−1({1}). Thus, in this conditional proba-
bility distribution, β is a random square root of 1, and so β = ±1 with
probability 2−w+1. Since this holds conditioned on all relevant choices of
δ, α2

1, . . . , α
2
k+2, it also holds unconditionally. Finally, since we are assuming

that w > 1, we have 2−w+1 ≤ 1/2. 2

Let us summarize the above discussion in the following theorem.

Theorem 16.6. With the smoothness parameter set as

y := exp[(1/
√

2)(log n log log n)1/2],

the expected running time of Algorithm SEF is

exp[(2
√

2 + o(1))(log n log log n)1/2].

The probability that Algorithm SEF outputs “failure” is at most 1/2.

Exercise 16.3. It is perhaps a bit depressing that after all that work,
Algorithm SEF only succeeds (in the worst case) with probability 1/2. Of
course, to reduce the failure probability, we can simply repeat the entire
computation — with ` repetitions, the failure probability drops to 2−`.
However, there is a better way to reduce the failure probability. Suppose
that in stage 1, instead of collecting k + 2 relations, we collect k + 1 + `
relations, where ` ≥ 1 is an integer parameter.

(a) Show that in stage 2, we can use Gaussian elimination to find integer
vectors

c(j) := (c(j)
1 , . . . , c

(j)
k+1+`) ∈ {0, 1}×(k+1+`) (j = 1, . . . , `)

such that the vectors c̄(1), . . . , c̄(`) ∈ Z×(k+1+`)
2 are linearly indepen-

dent and satisfy

c̄
(j)
1 v̄1 + . . . + c̄

(j)
k+1+`v̄k+1+` = 0 (j = 1, . . . , `).
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(b) Show that given vectors c(1), . . . , c(`) as in part (a), if for j = 1, . . . , `,
we set

(e(j)
1 , . . . , e

(j)
k+1)← c

(j)
1 v1 + . . . + c

(j)
k+1+`vk+1+`,

α(j) ←
k+1+`∏

i=1

α
c
(j)
i

i ,

and
β(j) ← π

e
(j)
1 /2

1 · · ·πe
(j)
k /2

k δ−e
(j)
k+1/2(α(j))−1,

then the values β(1), . . . , β(`) are independent and uniformly dis-
tributed over the set of all square roots of 1 in Zn, and hence at
least one of gcd(rep(β(j) − 1), n) splits n with probability at least
1− 2−`.

So, for example, if we set ` = 20, then the failure probability is reduced to
less than one in a million, while the increase in running time over Algorithm
SEF will hardly be noticeable. 2

16.4 Practical Improvements

Our presentation and analysis of algorithms for discrete logarithms and fac-
toring were geared towards simplicity and mathematical rigor. However, if
one really wants to compute discrete logarithms or factor numbers, then a
number of important practical improvements should be considered. In this
section, we briefly sketch some of these improvements, focusing our atten-
tion on algorithms for factoring numbers (although some of the techniques
apply to discrete logarithms as well).

16.4.1 Better smoothness density estimates

From an algorithmic point of view, the simplest way to improve the running
times of both Algorithms SEDL and SEF is to use a more accurate smooth-
ness density estimate, which dictates a different choice of the smoothness
bound y in those algorithms, speeding them up significantly. While our
Theorem 16.1 is a valid lower bound on the density of smooth numbers, it
is not “tight,” in the sense that the actual density of smooth numbers is
somewhat higher. We quote from the literature the following result:

Theorem 16.7. Let y be a function of x such that for some ε > 0, we
have

y = Ω((log x)1+ε) and u :=
log x

log y
→∞

as x→∞. Then

Ψ(y, x) = x · exp[(−1 + o(1))u log u].
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Proof. See §16.5. 2

Let us apply this result to the analysis of Algorithm SEF. Assume that
y = exp[(log n)1/2+o(1)] — our choice of y will in fact be of this form. With
this assumption, we have log log y = (1/2 + o(1)) log log n, and using The-
orem 16.7, we can improve the inequality (16.8), obtaining instead (verify)

E[T ] ≤ exp[(1 + o(1))max{(1/2)(log n/ log y) log log n + 2 log y, 3 log y}].

From this, if we set

y := exp[(1/2)(log n log log n)1/2)],

we obtain
E[T ] ≤ exp[(2 + o(1))(log n log log n)1/2].

An analogous improvement can be obtained for Algorithm SEDL.
Although this improvement reduces the constant 2

√
2 ≈ 2.828 to 2, the

constant is in the exponent, and so this improvement is not to be scoffed
at!

16.4.2 The Quadratic Sieve Algorithm

We now describe a practical improvement to Algorithm SEF. This algo-
rithm, known as the quadratic sieve, is faster in practice than Algorithm
SEF; however, its analysis is somewhat heuristic.

First, let us return to the simplified version of Algorithm SEF, where
we collect relations of the form (16.6). Furthermore, instead of choosing
the values αi at random, we will choose them in a special way, as we now
describe. Let

ñ := b
√

nc,

and define the polynomial

F := (X + ñ)2 − n ∈ Z[X].

In addition to the usual “smoothness parameter” y, we need a “sieving
parameter” z, whose choice will be discussed below. We shall assume that
both y and z are of the form exp[(log n)1/2+o(1)], and our ultimate choices
of y and z will indeed satisfy this assumption.

For all s = 1, 2, . . . , bzc, we shall determine which values of s are “good,”
in the sense that the corresponding value F (s) is y-smooth. For each good
s, since we have F (s) ≡ (s+ñ)2 (mod n), we obtain one relation of the form
(16.6), with αi := [(s + ñ) mod n]. If we find at least k + 1 good values of
s, then we can apply Gaussian elimination as usual to find a square root β
of 1 in Zn. Hopefully, we will have β 6= ±1, allowing us to split n.



16.4 Practical Improvements 333

Observe that for 1 ≤ s ≤ z, we have

1 ≤ F (s) ≤ z2 + 2zn1/2 ≤ n1/2+o(1).

Now, although the values F (s) are not at all random, we might expect
heuristically that the number of good s up to z is roughly equal to σ̂z,
where σ̂ is the probability that a random integer in the interval [1, n1/2] is
y-smooth, and by Theorem 16.7, we have

σ̂ = exp[(−1/4 + o(1))(log n/ log y) log log n].

If our heuristics are valid, this already gives us an improvement over Al-
gorithm SEF, since now we are looking for y-smooth numbers near n1/2,
which are much more common than y-smooth numbers near n. But there
is another improvement possible; namely, instead of testing each individual
number F (s) for smoothness using trial division, we can test them all at
once using the following “sieving procedure”:

Create a vector v[1 . . . bzc], and initialize v[s] to F (s), for 1 ≤
s ≤ z. For each prime p up to y, do the following:

1. Compute the roots of the polynomial F modulo p.
This can be done quite efficiently, as follows. For p = 2,
F has exactly one root mod p, which is determined by the
parity of ñ. For p > 2, we may use the familiar quadratic
formula together with an algorithm for computing square
roots modulo p, as discussed in Exercise 13.3. A quick
calculation shows that the discriminant of F is n, and thus,
F has a root modulo p if and only if n is a quadratic residue
modulo p, in which case it will have two roots (under our
usual assumptions, we cannot have p | n).

2. Assume that the distinct roots of F modulo p lying in the
interval [1, p] are ri, for i = 1, . . . , vp.
Note that vp = 1 for p = 2 and vp ∈ {0, 2} for p > 2. Also
note that F (s) ≡ 0 (mod p) if and only if s ≡ ri (mod p)
for some i = 1, . . . , vp.
For i = 1, . . . , vp, do the following:

s← ri

while s ≤ z do
repeat v[s]← v[s]/p until p - v[s]
s← s + p

At the end of this sieving procedure, the good values of s may be iden-
tified as precisely those such that v[s] = 1. The running time of this sieving
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procedure is at most len(n)O(1) times∑
p≤y

z

p
= z

∑
p≤y

1
p

= O(z log log y) = z1+o(1)

Here, we have made use of Theorem 5.10, although this is not really neces-
sary — for our purposes, the bound

∑
p≤y(1/p) = O(log y) would suffice.

Note that this sieving procedure is a factor of k1+o(1) faster than the method
for finding smooth numbers based on trial division. With just a little extra
book-keeping, we can not only identify the good values of s, but we can
also compute the factorization of F (s) into primes.

Now, let us put together all the pieces. We have to choose z just large
enough so as to find at least k + 1 good values of s up to z. So we should
choose z so that z ≈ k/σ̂ — in practice, we could choose an initial estimate
for z, and if this choice of z does not yield enough relations, we could keep
doubling z until we do get enough relations. Assuming that z ≈ k/σ̂, the
cost of sieving is (k/σ̂)1+o(1), or

exp[(1 + o(1))(1/4)(log n/ log y) log log n + log y].

The cost of Gaussian elimination is still O(k3), or

exp[(3 + o(1)) log y].

Thus, if T is the running time of the entire algorithm, we have

T ≤ exp[(1 + o(1))max{(1/4)(log n/ log y) log log n + log y, 3 log y}].

Let µ := log y, A := (1/4) log n log log n, S1 := A/µ + µ and S2 := 3µ,
and let us find the value of µ that minimizes max{S1, S2}. Using a little
calculus, one finds that S1 is minimized at µ = A1/2. For this value of µ,
we have S1 = 2A1/2 and S2 = 3A1/2 > S1, and so this choice of µ is a
bit larger than optimal. For µ < A1/2, S1 is decreasing (as a function of
µ), while S2 is always increasing. It follows that the optimal value of µ is
obtained by setting

A/µ + µ = 3µ

and solving for µ. This yields µ = (A/2)1/2. So setting

y = exp[(1/(2
√

2))(log n log log n)1/2],

we have
T ≤ exp[(3/(2

√
2) + o(1))(log n log log n)1/2].

Thus, we have reduced the constant in the exponent from 2, for Algorithm
SEF (using the more accurate smoothness density estimates), to 3/(2

√
2) ≈

1.061.
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We mention one final improvement. The matrix to which we apply
Gaussian elimination in stage 2 is “sparse”; indeed, since any integer less
than n has O(log n) prime factors, the total number of non-zero entries in
the matrix is k1+o(1). In this case, there are special algorithms for working
with such sparse matrices, which allow us to perform stage 2 of the factoring
algorithm in time k2+o(1), or

exp[(2 + o(1)) log y].

This gives us

T ≤ exp[(1 + o(1))max{(1/4)(log n/ log y) log log n + log y, 2 log y}],

and setting
y = exp[(1/2)(log n log log n)1/2]

yields
T ≤ exp[(1 + o(1))(log n log log n)1/2].

Thus, this improvement reduces the constant in the exponent from
3/(2
√

2) ≈ 1.061 to 1. Moreover, the special algorithms designed to work
with sparse matrices typically use much less space than ordinary Gaussian
elimination — even if the input to Gaussian elimination is sparse, the in-
termediate matrices will not be. We shall discuss in detail later, in §19.4,
one such algorithm for solving sparse systems of linear equations.

The quadratic sieve may fail to factor n, for one of two reasons: first, it
may fail to find k + 1 relations; second, it may find these relations, but in
stage 2, it only finds a trivial square root of 1. There is no rigorous theory
to say why the algorithm should not fail for one of these two reasons, but
experience shows that the algorithm does indeed work as expected.

16.5 Notes

Many of the algorithmic ideas in this chapter were first developed for the
problem of factoring integers, and then later adapted to the discrete log-
arithm problem. The first (heuristic) subexponential-time algorithm for
factoring integers, called the continued fraction method (not discussed
here), was introduced by Lehmer and Powers [52], and later refined and
implemented by Morrison and Brillhart [62]. The first rigorously ana-
lyzed subexponential-time algorithm for factoring integers was introduced
by Dixon [29]. Algorithm SEF is a variation of Dixon’s algorithm, which
works the same way as Algorithm SEF, except that it generates relations
of the form (16.6) directly (and indeed, it is possible to prove a variant of
Theorem 16.1, and for that matter, Theorem 16.7, for random squares mod-
ulo n). Algorithm SEF is based on an idea suggested by Rackoff (personal
communication).
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Theorem 16.7 was proved by Canfield, Erdős, and Pomerance [20].
The quadratic sieve was introduced by Pomerance [70]. Recall that the
quadratic sieve has a heuristic running time of

exp[(1 + o(1))(log n log log n)1/2].

This running time bound can also be achieved rigorously by a result of
Lenstra and Pomerance [54], and to date, this is the best rigorous running
time bound for factoring algorithms. We should stress, however, that most
practitioners in this field are not so much interested in rigorous running time
analyses as they are in actually factoring integers, and for such purposes,
heuristic running time estimates are quite acceptable. Indeed, the quadratic
sieve is much more practical than the algorithm in [54], which is mainly of
theoretical interest.

There are two other factoring algorithms not discussed here, but that
should anyway at least be mentioned. The first is the elliptic curve
method, introduced by Lenstra [53]. Unlike all of the other known
subexponential-time algorithms, the running time of this algorithm is sen-
sitive to the sizes of the factors of n; in particular, if p is the smallest prime
dividing n, the algorithm will find p (heuristically) in expected time

exp[(
√

2 + o(1))(log p log log p)1/2] · len(n)O(1).

This algorithm is quite practical, and is the method of choice when it is
known (or suspected) that n has some small factors. It also has the ad-
vantage that it uses only polynomial space (unlike all of the other known
subexponential-time factoring algorithms).

The second is the number field sieve, the basic idea of which was
introduced by Pollard [69], and later generalized and refined by Buhler,
Lenstra, and Pomerance [18], as well as by others. The number field sieve
will split n (heuristically) in expected time

exp[(c + o(1))(log n)1/3(log log n)2/3],

where c is a constant (currently, the smallest value of c is 1.902, a result
due to Coppersmith [23]). The number field sieve is currently the asymp-
totically fastest known factoring algorithm (at least, heuristically), and it
is also practical, having been used to set the latest factoring record —
the factorization of a 576-bit integer that is the product of two primes of
about the same size. See the web page www.rsasecurity.com/rsalabs/
challenges/factoring/rsa576.html for more details.

As for subexponential-time algorithms for discrete logarithms, Adleman
[1] adapted the ideas used for factoring to the discrete logarithm problem,
although it seems that some of the basic ideas were known much earlier.
Algorithm SEDL is a variation on this algorithm, and the basic technique

www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
www.rsasecurity.com/rsalabs/challenges/factoring/rsa576.html
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is usually referred to as the index calculus method. Note that our
restriction to subgroups of prime order q such that q2 - (p − 1) greatly
simplifies the linear algebra; otherwise, things can get a bit tricky. The
basic idea of the number field sieve was adapted to the discrete logarithm
problem by Gordon [35]; see also Adleman [2] and Schirokauer, Weber, and
Denny [76].

For many more details and references for subexponential-time algo-
rithms for factoring and discrete logarithms, see Chapter 6 of Crandall
and Pomerance [26]. Also, see the web page www.crypto-world.com/
FactorWorld.html for links to research papers and implementation reports.

For more details regarding the security of signature schemes, as dis-
cussed following Exercise 16.2, see the paper by Bellare and Rogaway [12].

Last, but not least, we should mention the fact that there are in fact
polynomial-time algorithms for factoring and discrete logarithms; however,
these algorithms require special hardware, namely, a quantum computer.
Shor [83, 84] showed that these problems could be solved in polynomial time
on such a device; however, at the present time, it is unclear when and if
such machines will ever be built. Much, indeed most, of modern-day cryp-
tography will crumble if this happens, or if efficient “classical” algorithms
for these problems are discovered (which is still a real possibility).

www.crypto-world.com/FactorWorld.html
www.crypto-world.com/FactorWorld.html


Chapter 17

More Rings

This chapter develops a number of other concepts concerning rings. These
concepts will play important roles later in the text, and we prefer to discuss
them now, so as to avoid too many interruptions of the flow of subsequent
discussions.

17.1 Algebras

Let R be a ring. An R-algebra (or algebra over R) is a ring E, together
with a ring homomorphism τ : R → E. Usually, the map τ will be clear
from context, as in the following examples.

Example 17.1. If E is a ring that contains R as a subring, then E is an
R-algebra, where the associated map τ : R → E is just the inclusion map.
2

Example 17.2. Let E1, . . . , En be R-algebras, with associated maps τi :
R→ Ei, for i = 1, . . . , n. Then the direct product ring E := E1×· · ·×En

is naturally viewed as an R-algebra, via the map τ that sends a ∈ R to
(τ1(a), . . . , τn(a)) ∈ E. 2

Example 17.3. Let E be an R-algebra, with associated map τ : R→ E,
and let I be an ideal of E. Consider the quotient ring E/I. If ρ is the
natural map from E onto E/I, then the homomorphism ρ ◦ τ makes E/I
into an R-algebra, called the quotient algebra of E modulo I. 2

Example 17.4. As a special case of the previous example, consider the
ring R[X], viewed as an R-algebra via inclusion, and the ideal of R generated
by f , where f is a monic polynomial. Then R[X]/(f) is naturally viewed as
an R-algebra, via the map τ that sends c ∈ R to [c mod f ] ∈ R[X]/(f). If
deg(f) > 0, then τ is an embedding of R in R[X]/(f); if deg(f) = 0, then
R[X]/(f) is the trivial ring, and τ maps everything to zero. 2

338



17.1 Algebras 339

In some sense, an R-algebra is a generalization of the notion of an
extension ring. When the map τ : R → E is a canonical embedding, the
language of R-algebras can be used if one wants to avoid the sloppiness
involved in “identifying” elements of R with their image under τ in E, as
we have done on occasion.

In this text, we will be particularly interested in the situation where E
is an algebra over a field F . In this case, E either contains a copy of F , or
is itself the trivial ring. To see this, let τ : F → E be the associated map.
Then since the kernel of τ is an ideal of F , it must either be {0F } or F . In
the former case, τ is injective, and so E contains an isomorphic copy of F .
In the latter case, our requirement that τ(1F ) = 1E implies that 1E = 0E ,
and so E is trivial.

Subalgebras

Let E be an R-algebra with associated map τ : R→ E. A subset S of E is
a subalgebra if S is a subring containing img(τ). As an important special
case, if τ is just the inclusion map, then a subring S of E is a subalgebra if
and only if S contains R.

R-algebra homomorphisms

There is, of course, a natural notion of a homomorphism for R-algebras.
Indeed, it is this notion that is our main motivation for introducing R-
algebras in this text. If E and E′ are R-algebras, with associated maps
τ : R→ E and τ ′ : R→ E′, then a map ρ : E → E′ is called an R-algebra
homomorphism if ρ is a ring homomorphism, and if for all a ∈ R, we
have

ρ(τ(a)) = τ ′(a).

As usual, if ρ is bijective, then it is called an R-algebra isomorphism,
and if R = R′, it is called an R-algebra automorphism.

As an important special case, if τ and τ ′ are just inclusion maps, then
a ring homomorphism ρ : E → E′ is an R-algebra homomorphism if and
only if the restriction of ρ to R is the identity map.

The reader should also verify the following facts. First, an R-algebra
homomorphism maps subalgebras to subalgebras. Second, Theorems 9.22,
9.23, 9.24, 9.25, 9.26, and 9.27 carry over mutatis mutandis from rings to
R-algebras.

Example 17.5. Since C contains R as a subring, we may naturally view
C as an R-algebra. The complex conjugation map on C that sends a + bi
to a− bi, for a, b ∈ R, is an R-algebra automorphism on C. 2

Example 17.6. Let p be a prime, and let F be the field Zp. If E is an
F -algebra, with associated map τ : F → E, then the map ρ : E → E that
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sends α ∈ E to αp is an F -algebra homomorphism. To see this, note that
E is either trivial, or contains a copy of Zp. In the former case, there is
nothing really to prove. In the latter case, E has characteristic p, and so
the fact that ρ is a ring homomorphism follows from Example 9.42 (the
“freshman’s dream”); moreover, by Fermat’s little theorem, for all a ∈ F ,
we have τ(a)p = τ(ap) = τ(a). 2

Polynomial evaluation

Let E be an R-algebra with associated map τ : R → E. Any polynomial
g ∈ R[X] naturally defines a function on E: if g =

∑
i giXi, with each gi ∈ R,

and α ∈ E, then
g(α) :=

∑
i

τ(gi)αi.

For fixed α ∈ E, the polynomial evaluation map ρ : R[X]→ E sends
g ∈ R[X] to g(α) ∈ E. It is easily verified that ρ is an R-algebra homomor-
phism (where we naturally view R[X] as an R-algebra via inclusion). The
image of ρ is denoted R[α], and is a subalgebra of E. Indeed, R[α] is the
smallest subalgebra of E containing α.

Note that if E contains R as a subring, then the notation R[α] has the
same meaning as that introduced in Example 9.39.

We next state a very simple, but extremely useful, fact:

Theorem 17.1. Let ρ : E → E′ be an R-algebra homomorphism. Then
for any g ∈ R[X] and α ∈ E, we have

ρ(g(α)) = g(ρ(α)).

Proof. Let τ : R → E and τ ′ : R → E′ be the associated maps. Let
g =

∑
i giXi ∈ R[X]. Then we have

ρ(g(α)) = ρ(
∑

i

τ(gi)αi) =
∑

i

ρ(τ(gi)αi)

=
∑

i

ρ(τ(gi))ρ(αi) =
∑

i

τ ′(gi)ρ(α)i

= g(ρ(α)).

2

As a special case of Theorem 17.1, if E = R[η] for some η ∈ E, then
every element of E can be expressed as g(η) for some g ∈ R[X], and
ρ(g(η)) = g(ρ(η)); hence, the action of ρ is completely determined by its
action on η.
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Example 17.7. Let E := R[X]/(f) for some monic polynomial f ∈ R[X],
so that E = R[η], where η := [X mod f ], and let E′ be any R-algebra.

Suppose that ρ : E → E′ is an R-algebra homomorphism, and that
η′ := ρ(η). The map ρ sends g(η) to g(η′), for g ∈ R[X]. Also, since
f(η) = 0E , we have 0E′ = ρ(f(η)) = f(η′). Thus, η′ must be a root of f .

Conversely, suppose that η′ ∈ E′ is a root of f . Then the polynomial
evaluation map from R[X] to E′ that sends g ∈ R[X] to g(η′) ∈ E′ is an
R-algebra homomorphism whose kernel contains f , and this gives rise to
the R-algebra homomorphism ρ : E → E′ that sends g(η) to g(η′), for
g ∈ R[X]. One sees that complex conjugation is just a special case of this
construction (see Example 9.44). 2

R-algebras as R-modules

If E is an R-algebra, with associated map τ : R → E, we may naturally
view E as an R-module, where we define a scalar multiplication operation
as follows: for a ∈ R and α ∈ E, define

a · α := τ(a)α.

The reader may easily verify that with scalar multiplication so defined, E
is an R-module.

Of course, if E is an algebra over a field F , then it is also a vector space
over F .

Exercise 17.1. Show that any ring E may be viewed as a Z-algebra. 2

Exercise 17.2. Show that the only R-algebra homomorphisms from C
into itself are the identity map and the complex conjugation map. 2

Exercise 17.3. Let E be an R-algebra, viewed as an R-module as dis-
cussed above.

(a) Show that for all a ∈ R and α, β ∈ E, we have a · (αβ) = (a · α)β.

(b) Show that a subring S of E is a subalgebra if and only if it is also
submodule.

(c) Show that if E′ is another R-algebra, then a ring homomorphism
ρ : E → E′ is an R-algebra homomorphism if and only if it is an
R-linear map.

2
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Exercise 17.4. This exercise develops an alternative characterization of
R-algebras. Let R be a ring, and let E be a ring, together with a scalar
multiplication operation, that makes E into an R-module. Further suppose
that for all a ∈ R and α, β ∈ E, we have a(αβ) = (aα)β. Define the
map τ : R → E that sends a ∈ R to a · 1E ∈ E. Show that τ is a ring
homomorphism, so that E is an R-algebra, and also show that τ(a)α = aα
for all a ∈ R and α ∈ E. 2

17.2 The Field of Fractions of an Integral Do-
main

Let D be any integral domain. Just as we can construct the field of rational
numbers by forming fractions involving integers, we can construct a field
consisting of fractions whose numerators and denominators are elements of
D. This construction is quite straightforward, though a bit tedious.

To begin with, let S be the set of all pairs of the form (a, b), with
a, b ∈ D and b 6= 0D. Intuitively, such a pair (a, b) is a “formal fraction,”
with numerator a and denominator b. We define a binary relation ∼ on S
as follows: for (a1, b1), (a2, b2) ∈ S, we say (a1, b1) ∼ (a2, b2) if and only if
a1b2 = a2b1. Our first task is to show that this is an equivalence relation:

Lemma 17.2. For all (a1, b1), (a2, b2), (a3, b3) ∈ S, we have

(i) (a1, b1) ∼ (a1, b1);

(ii) (a1, b1) ∼ (a2, b2) implies (a2, b2) ∼ (a1, b1);

(iii) (a1, b1) ∼ (a2, b2) and (a2, b2) ∼ (a3, b3) implies (a1, b1) ∼ (a3, b3).

Proof. (i) and (ii) are rather trivial, and we do not comment on these any
further. As for (iii), assume that a1b2 = a2b1 and a2b3 = a3b2. Multiplying
the first equation by b3 we obtain a1b3b2 = a2b3b1 and substituting a3b2 for
a2b3 on the right-hand side of this last equation, we obtain a1b3b2 = a3b2b1.
Now, using the fact that b2 is non-zero and that D is an integral domain,
we may cancel b2 from both sides, obtaining a1b3 = a3b1. 2

Since ∼ is an equivalence relation, it partitions S into equivalence
classes, and for (a, b) ∈ S, we denote by [a, b] the equivalence class con-
taining (a, b), and we denote by K the collection of all such equivalence
classes. Our next task is to define addition and multiplication operations on
equivalence classes, mimicking the usual rules of arithmetic with fractions.
We want to define the sum of [a1, b1] and [a2, b2] to be [a1b2 + a2b1, b1b2],
and the product of [a1, b1] and [a2, b2] to be [a1a2, b1b2]. Note that since
D is an integral domain, if b1 and b2 are non-zero, then so is the product
b1b2, and therefore [a1b2+a2b1, b1b2] and [a1a2, b1b2] are indeed equivalence



17.2 The Field of Fractions of an Integral Domain 343

classes. However, to ensure that this definition is unambiguous, and does
not depend on the particular choice of representatives of the equivalence
classes [a1, b1] and [a2, b2], we need the following lemma.

Lemma 17.3. For (a1, b1), (a′1, b
′
1), (a2, b2), (a′2, b

′
2) ∈ S with (a1, b1) ∼

(a′1, b
′
1) and (a2, b2) ∼ (a′2, b

′
2), we have

(a1b2 + a2b1, b1b2) ∼ (a′1b
′
2 + a′2b

′
1, b

′
1b
′
2)

and
(a1a2, b1b2) ∼ (a′1a

′
2, b

′
1b
′
2).

Proof. This is a straightforward calculation. Assume that a1b
′
1 = a′1b1

and a2b
′
2 = a′2b2. Then we have

(a1b2 + a2b1)b′1b
′
2 = a1b2b

′
1b
′
2 + a2b1b

′
1b
′
2 = a′1b2b1b

′
2 + a′2b1b

′
1b2

= (a′1b
′
2 + a′2b

′
1)b1b2

and
a1a2b

′
1b
′
2 = a′1a2b1b

′
2 = a′1a

′
2b1b2.

2

In light of this lemma, we may unambiguously define addition and mul-
tiplication on K as follows: for [a1, b1], [a2, b2] ∈ K, we define

[a1, b1] + [a2, b2] := [a1b2 + a2b1, b1b2]

and
[a1, b1] · [a2, b2] := [a1a2, b1b2].

The next task is to show that K is a ring — we leave the details of this
(which are quite straightforward) to the reader.

Lemma 17.4. With addition and multiplication as defined above, K is a
ring, with additive identity [0D, 1D] and multiplicative identity [1D, 1D].

Proof. Exercise. 2

Finally, we observe that K is in fact a field: it is clear that [a, b] is
a non-zero element of K if and only if a 6= 0D, and hence any non-zero
element [a, b] of K has a multiplicative inverse, namely, [b, a].
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The field K is called the field of fractions of D. Consider the map
τ : D → K that sends a ∈ D to [a, 1D] ∈ K. It is easy to see that this map
is a ring homomorphism, and one can also easily verify that it is injective.
So, starting from D, we can synthesize “out of thin air” its field of fractions
K, which essentially contains D as a subring, via the canonical embedding
τ : D → K.

Now suppose that we are given a field L that contains D as a subring.
Consider the set K ′ consisting of all elements in L of the form ab−1, where
a, b ∈ D and b 6= 0 — note that here, the arithmetic operations are per-
formed using the rules for arithmetic in L. One may easily verify that K ′ is
a subfield of L that contains D, and it is easy to see that this is the smallest
subfield of L that contains D. The subfield K ′ of L may be referred to as
the field of fractions of D within L. One may easily verify that the map
ρ : K → L that sends [a, b] ∈ K to ab−1 ∈ L is an unambiguously defined
ring homomorphism that maps K injectively onto K ′; in particular, K is
isomorphic as a ring to K ′. It is in this sense that the field of fractions K
is the smallest field containing D as a subring.

Somewhat more generally, suppose that L is a field, and that τ ′ : D → L
is an embedding. One may easily verify that the map ρ : K → L that sends
[a, b] ∈ K to τ ′(a)τ ′(b)−1 ∈ L is an unambiguously defined, injective ring
homomorphism. Moreover, we may view K and L as D-algebras, via the
embeddings τ : D → K and τ ′ : D → L, and the map ρ is seen to be a
D-algebra homomorphism.

From now on, we shall simply write an element [a, b] of K as a fraction,
a/b. In this notation, the above rules for addition, multiplication, and
testing equality in K now look quite familiar:

a1

b1
+

a2

b2
=

a1b2 + a2b1

b1b2
,

a1

b1
· a2

b2
=

a1a2

b1b2
, and

a1

b1
=

a2

b2
iff a1b2 = a2b1.

Observe that for a, b ∈ D, with b ∈ 0D and b | a, so that a = bc for
some c ∈ D, then the fraction a/b ∈ K is equal to the fraction c/1D ∈ K,
and identifying the element c ∈ D with its canonical image c/1D ∈ K, we
may simply write c = a/b. Note that this notation is consistent with that
introduced in part (iii) of Theorem 9.4. A special case of this arises when
b ∈ D∗, in which case c = ab−1.

Function fields

An important special case of the above construction for the field of fractions
of D is when D = F [X], where F is a field. In this case, the field of fractions
is denoted F (X), and is called the field of rational functions (over
F ). This terminology is a bit unfortunate, since just as with polynomials,
although the elements of F (X) define functions, they are not (in general) in
one-to-one correspondence with these functions.
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Since F [X] is a subring of F (X), and since F is a subring of F [X], we see
that F is a subfield of F (X).

More generally, we may apply the above construction to the ring D =
F [X1, . . . , Xn] of multi-variate polynomials over a field F , in which case the
field of fractions is denoted F (X1, . . . , Xn), and is also called the field of
rational functions (over F , in the variables X1, . . . , Xn).

Exercise 17.5. Let F be a field of characteristic zero. Show that F
contains an isomorphic copy of Q. 2

Exercise 17.6. Show that the field of fractions of Z[i] within C is Q[i].
(See Example 9.22 and Exercise 9.6.) 2

17.3 Unique Factorization of Polynomials

Throughout this section, F denotes a field.
Like the ring Z, the ring F [X] of polynomials is an integral domain, and

because of the division with remainder property for polynomials, F [X] has
many other properties in common with Z. Indeed, essentially all the ideas
and results from Chapter 1 can be carried over almost verbatim from Z to
F [X], and in this section, we shall do just that.

Recall that for a, b ∈ F [X], we write b | a if a = bc for some c ∈ F [X],
and in this case, note that deg(a) = deg(b) + deg(c).

The units of F [X] are precisely the units F ∗ of F , that is, the non-
zero constants. We call two polynomials a, b ∈ F [X] associate if a = ub for
u ∈ F ∗. It is easy to see that a and b are associate if and only if a | b and b | a
— indeed, this follows as a special case of part (ii) of Theorem 9.4. Clearly,
any non-zero polynomial a is associate to a unique monic polynomial (i.e.,
with leading coefficient 1), called the monic associate of a; indeed, the
monic associate of a is lc(a)−1 · a.

We call a polynomial p irreducible if it is non-constant and all divisors
of p are associate to 1 or p. Conversely, we call a polynomial n reducible
if it is non-constant and is not irreducible. Equivalently, non-constant n is
reducible if and only if there exist polynomials a, b ∈ F [X] of degree strictly
less that n such that n = ab.

Clearly, if a and b are associate polynomials, then a is irreducible if and
only if b is irreducible.

The irreducible polynomials play a role similar to that of the prime
numbers. Just as it is convenient to work with only positive prime numbers,
it is also convenient to restrict attention to monic irreducible polynomials.

Corresponding to Theorem 1.3, every non-zero polynomial can be ex-
pressed as a unit times a product of monic irreducibles in an essentially
unique way:
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Theorem 17.5. Every non-zero polynomial n ∈ F [X] can be expressed as

n = u · pe1
1 · · · per

r ,

where u ∈ F ∗, the pi are distinct monic irreducible polynomials, and the ei

are positive integers. Moreover, this expression is unique, up to a reordering
of the pi.

To prove this theorem, we may assume that n is monic, since the non-
monic case trivially reduces to the monic case.

The proof of the existence part of Theorem 17.5 is just as for Theo-
rem 1.3. If n is 1 or a monic irreducible, we are done. Otherwise, there
exist a, b ∈ F [X] of degree strictly less than n such that n = ab, and again,
we may assume that a and b are monic. By induction on degree, both a
and b can be expressed as a product of monic irreducible polynomials, and
hence, so can n.

The proof of the uniqueness part of Theorem 17.5 is almost identical
to that of Theorem 1.3. As a special case of Theorem 9.12, we have the
following division with remainder property, analogous to Theorem 1.4:

Theorem 17.6. For a, b ∈ F [X] with b 6= 0, there exist unique q, r ∈ F [X]
such that a = bq + r and deg(r) < deg(b).

Analogous to Theorem 1.5, we have:

Theorem 17.7. For any ideal I ⊆ F [X], there exists a unique polynomial
d such that I = dF [X], where d is either zero or monic.

Proof. We first prove the existence part of the theorem. If I = {0}, then
d = 0 does the job, so let us assume that I 6= {0}. Let d be a monic
polynomial of minimal degree in I. We want to show that I = dF [X].

We first show that I ⊆ dF [X]. To this end, let c be any element in I. It
suffices to show that d | c. Using Theorem 17.6, we may write c = qd + r,
where deg(r) < deg(d). Then by the closure properties of ideals, one sees
that r = c− qd is also an element of I, and by the minimality of the degree
of d, we must have r = 0. Thus, d | c.

We next show that dF [X] ⊆ I. This follows immediately from the fact
that d ∈ I and the closure properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note
that if dF [X] = d′F [X], we have d | d′ and d′ | d, from which it follows that
d and d′ are associate, and so if d and d′ are both either monic or zero,
they must be equal. 2

For a, b ∈ F [X], we call d ∈ F [X] a common divisor of a and b if d | a
and d | b; moreover, we call such a d a greatest common divisor of a
and b if d is monic or zero, and all other common divisors of a and b divide
d. Analogous to Theorem 1.6, we have:
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Theorem 17.8. For any a, b ∈ F [X], there exists a unique greatest com-
mon divisor d of a and b, and moreover, aF [X] + bF [X] = dF [X].

Proof. We apply the previous theorem to the ideal I := aF [X] + bF [X].
Let d ∈ F [X] with I = dF [X], as in that theorem. Note that a, b, d ∈ I and
d is monic or zero.

It is clear that d is a common divisor of a and b. Moreover, there exist
s, t ∈ F [X] such that as+bt = d. If d′ | a and d′ | b, then clearly d′ | (as+bt),
and hence d′ | d.

Finally, for uniqueness, if d′′ is a greatest common divisor of a and b,
then d | d′′ and d′′ | d, and hence d′′ is associate to d, and the requirement
that d′′ is monic or zero implies that d′′ = d. 2

For a, b ∈ F [X], we denote by gcd(a, b) the greatest common divisor of
a and b. Note that as we have defined it, lc(a) gcd(a, 0) = a. Also note
that when at least one of a or b are non-zero, gcd(a, b) is the unique monic
polynomial of maximal degree that divides both a and b.

An immediate consequence of Theorem 17.8 is that for all a, b ∈ F [X],
there exist s, t ∈ F [X] such that as + bt = gcd(a, b), and that when at
least one of a or b are non-zero, gcd(a, b) is the unique monic polynomial
of minimal degree that can be expressed as as + bt for some s, t ∈ F [X].

We say that a, b ∈ F [X] are relatively prime if gcd(a, b) = 1, which is
the same as saying that the only common divisors of a and b are units. It is
immediate from Theorem 17.8 that a and b are relatively prime if and only
if aF [X] + bF [X] = F [X], which holds if and only if there exist s, t ∈ F [X]
such that as + bt = 1.

Analogous to Theorem 1.7, we have:

Theorem 17.9. For a, b, c ∈ F [X] such that c | ab and gcd(a, c) = 1, we
have c | b.

Proof. Suppose that c | ab and gcd(a, c) = 1. Then since gcd(a, c) = 1,
by Theorem 17.8 we have as + ct = 1 for some s, t ∈ F [X]. Multiplying this
equation by b, we obtain abs + cbt = b. Since c divides ab by hypothesis, it
follows that c | (abs + cbt), and hence c | b. 2

Analogous to Theorem 1.8, we have:

Theorem 17.10. Let p ∈ F [X] be irreducible, and let a, b ∈ F [X]. Then
p | ab implies that p | a or p | b.

Proof. Assume that p | ab. The only divisors of p are associate to 1 or
p. Thus, gcd(p, a) is either 1 or the monic associate of p. If p | a, we are
done; otherwise, if p - a, we must have gcd(p, a) = 1, and by the previous
theorem, we conclude that p | b. 2
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Now to prove the uniqueness part of Theorem 17.5. Suppose we have

p1 · · · pr = p′1 · · · p′s,

where p1, . . . , pr and p′1, . . . , p
′
s are monic irreducible polynomials (dupli-

cates are allowed among the pi and among the p′j). If r = 0, we must have
s = 0 and we are done. Otherwise, as p1 divides the right-hand side, by
inductively applying Theorem 17.10, one sees that p1 is equal to p′j for some
j. We can cancel these terms and proceed inductively (on r).

That completes the proof of Theorem 17.5.

Analogous to Theorem 1.9, we have:

Theorem 17.11. There are infinitely many monic irreducible polynomi-
als in F [X].

If F is infinite, then this theorem is true simply because there are in-
finitely many monic, linear polynomials; in any case, one can also just prove
this theorem by mimicking the proof of Theorem 1.9 (verify).

For a monic irreducible polynomial p, we may define the function νp,
mapping non-zero polynomials to non-negative integers, as follows: for
polynomial n 6= 0, if n = pem, where p - m, then νp(n) := e. We may then
write the factorization of n into irreducibles as

n = u
∏
p

pνp(n),

where the product is over all monic irreducible polynomials p, with all but
finitely many of the terms in the product equal to 1.

Just as for integers, we may extend the domain of definition of νp to
include 0, defining νp(0) := ∞. For all polynomials a, b, we have

νp(a · b) = νp(a) + νp(b) for all p. (17.1)

From this, it follows that for all polynomials a, b, we have

b | a if and only if νp(b) ≤ νp(a) for all p, (17.2)

and
νp(gcd(a, b)) = min(νp(a), νp(b)) for all p. (17.3)

For a, b ∈ F [X] a common multiple of a and b is a polynomial m such
that a | m and b | m; moreover, such an m is the least common multiple
of a and b if m is monic or zero, and m divides all common multiples of a
and b. In light of Theorem 17.5, it is clear that the least common multiple
exists and is unique, and we denote the least common multiple of a and
b by lcm(a, b). Note that as we have defined it, lcm(a, 0) = 0, and that
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when both a and b are non-zero, lcm(a, b) is the unique monic polynomial
of minimal degree that is divisible by both a and b. Also, for all a, b ∈ F [X],
we have

νp(lcm(a, b)) = max(νp(a), νp(b)) for all p, (17.4)

and
lc(ab) · gcd(a, b) · lcm(a, b) = ab. (17.5)

Just as in §1.3, the notions of greatest common divisor and least common
multiple generalize naturally from two to any number of polynomials. We
also say that polynomials a1, . . . , ak ∈ F [X] are pairwise relatively prime
if gcd(ai, aj) = 1 for all i, j with i 6= j.

Also just as in §1.3, any rational function a/b ∈ F (X) can be expressed
as a fraction a′/b′ in lowest terms, that is, a/b = a′/b′ and gcd(a′, b′) = 1,
and this representation is unique up to multiplication by units.

Many of the exercises in Chapter 1 carry over naturally to polynomials
— the reader is encouraged to look over all of the exercises in that chapter,
determining which have natural polynomial analogs, and work some of these
out.

Exercise 17.7. Show that for f ∈ F [X] of degree 2 or 3, we have f
irreducible if and only if f has no roots in F . 2

17.4 Polynomial Congruences

Throughout this section, F denotes a field.
Specializing the congruence notation introduced in §9.4 for arbitrary

rings to the ring F [X], for polynomials a, b, n ∈ F [X], we write a ≡ b (mod n)
when n | (a − b). Because of the division with remainder property for
polynomials, we have the analog of Theorem 2.1:

Theorem 17.12. Let n ∈ F [X] be a non-zero polynomial. For every a ∈
F [X], there exists a unique b ∈ F [X] such that a ≡ b (mod n) and deg(b) < n,
namely, b := a rem n.

For a non-zero n ∈ F [X], and a ∈ F [X], we say that a′ ∈ F [X] is a
multiplicative inverse of a modulo n if aa′ ≡ 1 (mod n).

All of the results we proved in §2.2 for solving linear congruences over
the integers carry over almost identically to polynomials. As such, we do
not give proofs of any of the results here. The reader may simply check
that the proofs of the corresponding results translate almost directly.

Theorem 17.13. Let a, n ∈ F [X] with n 6= 0. Then a has a multiplicative
inverse modulo n if and only if a and n are relatively prime.
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Theorem 17.14. Let a, n, z, z′ ∈ F [X] with n 6= 0. If a is relatively prime
to n, then az ≡ az′ (mod n) if and only if z ≡ z′ (mod n). More generally,
if d := gcd(a, n), then az ≡ az′ (mod n) if and only if z ≡ z′ (mod n/d).

Theorem 17.15. Let a, b, n ∈ F [X] with n 6= 0. If a is relatively prime
to n, then the congruence az ≡ b (mod n) has a solution z; moreover, any
polynomial z′ is a solution if and only if z ≡ z′ (mod n).

As for integers, this theorem allows us to generalize the “rem” notation
as follows: if n ∈ F [X] is a non-zero polynomial, and s ∈ F (X) is a rational
function of the form b/a, where a, b ∈ F [X], a 6= 0, and gcd(a, n) = 1, then
s rem n denotes the unique polynomial z satisfying

az ≡ b (mod n) and deg(z) < deg(n).

With this notation, we can simply write a−1 rem n to denote the unique
multiplicative inverse of a modulo n with deg(a) < deg(n).

Theorem 17.16. Let a, b, n ∈ F [X] with n 6= 0, and let d := gcd(a, n).
If d | b, then the congruence az ≡ b (mod n) has a solution z, and any
polynomial z′ is also a solution if and only if z ≡ z′ (mod n/d). If d - b,
then the congruence az ≡ b (mod n) has no solution z.

Theorem 17.17 (Chinese Remainder Theorem). Let n1, . . . , nk ∈
F [X] be pairwise relatively prime, non-zero polynomials, and let a1, . . . , ak ∈
F [X] be arbitrary polynomials. Then there exists a polynomial z ∈ F [X] such
that

z ≡ ai (mod ni) (i = 1, . . . , k).

Moreover, any other polynomial z′ ∈ F [X] is also a solution of these con-
gruences if and only if z ≡ z′ (mod n), where n :=

∏k
i=1 ni.

Note that the Chinese remainder theorem (with Theorem 17.12) implies
that there exists a unique solution z ∈ F [X] to the given congruences with
deg(z) < deg(n).

The Chinese remainder theorem also has a more algebraic interpreta-
tion. Define quotient rings Ei := F [X]/(ni) for i = 1, . . . , k, which we may
naturally view as F -algebras (see Example 17.4), along with the product
F -algebra E := E1×· · ·×Ek (see Example 17.2). The map ρ from F [X] to
E that sends z ∈ F [X] to ([z mod n1], . . . , [z mod nk]) ∈ E is an F -algebra
homomorphism. The Chinese remainder theorem says that ρ is surjective,
and that the kernel of ρ is the ideal of F [X] generated by n, giving rise to
an F -algebra isomorphism of F [X]/(n) with E.

Let us recall the formula for the solution z (see proof of Theorem 2.8).
We have

z :=
k∑

i=1

wiai,
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where

wi := n′imi, n′i := n/ni, mi := (n′i)
−1 rem ni (i = 1, . . . , k).

Now, let us consider the special case of the Chinese remainder theorem
where ai ∈ F and ni = (X− bi) with bi ∈ F , for i = 1, . . . , k. The condition
that the ni are pairwise relatively prime is equivalent to the condition that
the bi are all distinct. A polynomial z satisfies the system of congruences if
and only if z(bi) = ai for i = 1, . . . , k. Moreover, we have n′i =

∏
j 6=i(X−bj),

and mi = 1/
∏

j 6=i(bi − bj) ∈ F . So we get

z =
k∑

i=1

ai

∏
j 6=i(X− bj)∏
j 6=i(bi − bj)

.

The reader will recognize this as the usual Lagrange interpolation for-
mula. Thus, the Chinese remainder theorem for polynomials includes La-
grange interpolation as a special case.

Let us consider this situation from the point of view of vector spaces.
Consider the map σ : F [X]<k → F×k that sends z ∈ F [X] of degree less
than k to (z(b1), . . . , z(bk)) ∈ F×k, where as above, b1, . . . , bk are distinct
elements of F . We see that σ is an F -linear map, and by the Chinese re-
mainder theorem, it is bijective. Thus, σ is an F -vector space isomorphism
of F [X]<k with F×k.

We may encode elements of F [X]<k as row vectors in a natural way,
encoding the polynomial z =

∑k−1
i=0 ziXi as the row vector (z0, . . . , zk−1) ∈

F 1×k. With this encoding, we have

σ(z) = (z0, . . . , zk−1)V,

where V is the k × k matrix

V :=


1 1 1
b1 b2 bk

...
... · · ·

...
bk−1
1 bk−1

2 · · · bk−1
k

 .

The matrix V (well, actually its transpose) is known as a Vandermonde
matrix. Because σ is an isomorphism, it follows that the matrix V is
invertible.

More generally, consider any fixed elements b1, . . . , b` of F , where ` ≤ k,
and consider the F -linear map σ : F [X]<k → F×` that sends z ∈ F [X]<k to
(z(b1), . . . , z(b`)). If z =

∑k−1
i=0 ziXi, then

σ(z) = (z0, . . . , zk−1)W,
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where W is the k × ` matrix

W :=


1 1 1
b1 b2 b`

...
... · · ·

...
bk−1
1 bk−1

2 · · · bk−1
`

 .

Now, if bi = bj for some i 6= j, then the columns of W are linearly depen-
dent, and hence the column rank of W is less than `. Since the column
rank of W is equal to its row rank, the dimension of the row space of W
is less than `, and hence, σ is not surjective. Conversely, if the bi are all
distinct, then since the submatrix of W consisting of its first ` rows is an
invertible Vandermonde matrix, we see that the rank of W is equal to `,
and hence σ is surjective.

17.5 Polynomial Quotient Algebras

Throughout this section, F denotes a field.
Let f ∈ F [X] be a monic polynomial, and consider the quotient ring

E := F [X]/(f). As discussed in Example 17.4, we may naturally view E as
an F -algebra via the map τ that sends c ∈ R to [c mod f ] ∈ E. Moreover,
if deg(f) > 0, then τ is an embedding of F in F [X]/(f), and otherwise, if
f = 1, then E is the trivial ring, and τ maps everything to zero.

Suppose that ` := deg(f) > 0. Let η := [X mod f ] ∈ E. Then
E = F [η], and as an F -vector space, E has dimension `, with 1, η, . . . , η`−1

being a basis (see Examples 9.34, 9.43, 14.3, and 14.21). That is, every
element of E can be expressed uniquely as g(η) for g ∈ F [X] of degree less
than `.

Now, if f is irreducible, then every polynomial a 6≡ 0 (mod f) is rela-
tively prime to f , and hence invertible modulo f ; therefore, it follows that
E is a field. Conversely, if f is not irreducible, then E cannot be a field —
indeed, if g is a non-trivial factor of f , then g(η) is a zero divisor.

If F = Zp for a prime number p, and f is irreducible, then we see that
E is a finite field of cardinality p`. In the next chapter, we shall see how
one can perform arithmetic in such fields efficiently, and later, we shall also
see how to efficiently construct irreducible polynomials of any given degree
over a finite field.

Minimal polynomials. Now suppose that E is any F -algebra, and let α
be an element of E. Consider the polynomial evaluation map ρ : F [X]→ E
that sends g ∈ F [X] to g(α). The kernel of ρ is an ideal of F [X], and since
every ideal of F [X] is principal, it follows that there exists a polynomial
φ ∈ F [X] such that ker(ρ) is the ideal of F [X] generated by φ; moreover,
we can make the choice of φ unique by insisting that it is monic or zero.
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The polynomial φ is called the minimal polynomial of α (over F ). If
φ = 0, then ρ is injective, and hence the image F [α] of ρ is isomorphic (as
an F -algebra) to F [X]. Otherwise, F [α] is isomorphic (as an F -algebra) to
F [X]/(φ); moreover, since any polynomial that is zero at α is a polynomial
multiple of φ, we see that φ is the unique monic polynomial of smallest
degree that is zero at α.

If E has finite dimension, say n, as an F -vector space, then any ele-
ment α of E has a non-zero minimal polynomial. Indeed, the elements
1E , α, . . . , αn must be linearly dependent (as must be any n + 1 vectors in
a vector space of dimension n), and hence there exist c0, . . . , cn ∈ F , not
all zero, such that

c01E + c1α + · · ·+ cnαn = 0E ,

and therefore, the non-zero polynomial g :=
∑

i ciXi is zero at α.

Example 17.8. The polynomial X2 + 1 is irreducible over R, since if it
were not, it would have a root in R (see Exercise 17.7), which is clearly
impossible, since −1 is not the square of any real number. It follows im-
mediately that C = R[X]/(X2 + 1) is a field, without having to explicitly
calculate a formula for the inverse of a non-zero complex number. 2

Example 17.9. Consider the polynomial f := X4 + X3 + 1 over Z2. We
claim that f is irreducible. It suffices to show that f has no irreducible
factors of degree 1 or 2.

If f had a factor of degree 1, then it would have a root; however, f(0) =
0 + 0 + 1 = 1 and f(1) = 1 + 1 + 1 = 1. So f has no factors of degree 1.

Does f have a factor of degree 2? The polynomials of degree 2 are X2,
X2 + X, X2 + 1, and X2 + X + 1. The first and second of these polynomials
are divisible by X, and hence not irreducible, while the third has a 1 as a
root, and hence is also not irreducible. The last polynomial, X2 +X+1, has
no roots, and hence is the only irreducible polynomial of degree 2 over Z2.
So now we may conclude that if f were not irreducible, it would have to be
equal to

(X2 + X + 1)2 = X4 + 2X3 + 3X2 + 2X + 1 = X4 + X2 + 1,

which it is not.
Thus, E := Z2[X]/(f) is a field with 24 = 16 elements. We may think of

elements E as bit strings of length 4, where the rule for addition is bit-wise
“exclusive-or.” The rule for multiplication is more complicated: to multiply
two given bit strings, we interpret the bits as coefficients of polynomials
(with the left-most bit the coefficient of X3), multiply the polynomials,
reduce the product modulo f , and write down the bit string corresponding
to the reduced product polynomial. For example, to multiply 1001 and
0011, we compute

(X3 + 1)(X + 1) = X4 + X3 + X + 1,
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and
(X4 + X3 + X + 1) rem (X4 + X3 + 1) = X.

Hence, the product of 1001 and 0011 is 0010.
Theorem 9.16 says that E∗ is a cyclic group. Indeed, the element η :=

0010 (i.e., η = [X mod f ]) is a generator for E∗, as the following table of
powers shows:

i ηi i ηi

1 0010 8 1110
2 0100 9 0101
3 1000 10 1010
4 1001 11 1101
5 1011 12 0011
6 1111 13 0110
7 0111 14 1100

15 0001

Such a table of powers is sometimes useful for computations in small
finite fields such as this one. Given α, β ∈ E∗, we can compute αβ by
obtaining (by table lookup) i, j such that α = ηi and β = ηj , computing
k := (i + j) rem 15, and then obtaining αβ = ηk (again by table lookup).
2

Exercise 17.8. In the field E is Example 17.9, what is the minimal poly-
nomial of 1011 over Z2? 2

Exercise 17.9. Show that if the factorization of f over F [X] into irre-
ducibles is as f = fe1

1 · · · fer
r , and if α = [h mod f ] ∈ F [X]/(f), then the

minimal polynomial φ of α over F is lcm(φ1, . . . , φr), where each φi is the
minimal polynomial of [h mod fei

i ] ∈ F [X]/(fei
i ) over F . 2

17.6 General Properties of Extension Fields

We now discuss a few general notions related to extension fields. These are
all quite simple applications of the theory developed so far. Recall that if F
and E are fields, with F being a subring of E, then E is called an extension
field of F . As usual, we shall blur the distinction between a subring and a
canonical embedding; that is, if τ : F → E is an canonical embedding, we
shall simply identify elements of F with their images in E under τ , and in
so doing, we may view E as an extension field of F . Usually, the map τ will
be clear from context; for example, if E = F [X]/(φ) for some irreducible
polynomial φ ∈ F [X], then we shall simply say that E is an extension field
of F , although strictly speaking, F is embedded in E via the map that
sends a ∈ F to [a mod φ] ∈ E.
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Let E be an extension field of a field F . Then E is an F -algebra, and in
particular, an F -vector space. If E is a finite dimensional F -vector space,
then we say that E is a finite extension of F , and dimF (E) is called the
degree of the extension, and is denoted (E : F ); otherwise, we say that E
is an infinite extension of F .

An element α ∈ E is called algebraic over F if there exists a non-zero
polynomial f ∈ F [X] such that f(α) = 0; otherwise, α is called transcen-
dental over F . If all elements of E are algebraic over F , then we call E an
algebraic extension of F . From the discussion on minimal polynomials
in §17.5, we may immediately state:

Theorem 17.18. If E is a finite extension of F , then E is also an alge-
braic extension of F .

Suppose α ∈ E is algebraic over F . Let φ be its minimal polynomial,
so that F [X]/(φ) is isomorphic (as an F -algebra) to F [α]. Since F [α] is a
subring of a field, it must be an integral domain, which implies that φ is
irreducible, which in turn implies that F [α] is a subfield of E. Moreover,
the degree (F [α] : F ) is equal to the degree of φ, and this number is called
the degree of α (over F ). It is clear that if E is finite dimensional, then
the degree of α is at most (E : F ).

Suppose that α ∈ E is transcendental over F . Consider the “rational
function evaluation map” that sends f/g ∈ F (X) to f(α)/g(α) ∈ E. Since
no non-zero polynomial over F vanishes at α, it is easy to see that this map
is well defined, and is in fact an injective F -algebra homomorphism from
F (X) into E. The image is denoted F (α), and this is clearly a subfield of
E containing F and α, and it is plain to see that it is the smallest such
subfield. It is also clear that F (α) has infinite dimension over F , since it
contains an isomorphic copy of the infinite dimensional vector space F [X].

More generally, for any α ∈ E, algebraic or transcendental, we can define
F (α) to be the set consisting of all elements of the form f(α)/g(α) ∈ E,
where f, g ∈ F [X] and g(α) 6= 0. It is clear that F (α) is a field, and indeed,
it is the smallest subfield of E containing F and α. If α is algebraic, then
F (α) = F [α], and is isomorphic (as an F -algebra) to F [X]/(φ), where φ is
the minimal polynomial of α over F ; otherwise, if α is transcendental, then
F (α) is isomorphic (as an F -algebra) to the rational function field F (X).

Example 17.10. If f ∈ F [X] is monic and irreducible, E = F [X]/(f), and
η := [X mod f ] ∈ E, then η is algebraic over F , its minimal polynomial over
F is f , and its degree over F is equal to deg(f). Also, we have E = F [η],
and any element α ∈ E is algebraic of degree at most deg(f). 2

Exercise 17.10. In the field E is Example 17.9, find all the elements of
degree 2 over Z2. 2
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Exercise 17.11. Show that if E is a finite extension of F , with a basis
α1, . . . , αn over F , and K is a finite extension of E, with a basis β1, . . . , βm

over E, then
αiβj (i = 1, . . . , n; j = 1, . . . ,m)

is a basis for K over F , and hence K is a finite extension of F and

(K : F ) = (K : E)(E : F ).

2

Exercise 17.12. Show that if E is an algebraic extension of F , and K
is an algebraic extension of E, then K is an algebraic extension of F . 2

Exercise 17.13. Let E be an extension of F . Show that the set of all
elements in E that are algebraic over F is a subfield of E containing F . 2

We close this section with a discussion of a splitting field — a finite ex-
tension of the coefficient field in which a given polynomial splits completely
into linear factors. As the next theorem shows, splitting fields always exist.

Theorem 17.19. Let F be a field, and f ∈ F [X] a monic polynomial of
degree `. Then there exists a finite extension K of F in which f factors as

f = (X− α1)(X− α2) · · · (X− α`),

with α1, . . . , α` ∈ K.

Proof. We prove the existence of K by induction on the degree ` of f . If
` = 0, then the theorem is trivially true. Otherwise, let g be an irreducible
factor of f , and set E := F [X]/(g), so that α := [X mod g] is a root of g,
and hence of f , in E. So over the extension field E, f factors as

f = (X− α)h,

where h ∈ E[X] is a polynomial of degree ` − 1. Applying the induction
hypothesis, there exists a finite extension K of E such that h splits into
linear factors over K. Thus, over K, f splits into linear factors, and by
Exercise 17.11, K is a finite extension of F . 2

17.7 Formal Power Series and Laurent Series

We discuss generalizations of polynomials that allow an infinite number of
non-zero coefficients. Although we are mainly interested in the case where
the coefficients come from a field F , we develop the basic theory for general
rings R.
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17.7.1 Formal power series

The ring R[[X]] of formal power series over R consists of all formal
expressions of the form

a = a0 + a1X + a2X
2 + · · · ,

where a0, a1, a2, . . . ∈ R. Unlike ordinary polynomials, we allow an infinite
number of non-zero coefficients. We may write such a formal power series
as

a =
∞∑

i=0

aiX
i.

The rules for addition and multiplication of formal power series are
exactly the same as for polynomials. Indeed, the formulas (9.1) and (9.2)
in §9.2 for addition and multiplication may be applied directly — all of the
relevant sums are finite, and so everything is well defined.

We shall not attempt to interpret a formal power series as a function,
and therefore, “convergence” issues shall simply not arise.

Clearly, R[[X]] contains R[X] as a subring. Let us consider the group of
units of R[[X]].

Theorem 17.20. Let a =
∑∞

i=0 aiXi ∈ R[[X]]. Then a ∈ (R[[X]])∗ if and
only if a0 ∈ R∗.

Proof. If a0 is not a unit, then it is clear that a is not a unit, since the
constant term of a product formal power series is equal to the product of
the constant terms.

Conversely, if a0 is a unit, we show how to define the coefficients of
the inverse b =

∑∞
i=0 biXi of a. Let ab = c =

∑∞
i=0 ciXi. We want c = 1,

meaning that c0 = 1 and ci = 0 for all i > 0. Now, c0 = a0b0, so we set b0 :=
a−1
0 . Next, we have c1 = a0b1 +a1b0, so we set b1 := −a1b0 ·a−1

0 . Next, we
have c2 = a0b2+a1b1+a2b0, so we set b2 := −(a1b1+a2b0)·a−1

0 . Continuing
in this way, we see that if we define bi := −(a1bi−1 + · · · + aib0) · a−1

0 for
i ≥ 1, then ab = 1. 2

Example 17.11. In the ring R[[X]], the multiplicative inverse of 1 − X is∑∞
i=0 X

i. 2

Exercise 17.14. For a field F , show that any non-zero ideal of F [[X]] is
of the form (Xm) for some uniquely determined integer m ≥ 0. 2
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17.7.2 Formal Laurent series

One may generalize formal power series to allow a finite number of negative
powers of X. The ring R((X)) of formal Laurent series over R consists
of all formal expressions of the form

a = amXm + am+1X
m+1 + · · · ,

where m is allowed to be any integer (possibly negative), and
am, am+1, . . . ∈ R. Thus, elements of R((X)) may have an infinite num-
ber of terms involving positive powers of X, but only a finite number of
terms involving negative powers of X. We may write such a formal Laurent
series as

a =
∞∑

i=m

aiX
i.

The rules for addition and multiplication of formal Laurent series are
just as one would expect: if

a =
∞∑

i=m

aiX
i and b =

∞∑
i=m

biX
i,

then

a + b :=
∞∑

i=m

(ai + bi)Xi, (17.6)

and

a · b :=
∞∑

i=2m

(i−m∑
k=m

akbi−k

)
Xi. (17.7)

We leave it to the reader to verify that R((X)) is a ring containing R[[X]].

Theorem 17.21. If D is an integral domain, then D((X)) is an integral
domain.

Proof. Let a =
∑∞

i=m aiXi and b =
∑∞

i=n biXi, where am 6= 0 and bn 6= 0.
Then ab =

∑∞
i=m+n ci, where cm+n = ambn 6= 0. 2

Theorem 17.22. Let a ∈ R((X)), and suppose that a 6= 0 and a =∑∞
i=m aiXi with am ∈ R∗. Then a has a multiplicative inverse in R((X)).

Proof. We can write a = Xmb, where b is a formal power series whose
constant term is a unit, and hence there is a formal power series c such
that bc = 1. Thus, X−mc is the multiplicative inverse of a in R((X)). 2

As an immediate corollary, we have:

Theorem 17.23. If F is a field, then F ((X)) is a field.
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Exercise 17.15. Show that for a field F , F ((X)) is the field of fractions
of F [[X]]; that is, there is no proper subfield of F ((X)) that contains F [[X]]. 2

17.7.3 Reversed formal Laurent series

While formal Laurent series are useful in some situations, in many others,
it is more useful and natural to consider reversed formal Laurent series
over R. These are formal expressions of the form

a =
m∑

i=−∞
aiX

i,

where am, am−1, . . . ∈ R. Thus, in a reversed formal Laurent series, we
allow an infinite number of terms involving negative powers of X, but only
a finite number of terms involving positive powers of X.

The rules for addition and multiplication of reversed formal Laurent
series are just as one would expect: if

a =
m∑

i=−∞
aiX

i and b =
m∑

i=−∞
biX

i,

then

a + b :=
m∑

i=−∞
(ai + bi)Xi, (17.8)

and

a · b :=
2m∑

i=−∞

( m∑
k=i−m

akbi−k

)
Xi. (17.9)

The ring of all reversed formal Laurent series is denoted R((X−1)), and
as the notation suggests, the map that sends X to X−1 (and acts as the
identity on R) is an isomorphism of R((X)) with R((X−1)).

Now, for any a =
∑m

i=−∞ aiXi ∈ R((X−1)) with am 6= 0, let us define the
degree of a, denoted deg(a), to be the value m, and the leading coeffi-
cient of a, denoted lc(a), to be the value am. As for ordinary polynomials,
we define the degree of 0 to be −∞, and the leading coefficient of 0 to be 0.
Note that if a happens to be a polynomial, then these definitions of degree
and leading coefficient agree with that for ordinary polynomials.

Theorem 17.24. For a, b ∈ R((X−1)), we have deg(ab) ≤ deg(a)+deg(b),
where equality holds unless both lc(a) and lc(b) are zero divisors. Fur-
thermore, if b 6= 0 and lc(b) is a unit, then b is a unit, and we have
deg(ab−1) = deg(a)− deg(b).
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Proof. Exercise. 2

It is also natural to define a floor function for reversed formal Laurent
series: for a ∈ R((X−1)) with a =

∑m
i=−∞ aiXi, we define

bac :=
m∑

i=0

aiX
i ∈ R[X];

that is, we compute the floor function by simply throwing away all terms
involving negative powers of X.

Now, let a, b ∈ R[X] with b 6= 0 and lc(b) a unit, and using the usual
division with remainder property for polynomials, write a = bq + r, where
q, r ∈ R[X] with deg(r) < deg(b). Let b−1 denote the multiplicative inverse
of b in R((X−1)). It is not too hard to see that bab−1c = q; indeed, mul-
tiplying the equation a = bq + r by b−1, we obtain ab−1 = q + rb−1, and
deg(rb−1) < 0, from which it follows that bab−1c = q.

Let F be a field. Since F ((X−1)) is isomorphic to F ((X)), and the latter
is a field, it follows that F ((X−1)) is a field. Now, F ((X−1)) contains F [X]
as a subring, and hence contains (an isomorphic copy) of F (X). Just as
F (X) corresponds to the field of rational numbers, F ((X−1)) corresponds to
the field real numbers. Indeed, we can think of real numbers as decimal
numbers with a finite number of digits to the left of the decimal point and
an infinite number to the right, and reversed formal Laurent series have
a similar “syntactic” structure. In many ways, this syntactic similarity
between the real numbers and reversed formal Laurent series is more than
just superficial.

Exercise 17.16. Write down the rule for determining the multiplicative
inverse of an element of R((X−1)) whose leading coefficient is a unit in R. 2

Exercise 17.17. Let F be a field of characteristic other than 2. Show
that a non-zero z ∈ F ((X−1)) has a square-root in z ∈ F ((X−1)) if and only
if deg(z) is even and lc(z) has a square-root in F . 2

Exercise 17.18. Let R be a ring, and let α ∈ R. Show that the multi-
plicative inverse of X− α in R((X−1)) is

∑∞
j=1 αj−1X−j . 2

Exercise 17.19. Let R be an arbitrary ring, let α1, . . . , α` ∈ R, and let

f := (X− α1)(X− α2) · · · (X− α`) ∈ R[X].

For j ≥ 0, define the “power sum”

sj :=
∑̀
i=1

αj
i .
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Show that in the ring R((X−1)), we have

D(f)
f

=
∑̀
i=1

1
(X− αi)

=
∞∑

j=1

sj−1X
−j ,

where D(f) is the formal derivative of f . 2

Exercise 17.20. Continuing with the previous exercise, derive New-
ton’s identities, which state that if f = X` + f1X`−1 + · · · + f`, with
f1, . . . , f` ∈ R, then

s1 + f1 = 0
s2 + f1s1 + 2f2 = 0

s3 + f1s2 + f2s1 + 3f3 = 0
...

s` + f1s`−1 + · · ·+ f`−1s1 + `f` = 0
sj+` + f1sj+`−1 + · · ·+ f`−1sj+1 + f`sj = 0 (j ≥ 1).

2

17.8 ♣ Unique Factorization Domains

As we have seen, both the integers and the ring F [X] of polynomials over
a field enjoy a unique factorization property. These are special cases of a
more general phenomenon, which we explore here.

Throughout this section, D denotes an integral domain.
We call a, b ∈ D associate if a = ub for some u ∈ D∗. Equivalently, a

and b are associate if and only if a | b and b | a. A non-zero element p ∈ D
is called irreducible if it is not a unit, and all divisors of p are associate to
1 or p. Equivalently, a non-zero, non-unit p ∈ D is irreducible if and only
if it cannot be expressed as p = ab where neither a nor b are units.

Definition 17.25. We call D a unique factorization domain (UFD)
if

(i) every non-zero element of D that is not a unit can be written as a
product of irreducibles in D, and

(ii) such a factorization into irreducibles is unique up to associates and
the order in which the factors appear.

Another way to state part (ii) of the above definition is that if p1 · · · pr

and p′1 · · · p′s are two factorizations of some element as a product of ir-
reducibles, then r = s, and there exists a permutation π on the indices
{1, . . . , r} such that pi and p′π(i) are associate.
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As we have seen, both Z and F [X] are UFDs. In both of those cases, we
chose to single out a special irreducible element among all those associate
to any given irreducible: for Z, we always chose p to be positive, and for
F [X], we chose p to be monic. For any specific unique factorization domain
D, there may be such a natural choice, but in the general case, there will
not be.

Example 17.12. Having already seen two examples of UFDs, it is per-
haps a good idea to look at an example of an integral domain that is not a
UFD. Consider the subring Z[

√
−5] of the complex numbers, which consists

an all complex numbers of the form a + b
√
−5, where a, b ∈ Z. As this is a

subring of the field C, it is an integral domain (one may also view Z[
√
−5]

as the quotient ring Z[X]/(X2 + 5)).
Let us first determine the units in Z[

√
−5]. For a, b ∈ Z, we have

N(a + b
√
−5) = a2 + 5b2, where N is the usual norm map on C. If z ∈

Z[
√
−5] is a unit, then there exists z′ ∈ Z[

√
−5] such that zz′ = 1. Taking

norms, we obtain

1 = N(1) = N(zz′) = N(z)N(z′).

Since the norm of an element of Z[
√
−5] is a non-negative integer, this

implies that N(z) = 1. If z = a + b
√
−5, then N(z) = a2 + 5b2, and it is

clear that N(z) = 1 if and only if z = ±1. We conclude that the only units
in Z[

√
−5] are ±1.

Now consider the following factorizations:

46 = 2 · 23,

46 = (1 + 3
√
−5)(1− 3

√
−5).

We claim that each of these four factors are irreducibles in Z[
√
−5]. For

suppose, say, that 2 = zz′, for z, z′ ∈ Z[
√
−5], with neither a unit. Taking

norms, we have 4 = N(2) = N(z)N(z′), and therefore, N(z) = N(z′) = 2
— but this is impossible, since there are no integers a and b such that
a2 + 5b2 = 2. Analogous arguments apply to the other three factors, which
we leave to the reader. Since the only units in Z[

√
−5] are ±1, it is clear

that these four irreducibles are non-associate. 2

For a, b ∈ D, we call d ∈ D a common divisor of a and b if d | a
and d | b; moreover, we call such a d a greatest common divisor of a
and b if all other common divisors of a and b divide d. We say that a and
b are relatively prime if the only common divisors of a and b are units.
It is immediate from the definition of a greatest common divisor that it is
unique, up to multiplication by units, if it exists at all. Unlike in the case
of Z and F [X], in the general setting, greatest common divisors need not
exist; moreover, even when they do, we shall not attempt to “normalize”
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greatest common divisors, and we shall speak only of “a” greatest common
divisor, rather than “the” greatest common divisor.

Just as for integers and polynomials, we can generalize the notion of
a greatest common divisor in an arbitrary integral domain D from two to
any number of elements of D, and we can also define a least common
multiple of any number of elements as well.

Although these greatest common divisors and least common multiples
need not exist in an arbitrary integral domain D, if D is a UFD, they will
always exist. The existence question easily reduces to the question of the
existence of a greatest common divisor and least common multiple of a and
b, where a and b are non-zero elements of D. So assuming that D is a UFD,
we may write

a = u
r∏

i=1

pei
i and b = v

r∏
i=1

pfi

i ,

where u and v are units, p1, . . . , pr are non-associate irreducibles, and the
ei and fi are non-negative integers, and it is easily seen that

r∏
i=1

pmin(ei,fi)

is a greatest common divisor of a and b, while

r∏
i=1

pmax(ei,fi)

is a least common multiple of a and b.
It is also evident that in a UFD D, if c | ab and c and a are relatively

prime, then c | b. In particular, if p is irreducible and p | ab, then p | a or
p | b. From this, we see that if p is irreducible, then the quotient ring D/pD
is an integral domain, and so the ideal pD is a prime ideal (see discussion
above Exercise 9.22).

In a general integral domain D, we say that an element p ∈ D is prime
if for all a, b ∈ D, p | ab implies p | a or p | b (which is equivalent to saying
that the ideal pD is prime). Thus, if D is a UFD, then all irreducibles are
primes; however, in a general integral domain, this may not be the case.
Here are a couple of simple but useful facts whose proofs we leave to the
reader.

Theorem 17.26. Any prime element in D is irreducible.

Proof. Exercise. 2

Theorem 17.27. Suppose D satisfies part (i) of Definition 17.25. Also,
suppose that all irreducibles in D are prime. Then D is a UFD.
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Proof. Exercise. 2

Exercise 17.21. Let D be a UFD and F its field of fractions. Show that

(a) every element x ∈ F can be expressed as x = a/b, where a, b ∈ D are
relatively prime, and

(b) that if x = a/b for a, b ∈ D relatively prime, then for any other
a′, b′ ∈ D with x = a′/b′, we have a′ = ca and b′ = cb for some c ∈ D.

2

17.8.1 Unique factorization in Euclidean and Principal
Ideal Domains

Our proofs of the unique factorization property in both Z and F [X] hinged
on the division with remainder property for these rings. This notion can
be generalized, as follows.

Definition 17.28. D is said to be a Euclidean domain if there is a
function λ mapping the non-zero elements of D to the set of non-negative
integers, such that for a, b ∈ D with b 6= 0, there exist q, r ∈ D, with the
property that a = bq + r and either r = 0 or λ(r) < λ(b).

Example 17.13. Both Z and F [X] are Euclidean domains. In Z, we can
take the ordinary absolute value function | · | as λ, and for F [X], the function
deg(·) will do. 2

Example 17.14. Recall again the ring

Z[i] = {a + bi : a, b ∈ Z}

of Gaussian integers from Example 9.22. Let us show that this is a Eu-
clidean domain, using the usual norm map N on complex numbers for the
function λ. Let z, w ∈ Z[i], with w 6= 0. We want to show the existence of
u, v ∈ Z[i] such that z = uw + v, where N(v) < N(w). Suppose that in the
field C, we compute zw−1 = r + si, where r, s ∈ Q. Let m,n be integers
such that |m− r| ≤ 1/2 and |n− s| ≤ 1/2 — such integers m and n always
exist, but may not be uniquely determined. Set u := m + ni ∈ Z[i] and
v := z − uw. Then we have

zw−1 = u + δ,

where δ ∈ C with N(δ) ≤ 1/4 + 1/4 = 1/2, and

v = z − uw = z − (zw−1 − δ)w = δw,

and hence
N(v) = N(δw) = N(δ)N(w) ≤ 1

2
N(w).

2
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Theorem 17.29. If D is a Euclidean domain and I is an ideal of D,
then there exists d ∈ D such that I = dD.

Proof. If I = {0}, then d = 0 does the job, so let us assume that I 6= {0}.
Let d be an non-zero element of I such that λ(d) is minimal. We claim that
I = dD.

It will suffice to show that for all c ∈ I, we have d | c. Now, we know
that there exists q, r ∈ D such that c = qd + r, where either r = 0 or
λ(r) < λ(d). If r = 0, we are done; otherwise, r is a non-zero element of I
with λ(r) < λ(d), contradicting the minimality of λ(d). 2

Recall that an ideal of the form I = dD is called a principal ideal. If
all ideals of D are principal, then D is called a principal ideal domain
(PID). Theorem 17.29 says that any Euclidean domain is a PID.

PIDs enjoy many nice properties, including:

Theorem 17.30. If D is a PID, then D is a UFD.

For the rings Z and F [X], the proof of part (i) of Definition 17.25 was
a quite straightforward induction argument (as it also would be for any
Euclidean domain). For a general PID, however, this requires a different
sort of argument. We begin with the following fact:

Theorem 17.31. If D is a PID, and I1 ⊆ I2 ⊆ · · · is an ascending chain
of ideals of D, then there exists an integer k such that Ik = Ik+1 = · · · .

Proof. Let I :=
⋃∞

i=1 Ii. It is easy to see that I is an ideal. Thus, I = dD
for some d ∈ D. But d ∈

⋃∞
i=1 Ii implies that d ∈ Ik for some k, which

shows that I = dD ⊆ Ik. It follows that I = Ik = Ik+1 = · · · . 2

We can now prove the existence part of Theorem 17.30:

Theorem 17.32. If D is a PID, then every non-zero, non-unit element
of D can be expressed as a product of irreducibles in D.

Proof. Let n ∈ D, n 6= 0, and n not a unit. If n is irreducible, we are done.
Otherwise, we can write n = ab, where neither a nor b are units. As ideals,
we have nD ( aD and nD ( bD. If we continue this process recursively,
building up a “factorization tree” where n is at the root, a and b are the
children of n, and so on, then the recursion must stop, since any infinite
path in the tree would give rise to a chain of ideals

nD = I1 ( I2 ( · · · ,

contradicting Theorem 17.31. 2

The proof of the uniqueness part of Theorem 17.30 is essentially the
same as for proofs we gave for Z and F [X].

Analogous to Theorems 1.6 and 17.8, we have:
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Theorem 17.33. Let D be a PID. For any a, b ∈ D, there exists a great-
est common divisor d of a and b, and moreover, aD + bD = dD.

Proof. Exercise. 2

As an immediate consequence of the previous theorem, we see that in a
PID D, for all a, b ∈ D with greatest common divisor d, there exist s, t ∈ D
such that as + bt = d; moreover, a, b ∈ D are relatively prime if and only if
there exist s, t ∈ D such that as + bt = 1.

Analogous to Theorems 1.7 and 17.9, we have:

Theorem 17.34. Let D be a PID. For a, b, c ∈ D such that c | ab and a
and c are relatively prime, we have c | b.

Proof. Exercise. 2

Analogous to Theorems 1.8 and 17.35, we have:

Theorem 17.35. Let D be a PID. Let p ∈ D be irreducible, and let
a, b ∈ D. Then p | ab implies that p | a or p | b. That is, all irreducibles in
D are prime.

Proof. Exercise. 2

Theorem 17.30 now follows immediately from Theorems 17.32, 17.35,
and 17.27.

Exercise 17.22. Design and analyze an efficient algorithm to compute
a greatest common divisor of two Gaussian integers. 2

Exercise 17.23. Consider the polynomial

X3 − 1 = (X− 1)(X2 + X + 1).

Over C, the roots of X3 − 1 are 1, (−1±
√
−3)/2. Let ω = (−1 +

√
−3)/2,

and note that ω2 = (−1−
√
−3)/2, and ω3 = 1.

(a) Show that the ring Z[ω] consists of all elements of the form a + bω,
where a, b ∈ Z, and is an integral domain.

(b) Determine the units in Z[ω].

(c) Show that Z[ω] is a Euclidean domain.

2

Exercise 17.24. Show that in a PID, all non-zero prime ideals are max-
imal. 2
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17.8.2 Unique factorization in D[X]

In this section, we prove the following:

Theorem 17.36. If D is a UFD, then so is D[X].

This theorem implies, for example, that Z[X] is a UFD. Applying the
theorem inductively, one also sees that for any field F , the ring F [X1, . . . , Xn]
of multi-variate polynomials over F is also a UFD.

We begin with some simple observations. First, recall that for an in-
tegral domain D, D[X] is an integral domain, and the units in D[X] are
precisely the units in D. Second, it is easy to see that an element of D is
irreducible in D if and only if it is irreducible in D[X]. Third, for c ∈ D
and f =

∑
i aiXi ∈ D[X], we have c | f if and only if c | ai for all i.

We call a non-zero polynomial f ∈ D[X] primitive if the only elements
in D that divide f are units. If D is a UFD, then given any non-zero
polynomial f ∈ D[X], we can write it as f = cf ′, where c ∈ D and f ′ ∈ D[X]
is a primitive polynomial: just take c to be a greatest common divisor of
all the coefficients of f .

It is easy to prove the existence part of Theorem 17.36:

Theorem 17.37. Let D be a UFD. Any non-zero, non-unit element of
D[X] can be expressed as a product of irreducibles in D[X].

Proof. Let f be a non-zero, non-unit polynomial in D[X]. If f is a constant,
then because D is a UFD, it factors into irreducibles in D. So assume f
is not constant. If f is not primitive, we can write f = cf ′, where c is a
non-zero, non-unit in D, and f ′ is a primitive, non-constant polynomial in
D[X]. Again, as D is a UFD, c factors into irreducibles in D.

From the above discussion, it suffices to prove the theorem for non-
constant, primitive polynomials f ∈ D[X]. If f is itself irreducible, we are
done. Otherwise, then we can write f = gh, where g, h ∈ D[X] and neither
g nor h are units. Further, by the assumption that f is a primitive, non-
constant polynomial, both g and h must also be primitive, non-constant
polynomials; in particular, both g and h have degree strictly less than
deg(f), and the theorem follows by induction on degree. 2

The uniqueness part of Theorem 17.36 is (as usual) more difficult. We
begin with the following fact:

Theorem 17.38. Let D be a UFD, let p be an irreducible in D, and let
f, g ∈ D[X]. Then p | fg implies p | f or p | g.

Proof. Consider the quotient ring D/pD, which is an integral domain (be-
cause D is a UFD), and the corresponding ring of polynomials (D/pD)[X],
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which is also an integral domain. Consider the natural map from D[X] to
(D/pD)[X] that sends a ∈ D[X] to the polynomial ā ∈ (D/pD)[X] obtained
by mapping each coefficient of a to its residue class mod p. If p | fg, then
we have

0 = fg = f̄ ḡ,

and since (D/pD)[X] is an integral domain, it follows that f̄ = 0 or ḡ = 0,
which means that p | f or p | g. 2

Theorem 17.39. Let D be a UFD. The product of two primitive polyno-
mials in D[X] is also primitive.

Proof. Let f, g ∈ D[X] be primitive polynomials, and let h := fg. If h
is not primitive, then m | h for some non-zero, non-unit m ∈ D, and as
D is a UFD, there is some irreducible element p ∈ D that divides m, and
therefore, divides h as well. By Theorem 17.38, it follows that p | f or p | g,
which implies that either f is not primitive or g is not primitive. 2

Suppose that D is a UFD and that F is its field of fractions. Any
non-zero polynomial f ∈ F [X] can always be written as f = (c/d)f ′, where
c, d ∈ D, with d 6= 0, and f ′ ∈ D[X] is primitive. To see this, clear the
denominators of the coefficients of f , writing df = f ′′, where 0 6= d ∈ D and
f ′′ ∈ D[X]. Then take c to be a greatest common divisor of the coefficients
of f ′′, so that f ′′ = cf ′, where f ′ ∈ D[X] is primitive. Then we have
f = (c/d)f ′, as required. Of course, we may assume that c and d are
relatively prime — if not, we may divide c and d by a greatest common
divisor.

As a consequence of the previous theorem, we have:

Theorem 17.40. Let D be a UFD and let F be its field of fractions. Let
f, g ∈ D[X] and h ∈ F [X] be non-zero polynomials such that f = gh and g
is primitive. Then h ∈ D[X].

Proof. Write h = (c/d)h′, where c, d ∈ D and h′ ∈ D[X] is primitive. Let
us assume that c and d are relatively prime. Then we have

d · f = c · gh′. (17.10)

We claim that d ∈ D∗. To see this, note that (17.10) implies that
d | (c · gh′), and the assumption that c and d are relatively prime implies
that d | gh′. But by Theorem 17.39, gh′ is primitive, from which it follows
that d is a unit. That proves the claim.

It follows that c/d ∈ D, and hence h = (c/d)h′ ∈ D[X]. 2

Theorem 17.41. Let D be a UFD and F its field of fractions. If f ∈ D[X]
with deg(f) > 0 is irreducible, then f is also irreducible in F [X].
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Proof. Suppose that f is not irreducible in F [X], so that f = gh for non-
constant polynomials g, h ∈ F [X], both of degree strictly less than that of
f . We may write g = (c/d)g′, where c, d ∈ D and g′ ∈ D[X] is primitive.
Set h′ := (c/d)h, so that f = gh = g′h′. By Theorem 17.40, we have
h′ ∈ D[X], and this shows that f is not irreducible in D[X]. 2

Theorem 17.42. Let D be a UFD. Let f ∈ D[X] with deg(f) > 0 be
irreducible, and let g, h ∈ D[X]. If f divides gh in D[X], then f divides
either g or h in D[X].

Proof. Suppose that f ∈ D[X] with deg(f) > 0 is irreducible. This implies
that f is a primitive polynomial. By Theorem 17.41, f is irreducible in F [X],
where F is the field of fractions of D. Suppose f divides gh in D[X]. Then
because F [X] is a UFD, f divides either g or h in F [X]. But Theorem 17.40
implies that f divides either g or h in D[X]. 2

Theorem 17.36 now follows immediately from Theorems 17.37, 17.38,
and 17.42, together with Theorem 17.27.

In the proof of Theorem 17.36, there is a clear connection between
factorization in D[X] and F [X], where F is the field of fractions of D. We
should perhaps make this connection more explicit. Suppose f ∈ D[X]
factors into irreducibles in D[X] as

f = ca1
1 · · · car

r hb1
1 · · ·hbs

s .

where the ci are non-associate, irreducible constants, and the hi are non-
associate, irreducible, non-constant polynomials (and in particular, prim-
itive). By Theorem 17.41, the hi are irreducible in F [X]. Moreover, by
Theorem 17.40, the hi are non-associate in F [X]. Therefore, in F [X], f
factors as

f = chb1
1 · · ·hbs

s ,

where c := ca1
1 · · · car

r is a unit in F , and the hi are non-associate irreducible
polynomials in F [X].

Example 17.15. It is important to keep in mind the distinction between
factorization in D[X] and F [X]. Consider the polynomial 2X2 − 2 ∈ Z[X].
Over Z[X], this polynomial factors as 2(X − 1)(X + 1), where each of these
three factors are irreducible in Z[X]. Over Q[X], this polynomials has two
irreducible factors, namely, X− 1 and X + 1. 2

The following theorem provides a useful criterion for establishing that
a polynomial is irreducible.
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Theorem 17.43 (Eisenstein’s Criterion). Let D be a UFD and F its
field of fractions. Let f = fnXn +fn−1Xn−1 + · · ·+f0 ∈ D[X]. If there exists
an irreducible p ∈ D such that

p - fn, p | fn−1, · · · , p | f0, p2 - f0,

then f is irreducible over F .

Proof. Let f be as above, and suppose it were not irreducible in F [X].
Then by Theorem 17.41, we could write f = gh, where g, h ∈ D[X], both of
degree strictly less than that of f . Let us write

g = grX
r + · · ·+ g0 and h = hsX

s + · · ·+ h0,

where gr 6= 0 and hs 6= 0, so that 0 < r < n and 0 < s < n. Now, since
fn = grhs, and p - fn, it follows that p - gr and p - hs. Further, since
f0 = g0h0, and p | f0 but p2 - f0, it follows that p divides one of g0 or
h0, but not both — for concreteness, let us assume that p | g0 but p - h0.
Also, let t be the smallest positive integer such that p - gt — note that
0 < t ≤ r < n.

Now consider the natural map that sends c ∈ D to c̄ ∈ D/pD, which
we can extend coefficient-wise to the map that sends a ∈ D[X] to ā ∈
(D/pD)[X]. Because D is a UFD and p is irreducible, both D/pD and
(D/pD)[X] are integral domains. Since f = gh, we have

f̄nX
n = f̄ = ḡh̄ = (ḡrX

r + · · ·+ ḡtX
t)(h̄sX

s + · · ·+ h̄0). (17.11)

But notice that when we multiply out the two polynomials on the right-
hand side of (17.11), the coefficient of Xt is ḡth̄0 6= 0, and as t < n, this
clearly contradicts the fact that the coefficient of Xt in the polynomial on
the left-hand side of (17.11) is zero. 2

As an application of Eisenstein’s criterion, we have:

Theorem 17.44. For any prime number q, the qth cyclotomic polynomial

Φq :=
Xq − 1
X− 1

= Xq−1 + Xq−2 + · · ·+ 1

is irreducible over Q.

Proof. Let

f := Φq

[
X + 1

]
=

(X + 1)q − 1
(X + 1)− 1

.

It is easy to see that

f =
q−1∑
i=0

aiXi, where ai =
(

q

i + 1

)
(i = 0, . . . , q − 1).
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Thus, aq−1 = 1, a0 = q, and for 0 < i < q − 1, we have q | ai (see
Exercise 1.11). Theorem 17.43 therefore applies, and we conclude that
f is irreducible over Q. It follows that Φq is irreducible over Q, since if
Φq = gh were a non-trivial factorization of Φq, then f = Φq

[
X + 1

]
=

g
[
X + 1

]
· h

[
X + 1

]
would be a non-trivial factorization of f . 2

Exercise 17.25. Show that neither Z[X] nor F [X, Y] (where F is a field)
are PIDs (even though they are UFDs). 2

Exercise 17.26. Let f ∈ Z[X] be a monic polynomial. Show that if f
has a root α ∈ Q, then α ∈ Z, and α divides the constant term of f . 2

Exercise 17.27. Let a be a non-zero, square-free integer, with a 6∈ {±1}.
For integer n ≥ 1, show that the polynomial Xn − a is irreducible in Q[X].
2

Exercise 17.28. Show that the polynomial X4 + 1 is irreducible in Q[X].
2

Exercise 17.29. Let F be a field, and consider the ring of bivariate poly-
nomials F [X, Y]. Show that in this ring, the polynomial X2 + Y2 − 1 is irre-
ducible, provided F does not have characteristic 2. What happens if F has
characteristic 2? 2

Exercise 17.30. Design and analyze an efficient algorithm for the fol-
lowing problem. The input is a pair of polynomials a, b ∈ Z[X], along with
their greatest common divisor d in the ring Q[X]. The output is the greatest
common divisor of a and b the ring Z[X]. 2

Exercise 17.31. Let a, b ∈ Z[X] be non-zero polynomials with d :=
gcd(a, b) ∈ Z[X]. Show that for any prime p not dividing lc(a) lc(b), we have
d̄ | gcd(ā, b̄), and except for finitely many primes p, we have d̄ = gcd(ā, b̄).
Here, d̄, ā, and b̄ denote the images of d, a, and b in Zp[X]. 2



Chapter 18

Polynomial Arithmetic and
Applications

In this chapter, we study algorithms for performing arithmetic on poly-
nomials. Initially, we shall adopt very general point of view, discussing
polynomials whose coefficients lie in an arbitrary ring R, and then special-
ize to the case where the coefficient ring is a field F .

There are many similarities between arithmetic in Z and in R[X], and the
similarities between Z and F [X] run even deeper. Many of the algorithms
we discuss in this chapter are quite similar to the corresponding algorithms
for integers.

As we did in Chapter 15 for matrices, we shall treat R as an “abstract
data type,” and measure the complexity of algorithms for polynomials over
a ring R by counting “operations in R.”

18.1 Basic Arithmetic

Throughout this section, R denotes a ring.
We assume that a polynomial a =

∑`
i=0 aiXi ∈ R[X] is represented as

a coefficient vector (a0, a1, . . . , a`). Further, to make such representations
unique and to minimize storage requirements, it is convenient to assume
that there are no “leading zeros,” so that a` 6= 0 if a 6= 0; if a = 0, then we
assume that ` = 0 and a0 = 0. We define the length of a, denoted len(a),
to be the length of its coefficient vector. Thus, len(a) = 1+max{deg(a), 0}.
It is sometimes more convenient to state the running times of algorithms in
terms of len(a), rather than deg(a) (the latter has the inconvenient habit
of taking on the value 0, or worse, −∞).

The basic algorithms for addition, subtraction, multiplication, and di-
vision of polynomials are quite straightforward adaptations of the corre-
sponding algorithms for integers.

For addition and subtraction, all we need to do is to add or subtract

372



18.1 Basic Arithmetic 373

coefficient vectors. Unlike in the case of integer arithmetic, there are no
“carries” to worry about, and so the logic is even simpler in the polynomial
setting.

For multiplication, we can easily adapt the algorithm we used for integer
multiplication, and again, since there are no “carries,” the logic is even
simpler. Assume that the polynomial a has coefficient vector (a0, . . . , ak)
and that the polynomial b has coefficient vector (b0, . . . , b`). The product
c := a ·b has coefficient vector (c0, . . . , ck+`), which can be computed using
O(k`) operations in R as follows:

for i← 0 to k + ` do ci ← 0
for i← 0 to k do

for j ← 0 to ` do
ci+j ← ci+j + ai · bj

Note that if R is not an integral domain, then as a post-processing step,
we may have to strip away “leading zeros” from the coefficient vector of c
computed above.

For division, we can also adapt the algorithm we used for integer divi-
sion, but now, things are much easier: not only are there no “carries,” but
there is no “guess work” involved in obtaining the coefficients of the quo-
tient. Assume that the polynomial a has coefficient vector (a0, . . . , ak) and
that the polynomial b is non-zero and has coefficient vector (b0, . . . , b`),
where b` ∈ R∗. We want to compute polynomials q, r ∈ R[X] such that
a = bq + r, where deg(r) < `. If k < `, we can simply set q ← 0 and r ← a;
otherwise, we can compute q and r using O(` · (k− ` + 1)) operations in R
using the following algorithm:

t← b−1
` ∈ R

for i← 0 to k do ri ← ai

for i← k − ` down to 0 do
qi ← t · ri+`

for j ← 0 to ` do
ri+j ← ri+j − qi · bj

q ←
∑k−`

i=0 qiXi, r ←
∑`−1

i=0 riXi

With these simple algorithms, we obtain the following analog of Theo-
rem 3.3.

Theorem 18.1. Let a and b be arbitrary polynomials in R[X].

(i) We can compute a± b with O(len(a) + len(b)) operations in R.

(ii) We can compute a · b with O(len(a) len(b)) operations in R.
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(iii) If b 6= 0 and lc(b) is a unit in R, we can compute q, r ∈ R[X] such that
a = bq + r and deg(r) < deg(b) with O(len(b) len(q)) operations in R.

Analogous to algorithms for modular integer arithmetic, we can also do
arithmetic in the residue class ring R[X]/(n), where n ∈ R[X] is a polynomial
of degree ` > 0 whose leading coefficient lc(n) is a unit (in most applications,
we may in fact assume that n is monic). For α ∈ R[X]/(n), there exists a
unique polynomial a ∈ R[X] with deg(a) < ` and α = [a mod n]; we call
this polynomial a the canonical representative of α, and denote it by
rep(α). For computational purposes, we represent elements of R[X]/(n) by
their canonical representatives.

With this representation, addition and subtraction in R[X]/(n) can be
performed using O(`) operations in R, while multiplication takes O(`2)
operations in R.

The repeated-squaring algorithm for computing powers works equally
well in this setting: given α ∈ R[X]/(n) and a non-negative exponent e, we
can compute αe using O(len(e)) multiplications in R[X]/(n), and so a total
of O(len(e) `2) operations in R.

The following exercises deal with arithmetic with polynomials R[X] over
a ring R.

Exercise 18.1. State and re-work the polynomial analog of Exer-
cise 3.22. 2

Exercise 18.2. State and re-work the polynomial analog of Exer-
cise 3.23. Assume n1, . . . , nk are monic polynomials. 2

Exercise 18.3. Given a polynomial f ∈ R[X] and an element α ∈ E,
where R is a subring of E, we may wish to compute f(α) ∈ E. A par-
ticularly elegant and efficient way of doing this is called Horner’s rule.
Suppose f =

∑k
i=0 aiXi, where k ≥ 0 and ai ∈ R for i = 0, . . . , k. Horner’s

rule computes f(α) as follows:

β ← ak

for i← k − 1 down to 0 do
β ← β · α + ai

output β

Show that this algorithm correctly computes f(α), and uses k− 1 mul-
tiplications in E and k − 1 additions in E. 2

Exercise 18.4. Given polynomials f, g ∈ R[X], show how to compute the
composition f(g) ∈ R[X] using O(len(f)2 len(g)2) operations in R. 2
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18.2 ♣ Faster Polynomial Arithmetic

The algorithms discussed in §3.5 for faster integer arithmetic are easily
adapted to polynomials over a ring R.

Exercise 18.5. State and re-work the polynomial analog of Exer-
cise 3.30. 2

In the following exercises, assume that we have an algorithm that mul-
tiplies two polynomials of length at most ` using at most M(`) operations
in R, where M is a well-behaved complexity function (as defined in §3.5).

Exercise 18.6. State and re-work the polynomial analog of Exer-
cise 3.31. 2

Exercise 18.7. This problem is the polynomial analog of Exercise 3.32.
Let us first define the notion of a “floating point” reversed formal Laurent
series ẑ, which is represented as a pair (a, e), where a ∈ R[X] and e ∈ Z —
the value of ẑ is aXe ∈ R((X−1)), and we call len(a) the precision of ẑ. We
say that ẑ is a length k approximation of z ∈ R((X−1)) if ẑ has precision
k and ẑ = (1 + ε)z for ε ∈ R((X−1)) with deg(ε) ≤ −k — this is the same
as saying that the high-order k coefficients of ẑ and z are equal. Show how
to compute — given monic b ∈ R[X] and positive integer k — a length k
approximation to 1/b ∈ R((X−1)) using O(M(k)) operations in R. Hint:
using Newton iteration, show how to go from a length t approximation
to 1/b to a length 2t approximation, making use of just the high-order 2t
coefficients of b, and using O(M(t)) operations in R. 2

Exercise 18.8. State and re-work the polynomial analog of Exer-
cise 3.33. Assume that b is a monic polynomial. 2

Exercise 18.9. State and re-work the polynomial analog of Exer-
cise 3.34. Conclude that a polynomial of length ` can be evaluated at `
points using O(M(`) len(`)) operations in R. 2

Exercise 18.10. State and re-work the polynomial analog of Exer-
cise 3.35, assuming that R is a field of odd characteristic. 2

Exercise 18.11. State and re-work the polynomial analog of Exer-
cise 3.37. Assume that 2 ∈ R∗. 2

Exercise 18.12. Let n be a large, positive integer. We can factor n using
trial division in time n1/2+o(1); however, using fast polynomial arithmetic
in Zn[X], one can get a simple, deterministic, and rigorous algorithm that
factors n in time n1/4+o(1). Note that all of the factoring algorithms dis-
cussed in Chapter 16, while faster, are either probabilistic, or deterministic
but heuristic.

Assume that we can multiply polynomials in Zn[X] of length at most `
using `1+o(1) operations in Zn.
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(a) Let ` be a positive integer, and for i = 1, . . . , `, let

ai :=
`−1∏
j=0

(i`− j) rem n.

Using fast polynomial arithmetic, show how to compute all of the
integers a1, . . . , a` in time `1+o(1) len(n)O(1).

(b) Using the result of part (a), show how to factor n in time n1/4+o(1)

using a deterministic algorithm.

2

18.3 Computing Minimal Polynomials in
F [X]/(f) (I)

In this section, we shall examine a computational problem to which we
shall return on several occasions, as it will serve to illustrate a number of
interesting algebraic and algorithmic concepts.

Let F be a field, f ∈ F [X] a monic polynomial of degree ` > 0, and let
E := F [X]/(f). E is an F -algebra, and in particular, an F -vector space.
As an F -vector space, it has dimension `. Suppose we are given an element
α ∈ E, and want to efficiently compute the minimal polynomial of α over F ,
that is, the monic polynomial φ ∈ F [X] of least degree such that φ(α) = 0,
which we know has degree at most ` (see §17.5).

We can solve this problem using polynomial arithmetic and Gaussian
elimination, as follows. Consider the F -linear map ρ : F [X]≤` → E that
sends a polynomial h ∈ F [X] of degree at most ` to h(α). Let us fix ordered
bases for F [X]≤` and E: for F [X]≤`, let us take X`, X`−1, . . . , 1, and for
E, let us take 1, η, . . . , η`−1, where η := [X mod f ] ∈ E. The matrix
A representing the map ρ (via multiplication on the right by A), is the
(` + 1) × ` matrix A whose ith row, for i = 1, . . . , ` + 1, is the coordinate
vector of α`+1−i.

We apply Gaussian elimination to A to find a set of row vectors v1, . . . , vs

that are coordinate vectors for a basis for the kernel of ρ. Now, the coor-
dinate vector of the minimal polynomial of α is a linear combination of
v1, . . . , vs. To find it, we form the s× (` + 1) matrix B whose rows consist
of v1, . . . , vs, and apply Gaussian elimination to B, obtaining an s× (`+1)
matrix B′ in reduced row echelon form whose row space is the same as that
of B. Let g be the polynomial whose coordinate vector is the last row of
B′. Because of the choice of ordered basis for F [X]≤`, and because B′ is in
reduced row echelon form, it is clear that no non-zero polynomial in ker(ρ)
has degree less than that of g. Moreover, as g is already monic (again, by
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the fact that B′ is in reduced row echelon form), it follows that g is in fact
the minimal polynomial of α over F .

The total amount of work performed by this algorithm is O(`3) op-
erations in F to build the matrix A (this just amounts to computing `
successive powers of α, that is, O(`) multiplications in E, each of which
takes O(`2) operations in F ), and O(`3) operations in F to perform both
Gaussian elimination steps.

18.4 Euclid’s Algorithm

In this section, F denotes a field, and we consider the computation of
greatest common divisors in F [X].

The basic Euclidean algorithm for integers is easily adapted to compute
gcd(a, b), for polynomials a, b ∈ F [X]. Analogous to the integer case, we
assume that deg(a) ≥ deg(b); however, we shall also assume that a 6= 0.
This is not a serious restriction, of course, as gcd(0, 0) = 0, and making
this restriction will simplify the presentation a bit. Recall that we defined
gcd(a, b) to be either zero or monic, and the assumption that a 6= 0 means
that gcd(a, b) is non-zero, and hence monic.

The following is the analog of Theorem 4.1.

Theorem 18.2. Let a, b ∈ F [X], with deg(a) ≥ deg(b) and a 6= 0. Define
the polynomials r0, r1, . . . , r`+1 ∈ F [X], and q1, . . . , q` ∈ F [X], where ` ≥ 0,
as follows:

a = r0,

b = r1,

r0 = r1q1 + r2 (0 ≤ deg(r2) < deg(r1)),
...

ri−1 = riqi + ri+1 (0 ≤ deg(ri+1) < deg(ri)),
...

r`−2 = r`−1q`−1 + r` (0 ≤ deg(r`) < deg(r`−1)),
r`−1 = r`q` (r`+1 = 0).

Note that by definition, ` = 0 if b = 0, and ` > 0 otherwise; moreover,
r` 6= 0.

Then we have r`/ lc(r`) = gcd(a, b). Moreover, if b 6= 0, then ` ≤
deg(b) + 1.

Proof. Arguing as in the proof of Theorem 4.1, one sees that

gcd(a, b) = gcd(r0, r1) = gcd(r`, r`+1) = gcd(r`, 0) = r`/ lc(r`).
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That proves the first statement.
The second statement, if b 6= 0, then the degree sequence

deg(r1),deg(r2), . . . ,deg(r`)

is strictly decreasing, with deg(r`) ≥ 0, from which it follows that deg(b) =
deg(r1) ≥ `− 1. 2

This gives us the following Euclidean algorithm for polynomials, which
takes as input polynomials a, b with deg(a) ≥ deg(b) and a 6= 0, and which
produces as output d = gcd(a, b).

d← a, e← b
while e 6= 0 do

r ← d rem e
(d, e)← (e, r)

d← d/ lc(d) // make monic
output d

Theorem 18.3. Euclid’s algorithm for polynomials uses O(len(a) len(b))
operations in F .

Proof. The proof is almost identical to that of Theorem 4.2. Details are
left to the reader. 2

Just as for integers, if d = gcd(a, b), then aF [X] + bF [X] = dF [X], and
so there exist polynomials s and t such that as + bt = d. The procedure to
calculate s and t is precisely the same as in the case for integers; however,
in the polynomial case, we can be much more precise about the relative
sizes of the objects involved in the calculation.

Theorem 18.4. Let a, b, r0, r1, . . . , r`+1 and q1, . . . , q` be as in Theo-
rem 18.2. Define polynomials s0, s1, . . . , s`+1 ∈ F [X] and t0, t1, . . . , t`+1 ∈
F [X] as follows:

s0 := 1, t0 := 0,

s1 := 0, t1 := 1,

and for i = 1, . . . , `,

si+1 := si−1 − siqi, ti+1 := ti−1 − tiqi.

Then

(i) for i = 0, . . . , ` + 1, we have sia + tib = ri; in particular, s`a + t`b =
lc(r`) gcd(a, b);

(ii) for i = 0, . . . , `, we have siti+1 − tisi+1 = (−1)i;
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(iii) for i = 0, . . . , ` + 1, we have gcd(si, ti) = 1;

(iv) for i = 1, . . . , ` + 1, we have

deg(ti) = deg(a)− deg(ri−1),

and for i = 2, . . . , ` + 1, we have

deg(si) = deg(b)− deg(ri−1).

Proof. (i), (ii), and (iii) are proved just as in the corresponding parts of
Theorem 4.3.

For (iv), the proof will hinge on the following facts:

• For i = 1, . . . , `, we have deg(ri−1) ≥ deg(ri), and since qi is the
quotient in dividing ri−1 by ri, we have deg(qi) = deg(ri−1)−deg(ri).

• For i = 2, . . . , `, we have deg(ri−1) > deg(ri).

We prove the statement involving the ti by induction on i, and leave
the proof of the statement involving the si to the reader.

One can see by inspection that this statement holds for i = 1, since
deg(t1) = 0 and r0 = a. If ` = 0, there is nothing more to prove, so assume
that ` > 0 and b 6= 0.

Now, for i = 2, we have t2 = 0−1 ·q1 = −q1. Thus, deg(t2) = deg(q1) =
deg(r0)− deg(r1) = deg(a)− deg(r1).

Now for the induction step. Assume i ≥ 3. Then we have

deg(ti−1qi−1) = deg(ti−1) + deg(qi−1)
= deg(a)− deg(ri−2) + deg(qi−1) (by induction)
= deg(a)− deg(ri−1)

(since deg(qi−1) = deg(ri−2)− deg(ri−1))
> deg(a)− deg(ri−3) (since deg(ri−3) > deg(ri−1))
= deg(ti−2) (by induction).

By definition, ti = ti−2 − ti−1qi−1, and from the above reasoning, we
see that

deg(a)− deg(ri−1) = deg(ti−1qi−1) > deg(ti−2),

from which it follows that deg(ti) = deg(a)− deg(ri−1). 2

Note that part (iv) of the theorem implies that for i = 1, . . . , ` + 1, we
have deg(ti) ≤ deg(a) and deg(si) ≤ deg(b). Moreover, if deg(a) > 0 and
b 6= 0, then ` > 0 and deg(r`−1) > 0, and hence deg(t`) < deg(a) and
deg(s`) < deg(b).
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We can easily turn the scheme described in Theorem 18.4 into a simple
algorithm, taking as input polynomials a, b, such that deg(a) ≥ deg(b)
and a 6= 0, and producing as output polynomials d, s, and t such that
d = gcd(a, b) and as + bt = d:

d← a, e← b
s← 1, t← 0
s′ ← 0, t′ ← 1
while e 6= 0 do

Compute q, r such that d = eq + r, with deg(r) < deg(e)
(s, t, s′, t′)← (s′, t′, s− s′q, t− t′q)
(d, e)← (e, r)

c← lc(d)
d← d/c, s← s/c, t← t/c // make monic
output d, s, t

Theorem 18.5. The extended Euclidean algorithm for polynomials uses
O(len(a) len(b)) operations in F .

Proof. Exercise. 2

18.5 Computing Modular Inverses and Chi-
nese Remaindering

In this and the remaining sections of this chapter, we explore various ap-
plications of Euclid’s algorithm for polynomials. Most of these applications
are analogous to their integer counterparts, although there are some differ-
ences to watch for. Throughout this section, F denotes a field.

We begin with the obvious application of the extended Euclidean algo-
rithm for polynomials to the problem of computing multiplicative inverses
in F [X]/(n), where n ∈ F [X] with ` := deg(n) > 0.

Given y ∈ F [X] with deg(y) < `, we can determine if y is relatively
prime to n, and if so, compute y−1 mod n as follows. We run the extended
Euclidean algorithm on inputs a := n and b := y, obtaining polynomials
d, s, t such that d = gcd(n, y) and ns + yt = d. If d 6= 1, then y does not
have a multiplicative inverse modulo n. Otherwise, if d = 1, then t is a
multiplicative inverse of y modulo n. Moreover, by Theorem 18.4, and the
discussion immediately following, deg(t) < `, and so t = y−1 rem n.

If the polynomial n is irreducible, then F [X]/(n) is a field, and the
extended Euclidean algorithm, together with the basic algorithms for addi-
tion, subtraction, and multiplication modulo n, gives us efficient algorithms
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for performing addition, subtraction, multiplication and division in the ex-
tension field F [X]/(n), assuming of course, that we have efficient algorithms
for arithmetic in F .

We also observe that the Chinese remainder theorem for polynomials
(Theorem 17.17) can be made computationally effective as well:

Theorem 18.6. Given polynomials n1, . . . , nk ∈ F [X] and a1, . . . , ak ∈
F [X], where n1, . . . , nk are pairwise relatively prime, and where deg(ni) > 0
and deg(ai) < deg(ni) for i = 1, . . . , k, we can compute the polynomial
z ∈ F [X], such that deg(z) < deg(n) and z ≡ ai (mod ni) for i = 1, . . . , k,
where n =

∏
i ni, using O(len(n)2) operations in F .

Proof. Exercise (just use the formulas in the proof of Theorem 2.8, which
are repeated below the statement of Theorem 17.17). 2

18.5.1 Chinese remaindering and polynomial interpo-
lation

We remind the reader of the discussion following Theorem 17.17, where the
point was made that when ni = (X−bi) for i = 1, . . . , k, then the Chinese re-
mainder theorem for polynomials reduces to Lagrange interpolation. Thus,
Theorem 18.6 says that given distinct elements b1, . . . , bk ∈ F , along with
elements a1, . . . , ak ∈ F , we can compute the unique polynomial z ∈ F [X]
of degree less than k such that

z(bi) = ai (i = 1, . . . , k),

using O(k2) operations in F .
It is perhaps worth noting that we could also solve the polynomial in-

terpolation problem using Gaussian elimination, by inverting the corre-
sponding Vandermonde matrix. However, this algorithm would use O(k3)
operations in F . This is a specific instance of a more general phenomenon:
there are many computational problems involving polynomials over fields
can be solved using Gaussian elimination, but which can be solved more
efficiently using more specialized algorithmic techniques.

Exercise 18.13. State and re-work the polynomial analog of Exercises
4.3 and 4.4. In the special case of polynomial interpolation, this algorithm
is called Newton interpolation. 2

Exercise 18.14. Suppose you are given three polynomials f, g, h ∈ Zp[X],
where p is a large prime, in particular, p ≥ 2 deg(f) deg(g). Design an
efficient probabilistic algorithm that tests if f(g) = h (i.e., if f composed
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with g equals h). Your algorithm should have the following properties: if
f(g) = h, it should always output “true,” and otherwise, it should output
“false” with probability at least 0.999. The expected running time of your
algorithm should be O((len(f) + len(g) + len(h)) len(p)2). 2

18.5.2 Mutual independence and secret sharing

As we also saw in the discussion following Theorem 17.17, for ` ≤ k
and fixed and distinct b1, . . . , b` ∈ F , the “multi-point evaluation” map
σ : F [X]<k → F×` that sends a polynomial z ∈ F [X] of degree less than
k to (z(b1), . . . , z(b`)) ∈ F×` is a surjective F -linear map. If F is a finite
field, then this has the following probabilistic interpretation: if the coeffi-
cient vector (z0, . . . , zk−1) of z is a random variable, uniformly distributed
over F×k, which is the same as saying that the zi are independently and
uniformly distributed over F , then the random variables z(b1), . . . , z(b`) are
independently and uniformly distributed over F . This is because: (1) σ is
surjective, and (2) every element of F×` has the same number of pre-images
under σ, namely | ker(σ)| = |F |d, where d = dimF (ker(σ)); from this, it fol-
lows that when z ∈ F [X]<k is chosen at random, all possible values are
equally likely.

Put another way, the collection {z(b) : b ∈ F} of random variables is `-
wise independent, where each individual z(b) uniformly distributed over F .
Clearly, given z and b, we can efficiently compute the value of z(b), so this
construction gives us a nice way to build effectively constructible, `-wise
independent collections of random variables for any `, thus generalizing the
constructions in Examples 6.17 and 6.19 of pairwise and 3-wise independent
collections.

As a particular application of this idea, we describe a simple secret
sharing scheme. Suppose Alice wants to share a secret among some
number m of parties, call them P1, . . . , Pm, in such a way that if less than
k parties share their individual secret shares with one another, then Alice’s
secret is still well hidden, while any subset of k parties can reconstruct
Alice’s secret.

She can do this as follows. Suppose her secret s is (or can be encoded
as) an element of a finite field F , and that b0, b1, . . . , bm are some fixed,
distinct elements of F , where b0 = 0. This presumes, of course, that |F | ≥
m + 1. To share her secret s, Alice chooses z1, . . . , zk−1 ∈ F at random,
and sets z0 := s. Let z ∈ F [X] be the polynomial whose coefficient vector
is (z0, . . . , zk−1); that is,

z =
k−1∑
i=0

ziX
i.
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For i = 1, . . . ,m, Alice gives party Pi its share

ai := z(bi).

For the purposes of analysis, it is convenient to define

a0 := z(b0) = z(0) = z0 = s.

Clearly, if any k parties pool their shares, they can reconstruct Alice’s
secret by interpolating a polynomial of degree less than k at k points —
the constant term of this polynomial is equal to Alice’s secret s.

It remains to show that Alice’s secret remains well hidden provided less
than k parties pool their shares. To do this, first assume that Alice’s secret
s is uniformly distributed over F , independently of z1, . . . , zk−1 (we will
relax this assumption below). With this assumption, z0, z1, . . . , zk−1 are
independently and uniformly distributed over F . Now consider any subset
of k − 1 parties; to simplify notation, assume the parties are P1, . . . , Pk−1.
Then the random variables a0, a1, . . . , ak−1 are mutually independent. The
variables a1, . . . , ak−1 are of course the shares of P1, . . . , Pk−1, while a0 is
equal to Alice’s secret (the fact that a0 has two interpretations, one as the
value of z at a point, and one as a coefficient of z, plays a crucial role
in the analysis). Because of mutual independence, the distribution of a0,
conditioned on fixed values of the shares a1, . . . , ak−1, is still uniform over
F , and so even by pooling their shares, these k − 1 parties would have
no better chance of guessing Alice’s secret than they would have without
pooling their shares.

Continuing the analysis of the previous paragraph, consider the con-
ditional probability distribution in which we condition on the event that
a0 = s for some specific, fixed value of s ∈ F . Because the z0, z1, . . . , zk−1

were initially independently and uniformly distributed over F , and be-
cause z0 = a0, in this conditional probability distribution, we have z0 = s
and z1, . . . , zk−1 are independently and uniformly distributed over F . So
this conditional probability distribution perfectly models the secret sharing
algorithm performed by Alice for a specific secret s, without presuming
that s is drawn from any particular distribution. Moreover, because the
a0, a1, . . . , ak−1 were initially independently and uniformly distributed over
F , when we condition on the event a0 = s, the variables a1, . . . , ak−1 are
still independently and uniformly distributed over F .

The argument in the previous two paragraphs shows that

for any fixed secret s, the shares a1, . . . , am are (k − 1)-wise
independent, with each individual share ai uniformly distributed
over F .

This property ensures that Alice’s secret is perfectly hidden, provided that
less than k parties pool their shares: for any secret s, these parties just see
a bunch of random values in F , with no particular bias that would give any
hint whatsoever as to the actual value of s.
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Secret sharing has a number of cryptographic applications, but one sim-
ple motivation is the following. Alice may have some data that she wants to
“back up” on some file servers, who play the role of the parties P1, . . . , Pm.
To do this, Alice gives each server a share of her secret data (if she has a
lot of data, she can break it up into many small blocks, and process each
block separately). If at a later time, Alice wants to restore her data, she
contacts any k servers who will give Alice their shares, from which Alice
can reconstruct the original data. In using a secret sharing scheme in this
way, Alice trusts that the servers are reliable to the extent that they do
not modify the value of their share (as otherwise, this would cause Alice
to reconstruct the wrong data). We shall discuss later in this chapter how
one can relax this trust assumption. But even with this trust assumption,
Alice does gain something above and beyond the simpler solution of just
backing up her data on a single server, namely:

• even if some of the servers crash, or are otherwise unreachable, she
can still recover her data, as long as at least k are available at the
time she wants to do the recovery;

• even if the data on some (but strictly less than k) of the servers is
“leaked” to some outside attacker, the attacker gains no information
about Alice’s data.

Exercise 18.15. Consider the data-backup scenario described above.
Suppose that Alice wants to back up a large file, which she does by break-
ing it up into a long sequence of h of “F -sized” blocks. Moreover, Alice
does not want to trust that the servers do not maliciously (or accidentally)
modify their shares. Show that if Alice has a small amount of secure stor-
age, namely, space for O(m) elements of F , then she can effectively protect
herself from malicious servers, so that if any particular server tries to give
her a modified share, Alice will fail to detect this with probability at most
(h − 1)/|F |. If |F | is very large (say, |F | = 2128), and h is any reasonable
value (say, h ≤ 240), this failure probability will be acceptably small for all
practical purposes. 2

18.5.3 Speeding up algorithms via modular computa-
tion

In §4.4, we discussed how the Chinese remainder theorem could be used
to speed up certain types of computations involving integers. The example
we gave was the multiplication of integer matrices. We can use the same
idea to speed up certain types of computations involving polynomials. For
example, if one wants to multiply two matrices whose entries are elements of
F [X], one can use the Chinese remainder theorem for polynomials to speed
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things up. This strategy is most easily implemented if F is sufficiently
large, so that we can use polynomial evaluation and interpolation directly,
and do not have to worry about constructing irreducible polynomials. We
leave the details as an exercise.

Exercise 18.16. You are give two matrices A,B ∈ F [X]`×`. All entries of
A and B are polynomials of degree at most M . Assume that |F | ≥ 2M +1.
Using polynomial evaluation and interpolation, show how to compute the
product matrix C = A ·B using O(`2M2 +`3M) operations in F . Compare
this to the cost of computing C directly, which would be O(`3M2). 2

18.6 Rational Function Reconstruction and
Applications

We next state and prove the polynomial analog of Theorem 4.6. As we are
now “reconstituting” a rational function, rather than a rational number,
we call this procedure rational function reconstruction. Because of
the relative simplicity of polynomials compared to integers, the rational
reconstruction theorem for polynomials is a bit “sharper” than the rational
reconstruction theorem for integers. Throughout this section, F denotes a
field.

Theorem 18.7. Let r∗ ≥ −1 and t∗ ≥ 0 be integers, and let n, y ∈ F [X]
be polynomials such that r∗ + t∗ < deg(n) and deg(y) < deg(n). Suppose
we run the extended Euclidean algorithm with inputs a := n and b := y.
Then, adopting the notation of Theorem 18.4, the following hold:

1. There exists a unique index i = 1, . . . , ` + 1, such that deg(ri) ≤ r∗ <
deg(ri−1), and for this i, we have ti 6= 0.

Let r′ := ri, s′ := si, and t′ := ti.

2. Furthermore, for any polynomials r, s, t ∈ F [X] such that

r = sn + ty, deg(r) ≤ r∗, 0 ≤ deg(t) ≤ t∗, (18.1)

we have
r = r′α, s = s′α, t = t′α,

for some non-zero polynomial α ∈ F [X].

Note that when r∗ = −1, the only possibility for r is the zero polynomial.

Proof. By hypothesis, −1 ≤ r∗ < deg(n) = deg(r0). Moreover, since

deg(r0), . . . ,deg(r`),deg(r`+1) = −∞
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is a decreasing sequence, and ti 6= 0 for i = 1, . . . , ` + 1, the first statement
of the theorem is clear.

Now let i be defined as in the first statement of the theorem. Also, let
r, s, t be as in (18.1).

From part (iv) of Theorem 18.4, we have

deg(ti) = deg(n)− deg(ri−1) < deg(n)− r∗.

From the equalities ri = sin + tiy and r = sn + ty, we have the two
congruences:

r ≡ ty (mod n),
ri ≡ tiy (mod n).

Subtracting ti times the first from t times the second, we obtain

rti ≡ rit (mod n).

This says that n divides rti − rit; however, using the bounds deg(r) ≤ r∗

and deg(ti) < deg(n) − r∗, we see that deg(rti) < deg(n), and using the
bounds deg(ri) ≤ r∗, deg(t) ≤ t∗, and r∗ + t∗ < deg(n), we see that
deg(rit) < deg(n); it immediately follows that

deg(rti − rit) < deg(n).

Since n divides rti − rit and deg(rti − rit) < deg(n), the only possibility is
that

rti − rit = 0.

The rest of the proof runs exactly the same as the corresponding part
of the proof of Theorem 4.6, as the reader may easily verify. 2

18.6.1 Application: Polynomial Interpolation with Er-
rors

We now discuss the polynomial analog of the application in §4.5.1.
If we “encode” a polynomial z ∈ F [X], with deg(z) < k, as the sequence

(a1, . . . , ak) ∈ F×k, where ai = z(bi), then we can efficiently recover z from
this encoding, using an algorithm for polynomial interpolation. Here, of
course, the bi are distinct elements of F , and F is a finite field (which must
have at least k elements, of course).

Now suppose that Alice encodes z as (a1, . . . , ak), and sends this encod-
ing to Bob, but that some, say at most `, of the ai may be corrupted during
transmission. Let (ã1, . . . , ãk) denote the vector actually received by Bob.

Here is how we can use Theorem 18.7 to recover the original value of z
from (ã1, . . . , ãk), assuming:
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• the original polynomial z has degree at most k′,

• at most ` errors occur in transmission, and

• k > 2` + k′.

Let us set ni := (X − bi) for i = 1, . . . , k, and n := n1 · · ·nk. Now,
suppose Bob obtains the corrupted encoding (ã1, . . . , ãk). Here is what Bob
does to recover z:

1. Interpolate, obtaining a polynomial y, with deg(y) < k and y(bi) = ãi

for i = 1, . . . , k.

2. Run the extended Euclidean algorithm on a := n and b := y, and
let r′, t′ be the values obtained from Theorem 18.7 applied with r∗ :=
k′ + ` and t∗ := `.

3. If t′ | r′, output r′/t′; otherwise, output “error.”

We claim that the above procedure outputs z, under the assumptions
listed above. To see this, let t be the product of the ni for those values of
i where an error occurred. Now, assuming at most ` errors occurred, we
have deg(t) ≤ `. Also, let r := tz, and note that deg(r) ≤ k′+ `. We claim
that

r ≡ ty (mod n). (18.2)

To show that (18.2) holds, it suffices to show that

tz ≡ ty (mod ni) (18.3)

for all i = 1, . . . , k. To show this, consider first an index i at which no
error occurred, so that ai = ãi. Then tz ≡ tai (mod ni) and ty ≡ tãi ≡
tai (mod ni), and so (18.3) holds for this i. Next, consider an index i
for which an error occurred. Then by construction, tz ≡ 0 (mod ni) and
ty ≡ 0 (mod ni), and so (18.3) holds for this i. Thus, (18.2) holds, from
which it follows that the values r′, t′ obtained from Theorem 18.7 satisfy

r′

t′
=

r

t
=

tz

t
= z.

One easily checks that both the procedures to encode and decode a value
z run in time O(k2). The above scheme is an example of an error cor-
recting code called a Reed-Solomon code. Note that we are completely
free to choose the finite field F however we want, just so long as it is big
enough. An attractive choice in some settings is to choose F = Z2[Y]/(f),
where f ∈ Z2[Y] is an irreducible polynomial; with this choice, elements of
F may be encoded as bit strings of length deg(f).
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One can combine the above error correction technique with the idea of
secret sharing (see §18.5.2) to obtain a secret sharing scheme that is robust,
even in the presence of erroneous (as opposed to just missing) shares. More
precisely, Alice can share a secret s ∈ F among parties P1, . . . , Pm, in such
a way that (1) if at most k′ parties pool their shares, Alice’s secret remains
well hidden, and (2) from any k shares, we can correctly reconstruct Alice’s
secret, provided at most ` of the shares are incorrect, and k > 2` + k′.
To do this, Alice chooses z1, . . . , zk′ ∈ F at random, sets z0 := s, and
z :=

∑k′

i=0 ziXi ∈ F [X], and computes the ith share as ai := z(bi), for
i = 1, . . . ,m. Here, we assume that the bi are distinct, non-zero elements of
F . Now, just as in §18.5.2, as long as at most k′ parties pool their shares,
Alice’s secret remains well hidden; however, provided k > 2` + k′, we can
correctly and efficiently reconstruct Alice’s secret given any k values ãi, as
long as at most ` of the ãi differ from the corresponding value of ai.

18.6.2 Application: recovering rational functions from
their reversed formal Laurent series

We now discuss the polynomial analog of the application in §4.5.2. This
is an entirely straightforward translation of the results in §4.5.2, but we
shall see in the next chapter that this problem has its own interesting
applications.

Suppose Alice knows a rational function z = s/t ∈ F (X), where s and t
are polynomials with deg(s) < deg(t), and tells Bob some of the high-order
coefficients of the reversed formal Laurent series (see §17.7) representing z
in F ((X−1)). We shall show that if deg(t) ≤M and Bob is given the bound
M on deg(t), along with the high-order 2M coefficients of z, then Bob can
determine z, expressed as a rational function in lowest terms.

So suppose that z = s/t =
∑∞

i=1 ziX−i, and that Alice tells Bob the
coefficients z1, . . . , z2M . Equivalently, Alice gives Bob the polynomial

y := z1X
2M−1 + · · ·+ z2M−1X + z2M = bzX2Mc.

Let us define n := X2M , so that y = bznc. Here is Bob’s algorithm for
recovering z:

1. Run the extended Euclidean algorithm on inputs a := n and b := y,
and let s′, t′ be as in Theorem 18.7, using r∗ := M −1 and t∗ := M .

2. Output s′, t′.

We claim that z = −s′/t′. To prove this, observe that since y = bznc =
b(ns)/tc, if we set r := (ns) rem t, then we have

r = sn−ty, deg(r) ≤ deg(t)−1 ≤ r∗, 0 ≤ deg(t) ≤ t∗, and r∗+t∗ < deg(n).



18.6 Rational Function Reconstruction and Applications 389

It follows that the polynomials s′, t′ from Theorem 18.7 satisfy s = s′α and
−t = t′α for some non-zero polynomial α. Thus, s′/t′ = −s/t, which proves
the claim.

We may further observe that since the extended Euclidean algorithm
guarantees that gcd(s′, t′) = 1, not only do we obtain z, but we obtain z
expressed as a fraction in lowest terms.

It is clear that this algorithm takes O(M2) operations in F .

The following exercises are the polynomial analogs of Exercises 4.7, 4.9,
and 4.10.

Exercise 18.17. Let F be a field. Show that given polynomials s, t ∈
F [X] and integer k, with deg(s) < deg(t) and k > 0, we can compute the
kth coefficient in the reversed formal Laurent series representing s/t using
O(len(k) len(t)2) operations in F . 2

Exercise 18.18. Let F be a field. Let z ∈ F ((X−1)) be a reversed formal
Laurent series whose coefficient sequence is ultimately periodic. Show that
z ∈ F (X). 2

Exercise 18.19. Let F be a field. Let z = s/t, where s, t ∈ F [X],
deg(s) < deg(t), and gcd(s, t) = 1. Let d > 1 be an integer.

(a) Show that if F is finite, there exist integers k, k′ such that 0 ≤ k < k′

and sdk ≡ sdk′ (mod t).

(b) Show that for integers k, k′ with 0 ≤ k < k′, the sequence of coef-
ficients of the reversed Laurent series representing z is (k, k′ − k)-
periodic if and only if sdk ≡ sdk′ (mod t).

(c) Show that if F is finite and X - t, then the reversed Laurent series rep-
resenting z is purely periodic with period equal to the multiplicative
order of [X mod t] ∈ (F [X]/(t))∗.

(d) More generally, show that if F is finite and t = Xkt′, with X - t′,
then the reversed Laurent series representing z is ultimately periodic
with pre-period k and period equal to the multiplicative order of
[X mod t′] ∈ (F [X]/(t′))∗.

2

18.6.3 Applications to symbolic algebra

Rational function reconstruction has applications in symbolic algebra, anal-
ogous to those discussed in §4.5.3. In that section, we discussed the appli-
cation of solving systems of linear equations over the integers using rational
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reconstruction. In exactly the same way, one can use rational function re-
construction to solve systems of linear equations over F [X] — the solution
to such a system of equations will be a vector whose entries are elements
of F (X), the field of rational functions.

18.7 Notes

Just as in the case of integer arithmetic, the basic “pencil and pa-
per” quadratic-time algorithms discussed in this chapter for polyno-
mial arithmetic are not the best possible. The fastest known algo-
rithms for multiplication of polynomials of length ` over a ring R take
O(` len(`) len(len(`))) operations in R. The Euclidean and extended Eu-
clidean algorithms for polynomials over a field F can be implemented so as
to take O(` len(`)2 len(len(`))) operations in F , as can the algorithms for
Chinese remaindering and rational function reconstruction. See the book
by von zur Gathen and Gerhard [32] for details (as well for an analysis of
the Euclidean algorithm for polynomials over the field of rational numbers
and over function fields).

Depending on the setting and many implementation details, such
asymptotically fast algorithms for multiplication and division can be signifi-
cantly faster than the quadratic-time algorithms, even for quite moderately
sized inputs of practical interest. However, the fast Euclidean algorithms
are only useful for significantly larger inputs.

The interpretation of Lagrange interpolation as “secret sharing” (see
§18.5.2), and its application to cryptography, was made by Shamir [81].

Reed-Solomon codes were first propose by Reed and Solomon [73], al-
though the decoder presented here was developed later. Theorem 18.7 was
proved by Mills [60]. The Reed-Solomon code is just one way of detecting
and correcting errors — we have barely scratched the surface of the subject
of error correcting codes.



Chapter 19

Linearly Generated Sequences
and Applications

In this chapter, we develop some of the theory of linearly generated se-
quences. As an application, we develop an efficient algorithm for solv-
ing sparse systems of linear equations, such as those that arise in the
subexponential-time algorithms for discrete logarithms and factoring in
Chapter 16. These topics illustrate the beautiful interplay between the
arithmetic of polynomials, linear algebra, and the use of randomization in
the design of algorithms.

19.1 Basic Definitions and Properties

Let F be a field, let V be an F -vector space, and consider an infinite
sequence

S = (α0, α1, α2, . . .),

where αi ∈ V for i = 0, 1, 2 . . . . We say that S is linearly generated
(over F ) if there exist scalars a0, . . . , ak−1 ∈ F such that the following
recurrence relation holds:

αk+i =
k−1∑
j=0

ajαj+i (for i = 0, 1, 2, . . .).

In this case, all of the elements of the sequence S are determined by the ini-
tial segment α0, . . . , αk−1, together with the coefficients a0, . . . , ak−1 defin-
ing the recurrence relation.

The general problem we consider is this: how to determine the coeffi-
cients defining such a recurrence relation, given a sufficiently long initial
segment of S. To study this problem, it turns out to be very useful to
rephrase the problem slightly. Let g ∈ F [X] be a polynomial of degree, say,

391
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k, and write g =
∑k

j=0 gjXj . Next, define

g ? S :=
k∑

j=0

gjαj .

Then it is clear that S is linearly generated if and only if there exists a
non-zero polynomial g such that

(Xig) ? S = 0 (for i = 0, 1, 2, . . .). (19.1)

Indeed, if there is such a non-zero polynomial g, then we can take

a0 := −(g0/gk), a1 := −(g1/gk), . . . , ak−1 := −(gk−1/gk)

as coefficients defining the recurrence relation for S. We call a polynomial
g satisfying (19.1) a generating polynomial for S. The sequence S will
in general have many generating polynomials. Note that the zero polyno-
mial is technically considered a generating polynomial, but is not a very
interesting one.

Let G(S) be the set of all generating polynomials for S.

Theorem 19.1. G(S) is an ideal of F [X].

Proof. First, note that for any two polynomials f, g, we have (f + g)?S =
(f ? S) + (g ? S) — this is clear from the definitions. It is also clear that
for any c ∈ F and f ∈ F [X], we have (cf) ? S = c · (f ? S). From these
two observations, it is immediately clear that G(S) is closed under addition
and scalar multiplication. It is also clear from the definition that G(S) is
closed under multiplication by X; indeed, if (Xif) ? S = 0 for all i ≥ 0, then
certainly, (Xi(Xf)) ? S = (Xi+1f) ? S = 0 for all i ≥ 0. But any non-empty
subset of F [X] that is closed under addition, multiplication by elements of
F , and multiplication by X is an ideal of F [X] (see Exercise 9.21). 2

Since all ideals of F [X] are principal, it follows that G(S) is the ideal of
F [X] generated by some polynomial φ ∈ F [X] — we can make this polyno-
mial unique by choosing the monic associate (if it is non-zero), and we call
this polynomial the minimal polynomial of S. Note that S is linearly
generated if and only if φ 6= 0.

We can now restate our main objective as follows: given a sufficiently
long initial segment of a linearly generated sequence, determine its minimal
polynomial.

Example 19.1. Of course, one can always define a linearly generated
sequence by simply choosing an initial sequence α0, α1, . . . , αk−1, along
with the coefficients g0, . . . , gk−1 of a generating polynomial g := g0 +
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g1X + · · · + gk−1Xk−1 + Xk. One can enumerate as many elements of the
sequence as one wants by using storage for k elements of V , along with
storage for the coefficients of g, as follows:

(β0, . . . , βk−1)← (α0, . . . , αk−1)
repeat

output β0

β′ ← −
∑k−1

j=0 gjβj

(β0, . . . , βk−1)← (β1, . . . , βk−1, β
′)

forever

Because of the structure of the above algorithm, linearly generated se-
quences are sometimes also called shift register sequences. Also observe
that if F is a finite field, and V is finite dimensional, the value stored in
the “register” (β0, . . . , βk−1) must repeat at some point, from which it fol-
lows that the linearly generated sequence must be ultimately periodic (see
definitions above Exercise 4.8). 2

Example 19.2. Linearly generated sequences can also arise in a natural
way, as this example and the next illustrate. Let E := F [X]/(f), where
f ∈ F [X] is a monic polynomial of degree ` > 0, and let α be an element
of E. Consider the sequence S := (1, α, α2, · · ·) of powers of α. For any
polynomial g =

∑k
j=0 gjXj ∈ F [X], we have

g ? S =
k∑

j=0

gjα
j = g(α).

Now, if g(α) = 0, then clearly (Xig) ? S = αig(α) = 0 for all i ≥ 0.
Conversely, if (Xig)?S = 0 for all i ≥ 0, then in particular, g(α) = 0. Thus,
g is a generating polynomial for S if and only if g(α) = 0. It follows that
the minimal polynomial φ of S is the same as the minimal polynomial of α
over F , as defined in §17.5. Furthermore, φ 6= 0, and the degree m of φ may
be characterized as the smallest positive integer m such that 1, α, . . . , αm

are linearly dependent; moreover, as E has dimension ` over F , we must
have m ≤ `. 2

Example 19.3. Let V be a vector space over F of dimension ` > 0,
and let τ : V → V be an F -linear map. Let β ∈ V , and consider the
sequence S := (α0, α1, . . .), where αi = τ i(β); that is, α0 = β, α1 = τ(β),
α2 = τ(τ(β)), and so on. For any polynomial g =

∑k
j=0 gjXj ∈ F [X], we

have

g ? S =
k∑

j=0

gjτ
j(β),
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and for any i ≥ 0, we have

(Xig) ? S =
k∑

j=0

gjτ
i+j(β) = τ i

( k∑
j=0

gjτ
j(β)

)
= τ i(g ? S).

Thus, if g ? S = 0, then clearly (Xig) ? S = τ i(g ? S) = τ i(0) = 0 for
all i ≥ 0. Conversely, if (Xig) ? S = 0 for all i ≥ 0, then in particular,
g ? S = 0. Thus, g is a generating polynomial for S if and only if g ? S = 0.
The minimal polynomial φ of S is non-zero and its degree m is at most
`; indeed, m may be characterized as the least non-negative integer such
that β, τ(β), . . . , τm(β) are linearly dependent, and since V has dimension
` over F , we must have m ≤ `.

The previous example can be seen as a special case of this one, by taking
V to be E, τ to be the α-multiplication map on E, and setting β to 1. 2

The problem of computing the minimal polynomial of a linearly gener-
ated sequence can always be solved by means of Gaussian elimination. For
example, the minimal polynomial of the sequence discussed in Example 19.2
can be computed using the algorithm described in §18.3. The minimal poly-
nomial of the sequence discussed in Example 19.3 can be computed in a
similar manner. Also, Exercise 19.3 below shows how one can reformulate
another special case of the problem so that it is easily solved by Gaussian
elimination. However, in the following sections, we will present algorithms
for computing minimal polynomials for certain types of linearly generated
sequences that are much more efficient than any algorithm based on Gaus-
sian elimination.

Exercise 19.1. Show that the only sequence for which 1 is a generating
polynomial is the “all zero” sequence. 2

Exercise 19.2. Let S = (α0, α1, . . .) be a sequence of elements of an F -
vector space V . Further, suppose that S has non-zero minimal polynomial
φ.

(a) Show that for any polynomials g, h ∈ F [X], if g ≡ h (mod φ), then
g ? S = h ? S.

(b) Let m := deg(φ). Show that if g ∈ F [X] and (Xig) ? S = 0 for
i = 0, . . . ,m− 1, then g is a generating polynomial for S.

2

Exercise 19.3. This exercise develops an alternative characterization
linearly generated sequences. Let S = (z0, z1, . . .) be a sequence of elements
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of F . Further, suppose that S has minimal polynomial φ =
∑m

j=0 cjXj with
m > 0 and cm = 1. Define the matrix

A :=


z0 z1 · · · zm−1

z1 z2 · · · zm

...
...

. . .
...

zm−1 zm · · · z2m−2

 ∈ Fm×m

and the vector
w := (zm, . . . , z2m−1) ∈ F 1×m.

Show that
v = (−c0, . . . ,−cm−1) ∈ F 1×m

is the unique solution to the equation

vA = w.

Hint: show that the rows of A are linearly independent by making use of
Exercise 19.2 and the fact that no polynomial of degree less than m is a
generating polynomial for S. 2

Exercise 19.4. Suppose that you are given a0, . . . , ak−1 ∈ F and
z0, . . . , zk−1 ∈ F . Suppose that for all i ≥ 0, we define

zk+i :=
k−1∑
j=0

ajzj+i.

Given n ≥ 0, show how to compute zn using O(len(n)k2) operations in F .
2

Exercise 19.5. Let V be a vector space over F , and consider the set
V ×∞ of all infinite sequences (α0, α1, . . .), where the αi are in V . Let us
define the scalar product of g ∈ F [X] and S ∈ V ×∞ as

g · S = (g ? S, (Xg) ? S, (X2g) ? S, . . .) ∈ V ×∞.

Show that with this scalar product, V ×∞ is an F [X]-module, and that a
polynomial g ∈ F [X] is a generating polynomial for S ∈ V ×∞ if and only if
g · S = 0. 2

19.2 Computing Minimal Polynomials — a
Special Case

We now tackle the problem of computing the minimal polynomial of a
linearly generated sequence from a sufficiently long initial segment.
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We shall first address a special case of this problem, namely, the case
where the vector space V is just the field F . In this case, we have

S = (z0, z1, z2, . . .),

where zi ∈ F for i = 0, 1, 2, . . . .
Suppose that we do not know the minimal polynomial φ of S, but we

know an upper bound M ≥ 0 on its degree. Then it turns out that the
initial segment z0, z1, . . . z2M−1 completely determines φ, and moreover, we
can very efficiently compute φ given the bound M and this initial segment.
The following theorem provides the essential ingredient.

Theorem 19.2. Let S = (z0, z1, . . .) be a sequence of elements of F , and
define the reversed formal Laurent series

z :=
∞∑

i=0

ziX
−(i+1) ∈ F ((X−1)),

whose coefficients are the elements of the sequence S. Then for any g ∈
F [X], we have g ∈ G(S) if and only if gz ∈ F [X]. In particular, S is linearly
generated if and only if z is a rational function, in which case, its minimal
polynomial is the denominator of z when expressed as a fraction in lowest
terms.

Proof. Observe that for any polynomial g ∈ F [X] and any integer i ≥ 0,
the coefficient of X−(i+1) in the product gz is equal to Xig ? S — just look
at the formulas defining these expressions! It follows that g is a generating
polynomial for S if and only if the coefficients of the negative powers of X
in gz are all zero, which is the same as saying that gz ∈ F [X]. Further, if
g 6= 0 and h := gz ∈ F [X], then deg(h) < deg(g) — this follows simply from
the fact that deg(z) < 0 (together with the fact that deg(h) = deg(g) +
deg(z)). All the statements in the theorem follow immediately from these
observations. 2

By virtue of Theorem 19.2, we can compute the minimal polynomial φ
of S using the algorithm in §18.6.2 for computing the numerator and de-
nominator of a rational function from its reversed Laurent series expansion.
More precisely, we can compute φ given the bound M on its degree, along
with and the first 2M elements z0, . . . , z2M−1 of S, using O(M2) operations
in F . Just for completeness, we write down this algorithm:

1. Run the extended Euclidean algorithm on inputs

a := X2M and b := z0X
2M−1 + z1X

2M−2 + · · ·+ z2M−1,

and let s′, t′ be as in Theorem 18.7, using r∗ := M −1 and t∗ := M .
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2. Output φ := t′/ lc(t′).

The characterization of linearly generated sequences provided by The-
orem 19.2 is also very useful in other ways. For example, suppose the field
F is finite. As we already saw in Example 19.1, any linearly generated se-
quence S := (z0, z1, . . .), where the zi are in F , must be ultimately periodic.
However, Theorem 19.2, together with the result of Exercise 18.19, tells us
much more; for example, if the minimal polynomial φ of S is not divisible
by X, then S is purely periodic with period equal to the multiplicative order
of [X mod φ] ∈ (F [X]/(φ))∗.

19.3 Computing Minimal Polynomials — a
More General Case

Having dealt with the problem of finding the minimal polynomial of a
sequence S of elements of F , we address the more general problem, where
the elements of S lie in a vector space V over F . We shall only deal with
a special case of this problem, but it is one which has useful applications:

• First, we shall assume that V has finite dimension ` > 0 over F .

• Second, we shall assume that the sequence S = (α0, α1, . . .) has full
rank, by which we mean the following: if the minimal polynomial φ
of S over F has degree m, then the vectors α0, . . . , αm−1 are linearly
independent. The sequences considered in Examples 19.2 and 19.3
are of this type.

• Third, we shall assume that F is a finite field.

The Dual Space. To develop the theory behind the approach we are
going to present, we need to discuss the dual space DF (V ) of V (over F ),
which consists of all F -linear maps from V into F . We may sometimes refer
to elements of DF (V ) as projections. Now, as was discussed in §15.2, if
we fix an ordered basis γ1, . . . , γ` for V , the elements of V are in one-to-
one correspondence with the coordinate vectors F 1×`, where the element
a1γ1 + . . . + a`γ` ∈ V corresponds to the coordinate vector (a1, . . . , a`) ∈
F 1×`. The elements of DF (V ) are in one-to-one correspondence with F `×1,
where the map π ∈ DF (V ) corresponds to the column vector whose jth
coordinate is π(γj), for j = 1, . . . , `. It is natural to call the column vector
corresponding to π its coordinate vector. A projection π ∈ DF (V ) may
be evaluated at a point δ ∈ V by taking the product of the coordinate
vector of δ with the coordinate vector of π.

One may also impose a vector space structure on DF (V ), in a very
natural way: for π, π′ ∈ DF (V ), the map π+π′ sends δ ∈ V to π(δ)+π′(δ),
and for c ∈ F , the map cπ sends δ ∈ V to cπ(δ). By the observations
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in the previous paragraph, DF (V ) is an F -vector space of dimension `;
indeed, the sum and scalar multiplication operations on DF (V ) correspond
to analogous operations on coordinate vectors.

One last fact we need about the dual space is the following:

Theorem 19.3. Let V be an F -vector space of finite dimension ` > 0.
For any linearly independent vectors δ1, . . . , δm ∈ V , and any a1, . . . , am ∈
F , there exists π ∈ DF (V ) such that π(δi) = ai for i = 1, . . . ,m.

Proof. Fix any ordered basis for V , and let M be the m×` matrix whose ith
row is the coordinate vector of δi with respect to this ordered basis. Let v
be the m×1 column vector whose ith coordinate is ai. As the δi are linearly
independent, the rows of M must also be linearly independent. Therefore,
the F -linear map that sends w ∈ F `×1 to Mw ∈ Fm×1 is surjective. It
follows that any solution w to the equation v = Mw is the coordinate vector
of a map π ∈ DF (V ) that satisfies the requirements of the theorem. 2

That completes our digression on the dual space. We now return to
the problem of computing the minimal polynomial φ of the linearly gen-
erated sequence S = (α0, α1, . . .). Assume we have a bound M on the
degree of φ. As we are assuming S has full rank, we may assume that
M ≤ `. For any π ∈ DF (V ), we may consider the projected sequence
Sπ = (π(α0), π(α1), . . .). Observe that φ is a generating polynomial for Sπ;
indeed, for any polynomial g ∈ F [X], we have g ? Sπ = π(g ? S), and hence,
for all i ≥ 0, we have (Xiφ) ? Sπ = π((Xiφ) ? S) = π(0) = 0. Let φπ ∈ F [X]
denote the minimal polynomial of Sπ. Since φπ divides any generating
polynomial of Sπ, and since φ is a generating polynomial for Sπ, it follows
that φπ is a divisor of φ.

This suggests the following algorithm for efficiently computing the min-
imal polynomial of S:

Algorithm MP:

g ← 1 ∈ F [X]
repeat

choose π ∈ DF (V ) at random
compute the first 2M terms of the projected sequence Sπ

use the algorithm in §19.2 to compute the minimal polynomial
φπ of Sπ

g ← lcm(g, φπ)
until g ? S = 0
output g

A few remarks on the above procedure are in order:
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• in every iteration of the main loop, g is the least common multiple of
a number of divisors of φ, and hence is itself a divisor of φ;

• under our assumption that S has full rank, and since g is a monic
divisor of φ, if g ? S = 0, we may safely conclude that g = φ;

• under our assumption that F is finite, choosing a random element π
of DF (V ) amounts to simply choosing at random the entries of the
coordinate vector of π, relative to some ordered basis for V ;

• we also assume that elements of V are represented as coordinate vec-
tors, so that applying a projection π ∈ DF (V ) to a vector in V takes
O(`) operations in F ;

• similarly, adding two elements of V , or multiplying an element of V
times a scalar, takes O(`) operations in F .

Based on the above observations, it follows that when the algorithm
halts, its output is correct, and that the cost of each loop iteration is O(M`)
operations in F . The remaining question to be answered is this: what is
the expected number of iterations of the main loop? The answer to this
question is O(1), which leads to a total expected cost of Algorithm MP of
O(M`) operations in F .

The key to establishing that the expected number of iterations of the
main loop is constant is provided by the following theorem.

Theorem 19.4. Let S = (α0, α1, . . .) be a linearly generated sequence
over the field F , where the αi are elements of a vector space V of finite
dimension ` > 0. Let φ be the minimal polynomial of S over F , let m :=
deg(φ), and assume that S has full rank (i.e., α0, . . . , αm−1 are linearly
independent).

Under the above assumptions, there exists a surjective F -linear map
σ : DF (V )→ F [X]<m such that for all π ∈ DF (V ), the minimal polynomial
φπ of the projected sequence Sπ := (π(α0), π(α1), . . .) satisfies

φπ =
φ

gcd(σ(π), φ)
.

Recall that F [X]<m denotes the m-dimensional vector space of polyno-
mials in F [X] of degree less than m.

Proof. While the statement of this theorem looks a bit complicated, its
proof is quite straightforward, given our characterization of linearly gener-
ated sequences in Theorem 19.2 in terms of rational functions. We build
the linear map σ as the composition of two linear maps, σ0 and σ1.
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Let us define the map

σ0 : DF (V ) → F ((X−1))
π 7→

∑∞
i=0 π(αi)X−(i+1).

We also define the map σ1 to be the φ-multiplication map on F ((X−1)), that
is, the map that sends z ∈ F ((X−1)) to φ · z ∈ F ((X−1)). The map σ is just
the composition σ = σ1 ◦ σ0. It is clear that both σ0 and σ1 are F -linear
maps, and hence, so is σ.

First, observe that for π ∈ DF (V ), the series z := σ0(π) is the series
associated with the projected sequence Sπ, as in Theorem 19.2. Let φπ be
the minimal polynomial of Sπ. Since φ is a generating polynomial for S,
it is also a generating polynomial for Sπ. Therefore, Theorem 19.2 tells us
that

h := σ(π) = φ · z ∈ F [X]<m,

and that φπ is the denominator of z when expressed as a fraction in lowest
terms. Now, we have z = h/φ, and it follows that φπ = φ/ gcd(h, φ) is this
denominator.

Second, the hypothesis that α0, . . . , αm−1 are linearly independent, to-
gether with Theorem 19.3, implies that dimF (img(σ0)) ≥ m. Also, ob-
serve that σ1 is an injective map (indeed, it is surjective as well). There-
fore, dimF (img(σ)) ≥ m. In the previous paragraph, we observed that
img(σ) ⊆ F [X]<m, and since dimF (F [X]<m) = m, we may conclude that
img(σ) = F [X]<m. That proves the theorem. 2

Given the above theorem, we can analyze the expected number of iter-
ations of the main loop of Algorithm MP.

First of all, we may as well assume that the degree m of φ is greater than
0, as otherwise, we are sure to get φ in the very first iteration. Let π1, . . . , πs

be the random projections chosen in the first s iterations of Algorithm
MP. By Theorem 19.4, the polynomials σ(π1), . . . , σ(πs) are uniformly and
independently distributed over F [X]<m, and we have g = φ at the end of
loop iteration s if and only if gcd(φ, σ(π1), . . . , σ(πs)) = 1.

Let us define Λφ
F (s) to be the probability that gcd(φ, f1, . . . , fs) = 1,

where f1, . . . , fs are randomly chosen from F [X]<m. Thus, the probability
that we have g = φ at the end of loop iteration s is equal to Λφ

F (s). While
one can analyze the quantity Λφ

F (s), it turns out to be easier, and sufficient
for our purposes, to analyze a different quantity. Let us define Λm

F (s) to
be the probability that gcd(f1, . . . , fs) = 1, where f1, . . . , fs are randomly
chosen from F [X]<m. Clearly, Λφ

F (s) ≥ Λm
F (s).

Theorem 19.5. If F is a finite field of cardinality q, and m and s are
positive integers, then we have

Λm
F (s) = 1− 1/qs−1 + (q − 1)/qsm.



19.3 Computing Minimal Polynomials — a More General Case 401

Proof. For any positive integer n, let Un be the set of all tuples of
polynomials (f1, . . . , fs) ∈ F [X]×s

<n with gcd(f1, . . . , fs) = 1, and let un =
|Un|. First, let h be any monic polynomial with k := deg(h) < n. The set
Un,h of all s-tuples of polynomials of degree less than n whose gcd is h is in
one-to-one correspondence with Un−k, via the map that sends (f1, . . . , fs) ∈
Un,h to (f1/h, . . . , fs/h) ∈ Un−k. As there are qk possible choices for h of
degree k, we see that the set Vn,k, consisting of tuples (f1, . . . , fs) ∈ F [X]×s

<n

with deg(gcd(f1, . . . , fs)) = k, has cardinality qkun−k. Every non-zero
element of F [X]×s

<n appears in exactly one of the sets Vn,k, for k = 0, . . . , n−
1. Taking into account the zero polynomial, it follows that

qsn = 1 +
n−1∑
k=0

qkun−k, (19.2)

which holds for all n ≥ 1. Replacing n by n− 1 in (19.2), we obtain

qs(n−1) = 1 +
n−2∑
k=0

qkun−1−k, (19.3)

which holds for all n ≥ 2, and indeed, holds for n = 1 as well. Subtracting
q times (19.3) from (19.2), we deduce that for n ≥ 1,

qsn − qsn−s+1 = 1 + un − q,

and rearranging terms:

un = qsn − qsn−s+1 + q − 1.

Therefore,

Λm
F (s) = um/qsm = 1− 1/qs−1 + (q − 1)/qsm.

2

From the above theorem, it follows that for s ≥ 1, the probability Ps

that Algorithm MP runs for more than s loop iterations is at most 1/qs−1.
If T is the total number of loop iterations, then

E[T ] =
∑
i≥1

P[T ≥ i] = 1 +
∑
s≥1

Ps ≤ 1 +
∑
s≥1

1/qs−1 = 1 +
q

q − 1
= O(1).

Let us summarize all of the above analysis with the following:

Theorem 19.6. Let S be a sequence of elements of an F -vector space V
of finite dimension ` > 0 over F , where F is a finite field. Assume that
S is linearly generated over F with minimal polynomial φ ∈ F [X] of degree
m, and that S has full rank (i.e., the first m elements of S are linearly
independent). Then given an upper bound M on m, along with the first
2M elements of S, Algorithm MP correctly computes φ using an expected
number of O(M`) operations in F .
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We close this section with the following observation. Suppose the se-
quence S is of the form (β, τ(β), τ2(β), . . .), where β ∈ V and τ : V → V is
an F -linear map. Suppose that with respect to some ordered basis for V ,
elements of V are represented as elements of F 1×`, and elements of DF (V )
are represented as elements of F `×1. The linear map τ also has a corre-
sponding representation as a matrix A ∈ F `×`, so that evaluating τ at a
point α in V corresponds to multiplying the coordinate vector of α on the
right by A. Now, suppose β ∈ V has coordinate vector b ∈ F 1×` and that
π ∈ DF (V ) has coordinate vector c> ∈ F `×1. Then if S̃ is the sequence of
coordinate vectors of the elements of S, we have

S̃ = (bAi)∞i=0 and Sπ = (bAic>)∞i=0.

This more concrete, matrix-oriented point of view is sometimes useful; in
particular, it makes quite transparent the symmetry of the roles played by
β and π in forming the projected sequence.

Exercise 19.6. If |F | = q and φ ∈ F [X] is monic and factors into monic
irreducible polynomials in F [X] as φ = pe1

1 · · · per
r , show that

Λφ
F (1) =

r∏
i=1

(1− q− deg(pi)) ≥ 1−
r∑

i=1

q− deg(pi).

From this, conclude that the probability that Algorithm MP terminates
after just one loop iteration is 1−O(m/q), where m = deg(φ). Thus, if q is
very large relative to m, it is highly likely that Algorithm MP terminates
after just one iteration of the main loop. 2

19.4 Solving Sparse Linear Systems

Let V be a vector space of finite dimension ` > 0 over a finite field F , and
let τ : V → V be an F -linear map. The goal of this section is to develop
time- and space-efficient algorithms for solving equations of the form

τ(γ) = δ; (19.4)

that is, given τ and δ ∈ V , find γ ∈ V satisfying (19.4). The algorithms
we develop will have the following properties: they will be probabilistic,
and will use an expected number of O(`2) operations in F , an expected
number of O(`) evaluations of τ , and space for O(`) elements of F . By an
“evaluation of τ ,” we mean the computation of τ(α) for some α ∈ V .

We shall assume that elements of V are represented as coordinate vec-
tors with respect to some fixed ordered basis for V . Now, if the matrix
representing τ with respect to the given ordered basis is sparse, having, say,
`1+o(1) non-zero entries, then the space required to represent τ is `1+o(1)
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elements of F , and the time required to evaluate τ is `1+o(1) operations
in F . Under these assumptions, our algorithms to solve (19.4) use an ex-
pected number of `2+o(1) operations in F , and space for `1+o(1) elements
of F . This is to be compared with standard Gaussian elimination: even if
the original matrix is sparse, during the execution of the algorithm, most
of the entries in the matrix may eventually be “filled in” with non-zero field
elements, leading to a running time of Ω(`3) operations in F , and a space
requirement of Ω(`2) elements of F . Thus, the algorithms presented here
will be much more efficient than Gaussian elimination when the matrix
representing τ is sparse.

We hasten to point out that the algorithms presented here may be
more efficient than Gaussian elimination in other cases, as well. All that
matters is that τ can be evaluated using o(`2) operations in F and/or
represented using space for o(`2) elements of F — in either case, we obtain
a time and/or space improvement over Gaussian elimination. Indeed, there
are applications where the matrix of the linear map τ may not be sparse,
but nevertheless has special structure that allows it to be represented and
evaluated in subquadratic time and/or space.

We shall only present algorithms that work in two special, but impor-
tant, cases:

• the first case is where τ is invertible,

• and the second case is where τ is not invertible, δ = 0, and a non-zero
solution γ to (19.4) is required (i.e., we are looking for a non-zero
element of ker(τ)).

In both cases, the key will be to use Algorithm MP in §19.3 to find the
minimal polynomial φ of the linearly generated sequence

S := (α0, α1, . . .), (αi = τ i(β), i = 0, 1, . . .), (19.5)

where β is a suitably chosen element of V . From the discussion in Exam-
ple 19.3, this sequence has full rank, and so we may use Algorithm MP. We
may use M := ` as an upper bound on the degree of φ (assuming we know
nothing more about τ and β that would allow us to use a smaller upper
bound). In using Algorithm MP in this application, note that we do not
want to store α0, . . . , α2`−1 — if we did, we would not satisfy our stated
space bound. Instead of storing the αi in a “warehouse,” we use a “just in
time” strategy for computing them, as follows:

• In the body of the main loop of Algorithm MP, where we calculate the
values ai := π(αi), for i = 0 . . . 2` − 1, we perform the computation
as follows:
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α← β
for i← 0 to 2`− 1 do

ai ← π(α), α← τ(α)

• In the test at the bottom of the main loop of Algorithm MP, if g =∑k
j=0 gjXj , we compute ν := g ? S ∈ V as follows:

ν ← 0, α← β
for j ← 0 to k do

ν ← ν + gj · α, α← τ(α)

Alternatively, one could use a Horner-like algorithm:

ν ← 0
for j ← k down to 0 do

ν ← τ(ν) + gj · β

With this implementation, Algorithm MP uses an expected number of O(`2)
operations in F , an expected number of O(`) evaluations of τ , and space
for O(`) elements of F . Of course, the “warehouse” strategy is faster than
the “just in time” strategy by a constant factor, but it uses about ` times
as much space; thus, for large `, using the “just in time” strategy is a very
good time/space trade-off.

The invertible case. Now consider the case where τ is invertible, and
we want to solve (19.4) for a given δ ∈ V . We may as well assume that
δ 6= 0, since otherwise, γ = 0 is the unique solution to (19.4). We proceed
as follows. First, using Algorithm MP as discussed above, compute the
minimal polynomial φ of the sequence S defined in (19.5), using β := δ.
Let φ =

∑m
j=0 cjXj , where cm = 1 and m > 0. Then we have

c0δ + c1τ(δ) + · · ·+ cmτm(δ) = 0. (19.6)

We claim that c0 6= 0. To prove the claim, suppose that c0 = 0. Then
applying τ−1 to (19.6), we would obtain

c1δ + · · ·+ cmτm−1(δ) = 0,

which would imply that φ/X is a generating polynomial for S, contradicting
the minimality of φ. That proves the claim.

Since c0 6= 0, we can apply τ−1 to (19.6), and solve for γ = τ−1(δ) as
follows:

γ = −c−1
0 (c1δ + · · ·+ cmτm−1(δ)).

To actually compute γ, we use the same “just in time” strategy as was
used in the implementation of the computation of g ? S in Algorithm MP,
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which costs O(`2) operations in F , O(`) evaluations of τ , and space for
O(`) elements of F .

The non-invertible case. Now consider the case where τ is not invertible,
and we want to find non-zero vector γ ∈ V such that τ(γ) = 0. The idea
is this. Suppose we choose an arbitrary, non-zero element β of V , and use
Algorithm MP to compute the minimal polynomial φ of the sequence S
defined in (19.5), using this value of β. Let φ =

∑m
j=0 cjXj , where m > 0

and cm = 1. Then we have

c0β + c1τ(β) + · · ·+ cmτm(β) = 0. (19.7)

Let
γ := c1β + · · · cmτm−1(β).

We must have γ 6= 0, since γ = 0 would imply that bφ/Xc is a non-zero
generating polynomial for S, contradicting the minimality of φ. If it hap-
pens that c0 = 0, then equation (19.7) implies that τ(γ) = 0, and we are
done. As before, to actually compute γ, we use the same “just in time”
strategy as was used in the implementation of the computation of g ? S in
Algorithm MP, which costs O(`2) operations in F , O(`) evaluations of τ ,
and space for O(`) elements of F .

The above approach fails if c0 6= 0. However, in this “bad” case, equa-
tion (19.7) implies that β = −c−1

0 τ(γ); that is, β ∈ img(τ). One way to
avoid such a “bad” β is to randomize: as τ is not surjective, the image
of τ is a subspace of V of dimension strictly less than `, and therefore, a
randomly chosen β lies in the image of τ with probability at most 1/|F |.
So a simple technique is to choose repeatedly β at random until we get
a “good” β. The overall complexity of the resulting algorithm will be as
required: O(`2) expected operations in F , O(`) expected evaluations of τ ,
and space for O(`) elements of F .

As a special case of this situation, consider the problem that arose in
Chapter 16 in connection with algorithms for computing discrete logarithms
and factoring. We had to solve the following problem: given an `× (`− 1)
matrix M with entries in a finite field F , containing `1+o(1) non-zero entries,
find a non-zero vector v ∈ F 1×` such that vM = 0. To solve this problem,
we can augment the matrix M , adding an extra column of zeros, to get an
` × ` matrix M ′. Now, let V = F 1×` and let τ be the F -linear map on V
that sends γ ∈ V to γM ′. A non-zero solution γ to the equation τ(γ) = 0
will provide us with the solution to our original problem; thus, we can apply
the above technique directly, solving this problem using `2+o(1) expected
operations in F , and space for `1+o(1) elements of F . As a side remark, in
this particular application, we can choose a “good” β in the above algorithm
without randomization: just choose β := (0, . . . , 0, 1), which is clearly not
in the image of τ .
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19.5 Computing Minimal Polynomials in
F [X]/(f) (II)

Let us return to the problem discussed in §18.3: F is a field, f ∈ F [X] is
a monic polynomial of degree ` > 0, and E := F [X]/(f) = F [η], where
η := [X mod f ]; we are given an element α ∈ E, and want to compute the
minimal polynomial φ ∈ F [X] of α over F . As discussed in Example 19.2,
this problem is equivalent to the problem of computing the minimal poly-
nomial of the sequence

S := (α0, α1, . . .) (αi := αi, i = 0, 1, . . .),

and the sequence has full rank; therefore, we can use Algorithm MP in
§19.3 directly to solve this problem, assuming F is a finite field.

If we use the “just in time” strategy in the implementation of Algorithm
MP, as was used in §19.4, we get an algorithm that computes the minimal
polynomial of α using O(`3) expected operations in F , but space for just
O(`2) elements of F . Thus, in terms of space, this approach is far superior
to the algorithm in §18.3, based on Gaussian elimination. In terms of time
complexity, the algorithm based on linearly generated sequences is a bit
slower than the one based on Gaussian elimination (but only by a constant
factor). However, if we use any subquadratic-time algorithm for polynomial
arithmetic (see §18.2 and §18.7), we immediately get an algorithm that runs
in subcubic time, while still using linear space. In the exercises below, you
are as asked to develop an algorithm that computes the minimal polynomial
of α using just O(`2.5) operations in F , at the expense of requiring space
for O(`1.5) elements of F — this algorithm does not rely on fast polynomial
arithmetic, and can be made even faster if such arithmetic is used.

Exercise 19.7. Let f ∈ F [X] be a monic polynomial of degree ` > 0 over
a field F , and let E := F [X]/(f). Show how to compute — given as input
the polynomial f defining E, an element α ∈ E, and a polynomial g ∈ F [X]
of degree k > 0 — the value g(α) ∈ E, using just O(k`+k1/2`2) operations
in F , and space for O(k1/2`) elements of F . Hint: first compute a table of
powers 1, α, . . . , αm, for m ≈ k1/2. 2

Exercise 19.8. Let f ∈ F [X] be a monic polynomial of degree ` > 0
over a field F , and let E := F [X]/(f). Also, let η := [X mod f ] ∈ E.
For computational purposes, we assume that elements of E and DF (E) are
represented as coordinate vectors with respect to the usual “polynomial”
basis 1, η, . . . , η`−1. For β ∈ E, let Mβ denote the β-multiplication map on
E that sends α ∈ E to αβ ∈ E, which is an F -linear map from E into E.

(a) Show how to compute — given as input the polynomial f defining
E, along with a projection π ∈ DF (E) and an element β ∈ E — the
projection π ◦Mβ ∈ DF (E), using O(`2) operations in F .
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(b) Show how to compute — given as input the polynomial f defining
E, along with a projection π ∈ DF (E), an element α ∈ E, and a
parameter k > 0 — all of the k values

π(1), π(α), . . . , π(αk−1)

using just O(k` + k1/2`2) operations in F , and space for O(k1/2`)
elements of F . Hint: same hint as in the previous exercise.

2

Exercise 19.9. Let f ∈ F [X] be a monic polynomial over a finite field
F of degree ` > 0, and let E := F [X]/(f). Show how to use the result of
the previous two exercises to get an algorithm that computes the minimal
polynomial of α ∈ E over F using O(`2.5) expected operations in F , and
space for O(`1.5) operations in F . 2

Exercise 19.10. Let f ∈ F [X] be a monic polynomial of degree ` > 0 over
a field F (not necessarily finite), and let E := F [X]/(f). Further, suppose
that f is irreducible, so that E is itself a field. Show how to compute
the minimal polynomial of α ∈ E over F deterministically, satisfying the
following complexity bounds:

(a) O(`3) operations in F and space for O(`) elements of F ;

(b) O(`2.5) operations in F and space for O(`1.5) elements of F .

2

19.6 ♣ The Algebra of Linear Transforma-
tions

Throughout this chapter, one could hear the whispers of the algebra of
linear transformations. We develop some of the aspects of this theory here,
leaving a number of details as exercises. It will not play a role in any
material that follows, but it serves to provide the reader with a “bigger
picture.”

Let F be a field and V be a non-trivial F -vector space. We denote by
LF (V ) the set of all F -linear maps from V into V . Elements of LF (V )
are called linear transformations. We can make LF (V ) into an F -vector
space by defining addition and scalar multiplication as follows: for τ, τ ′ ∈
LF (V ), define τ + τ ′ to be the map that sends α ∈ V to τ(α) + τ ′(α); for
c ∈ F and τ ∈ LF (V ), define cτ to be the map that sends α ∈ V to cτ(α).

Exercise 19.11. (a) Verify that with addition and scalar multiplica-
tion defined as above, LF (V ) is an F -vector space.
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(b) Suppose that V has finite dimension ` > 0. By identifying elements
of LF (V ) with `× ` matrices over F , show that LF (V ) has dimension
`2.

2

As usual, for τ, τ ′ ∈ LF (V ), the composed map, τ ◦ τ ′ that sends α ∈
V to τ(τ ′(α)) is also an element of LF (V ) (verify). As always, function
composition is associative (i.e., for τ, τ ′, τ ′′ ∈ LF (V ), we have τ ◦(τ ′ ◦τ ′′) =
(τ ◦ τ ′) ◦ τ ′′); however, function composition is not in general commutative
(i.e., we may have τ ◦τ ′ 6= τ ′◦τ for some τ, τ ′ ∈ LF (V )). For any τ ∈ LF (V )
and an integer i ≥ 0, the map τ i (i.e., the i-fold composition of τ) is also
an element of LF (V ). Note that for any τ ∈ LF (V ), the map τ0 is by
definition just the identity map on V .

For any τ ∈ LF (V ), and for any polynomial f ∈ F [X], with f =
∑

i aiXi,
we denote by f(τ) the linear transformation

f(τ) :=
∑

i

aiτ
i.

Exercise 19.12. Verify the following properties of LF (V ). For all
τ, τ ′, τ ′′ ∈ LF (V ), for all c ∈ F , and all f, g ∈ F [X]:

(a) τ ◦ (τ ′ + τ ′′) = τ ◦ τ ′ + τ ◦ τ ′′;

(b) (τ ′ + τ ′′) ◦ τ = τ ′ ◦ τ + τ ′′ ◦ τ ;

(c) c(τ ◦ τ ′) = (cτ) ◦ τ ′ = τ ◦ (cτ ′);

(d) f(τ) ◦ g(τ) = (fg)(τ) = g(τ) ◦ f(τ);

(e) f(τ) + g(τ) = (f + g)(τ).

2

Under the addition operation of the vector space LF (V ), and defin-
ing multiplication on LF (V ) using the “◦” operation, we get an algebraic
structure that satisfies all the properties of Definition 9.1, with the excep-
tion of property (v) of that definition (commutativity). Thus, we can view
LF (V ) as a non-commutative ring with unity (the identity map acts as the
multiplicative identity).

For a fixed τ ∈ LF (V ), we may consider the subset of LF (V ),

F [τ ] := {f(τ) : f ∈ F [X]},

which does in fact satisfy all the properties of Definition 9.1. Moreover, we
can view F as a subring of F [τ ] by identifying c ∈ F with cτ0 ∈ F [τ ]. With
this convention, for f ∈ F [X], the expression f(τ) has its usual meaning as
the value of f evaluated at the point τ in the extension ring F [τ ] of F . Let
φτ is the minimal polynomial of τ over F , so that F [τ ] is isomorphic as an
F -algebra to F [X]/(φτ ). We can also characterize φτ as follows (verify):
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if there exists a non-zero polynomial f ∈ F [X] such that f(τ) =
0, then φτ is the monic polynomial of least degree with this
property; otherwise, φτ = 0.

Another way to characterize φ is as follows (verify):

φτ is the minimal polynomial of the sequence (1, τ, τ2, . . .).

Note that φτ is never 1 — this follows from the assumption that V is
non-trivial.

It is easy to see that if V happens to be finite dimensional, with ` :=
dimF (V ), then by Exercise 19.11, LF (V ) has dimension `2. Therefore,
there must be a linear dependence among 1, τ, . . . , τ `2 , which implies that
the minimal polynomial of τ is non-zero with degree at most `2. We shall
show below that in this case, the minimal polynomial of τ actually has
degree at most `.

For a fixed τ ∈ LF (V ), we can define a “scalar multiplication” operation
�, that maps f ∈ F [X] and α ∈ V to

f � α := f(τ)(α) ∈ V ;

that is, if f =
∑

i aiXi, then

f � α =
∑

i

aiτ
i(α).

Exercise 19.13. Show that the scalar multiplication �, together with
the usual addition operation on V , makes V into an F [X]-module; that is,
show that for all f, g ∈ F [X] and α, β ∈ V , we have

f � (g � α) = (fg)� α, (f + g)� α = f � α + g � α,

f � (α + β) = f � α + f � β, 1� α = α.

2

Note that each choice of τ gives rise to a different F [X]-module structure,
but all of these structures are extensions of the usual vector space structure,
in the sense that for all c ∈ F and α ∈ V , we have c� α = cα.

Now, for fixed τ ∈ LF (V ) and α ∈ V , consider the F [X]-linear map
ρτ,α : F [X]→ V that sends f ∈ F [X] to f �α = f(τ)(α). The kernel of this
map must be a submodule, and hence an ideal, of F [X]; since every ideal
of F [X] is principal, it follows that ker(ρτ,α) is the ideal of F [X] generated
by some polynomial φτ,α, which we can make unique by insisting that it is
monic or zero. We call φτ,α the minimal polynomial of α under τ .We
can also characterize φτ,α as follows (verify):
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if there exists a non-zero polynomial f ∈ F [X] such that
f(τ)(α) = 0, then φτ,α the monic polynomial of least degree
with this property; otherwise, φτ,α = 0.

Another way to characterize φτ,α is as follows (verify):

φτ,α is the minimal polynomial of the sequence

(α, τ(α), τ2(α), . . .).

Note that since φτ (τ) is the zero map, we have

φτ � α = φτ (τ)(α) = 0,

and hence φτ ∈ ker(ρτ,α), which means that φτ,α | φτ .
Now consider the image of ρτ,α, which we shall denote by 〈α〉τ . As an

F [X]-module, 〈α〉τ is isomorphic to F [X]/(φτ,α). In particular, if φτ,α is non-
zero and has degree m, then 〈α〉τ is a vector space of dimension m over F ;
indeed, the vectors α, τ(α), . . . , τm−1(α) form a basis for 〈α〉τ over F ; more-
over, m is the smallest non-negative integer such that α, τ(α), . . . , τm(α)
are linearly dependent.

Observe that for any β ∈ 〈α〉τ , we have φτ,α�β = 0; indeed, if β = f�α,
then

φτ,α � (f � α) = (φτ,αf)� α = f � (φτ,α � α) = f � 0 = 0.

In the following three exercises, τ is an element of LF (V ), and � is the
associated scalar multiplication that makes V into an F [X]-module.

Exercise 19.14. Let α ∈ V have minimal polynomial f ∈ F [X] under τ ,
and let β ∈ V have minimal polynomial g ∈ F [X] under τ . Show that if
gcd(f, g) = 1, then

(a) 〈α〉τ ∩ 〈β〉τ = {0}, and

(b) α + β has minimal polynomial f · g under τ .

2

Exercise 19.15. Let α ∈ V . Let q ∈ F [X] be a monic irreducible poly-
nomial such that qe�α = 0 but qe−1�α 6= 0 for some integer e ≥ 1. Show
that qe is the minimal polynomial of α under τ . 2

Exercise 19.16. Let α ∈ V , and suppose that α has minimal polynomial
f ∈ F [X] under τ , with f 6= 0. Let g ∈ F [X]. Show that g � α has minimal
polynomial f/ gcd(f, g) under τ . 2

We are now ready to state the main result of this section, whose state-
ment and proof are analogous to that of Theorem 8.40:
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Theorem 19.7. Let τ ∈ LF (V ), and suppose that τ has non-zero mini-
mal polynomial φ. Then there exists β ∈ V such that the minimal polyno-
mial of β under τ is φ.

Proof. Let � be the scalar multiplication associated with τ . Let φ =
pe1
1 · · · per

r be the factorization of φ into monic irreducible polynomials in
F [X].

First, we claim that for each i = 1, . . . , r, there exists αi ∈ V such that
φ/pi � αi 6= 0. Suppose the claim were false: then for some i, we would
have φ/pi � α = 0 for all α ∈ V ; however, this means that (φ/pi)(τ) =
0, contradicting the minimality property in the definition of the minimal
polynomial φ. That proves the claim.

Let α1, . . . , αr be as in the above claim. Then by Exercise 19.15, each
φ/pei

i � αi has minimal polynomial pei
i under τ . Finally, by part (b) of

Exercise 19.14, the vector

β := φ/pe1
1 � α1 + · · ·+ φ/per

r � αr

has minimal polynomial φ under τ . 2

Theorem 19.7 says that if τ has minimal polynomial φ of degree m ≥ 0,
then there exists β ∈ V such that

β, τ(β), . . . , τm−1(β)

are linearly independent. From this, it immediately follows that:

Theorem 19.8. If V has finite dimension ` > 0, then for any τ ∈ LF (V ),
the minimal polynomial of τ is non-zero of degree at most `.

We close this section a simple observation. Let V be an arbitrary, non-
trivial F [X]-module with scalar multiplication �. Restricting the scalar
multiplication from F [X] to F , we can naturally view V as an F -vector
space. Let τ : V → V be the map that sends α ∈ V to X� α. It is easy to
see that τ ∈ LF (V ), and that for all polynomials f ∈ F [X], and all α ∈ V ,
we have f � α = f(τ)(α). Thus, instead of starting with a vector space
and defining an F [X]-module structure in terms of a given linear map, we
can go the other direction, starting from an F [X]-module and obtaining a
corresponding linear map. Furthermore, using the language introduced in
Examples 14.13 and 14.14, we see that the F [X]-exponent of V is the ideal
of F [X] generated by the minimal polynomial of τ , and the F [X]-order of
any element α ∈ V is the ideal of F [X] generated by the minimal polynomial
of α under τ . Theorem 19.7 says that there exists an element in V whose
F [X]-order is equal to the F [X]-exponent of V , assuming the latter is non-
zero.

So depending on one’s mood, one can place emphasis either on the
linear map τ , or just talk about F [X]-modules without mentioning any
linear maps.
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Exercise 19.17. Let τ ∈ LF (V ) have non-zero minimal polynomial φ of
degree m, and let φ = pe1

1 · · · per
r be the factorization of φ into monic irre-

ducible polynomials in F [X]. Let � be the scalar multiplication associated
with τ . Show that β ∈ V has minimal polynomial φ under τ if and only if
φ/pi � β 6= 0 for i = 1, . . . , r. 2

Exercise 19.18. Let τ ∈ LF (V ) have non-zero minimal polynomial φ.
Show that τ is an invertible map if and only if X - φ. 2

Exercise 19.19. Let F be a finite field, and let V have finite dimension
` > 0 over F . Let τ ∈ LF (V ) have minimal polynomial φ, with deg(φ) = m
(and of course, by Theorem 19.8, we have m ≤ `). Suppose that α1, . . . , αs

are randomly chosen elements of V . Let gj be the minimal polynomial of αj

under τ , for j = 1, . . . , s. Let Q be the probability that lcm(g1, . . . , gs) = φ.
The goal of this exercise is to show that Q ≥ Λφ

F (s), where Λφ
F (s) is as

defined in §19.3.

(a) Using Theorem 19.7 and Exercise 19.16, show that if m = `, then
Q = Λφ

F (s).

(b) Without the assumption that m = `, things are a bit more challeng-
ing. Adopting the matrix-oriented point of view discussed at the end
of §19.3, and transposing everything, show that

– there exists π ∈ DF (V ) such that the sequence (π ◦ τ i)∞i=0 has
minimal polynomial φ, and

– if, for j = 1, . . . , s, we define hj to be the minimal polyno-
mial of the sequence (π(τ i(αj)))∞i=0, then the probability that
lcm(h1, . . . , hs) = φ is equal to Λφ

F (s).

(c) Show that hj | gj , for j = 1, . . . , s, and conclude that Q ≥ Λφ
F (s).

2

Exercise 19.20. Let f, g ∈ F [X] with f 6= 0, and let h := f/ gcd(f, g).
Show that g · F [X]/(f) and F [X]/(h) are isomorphic as F [X]-modules. 2

Exercise 19.21. In this exercise, you are to derive the fundamental
theorem of finite dimensional F [X]-modules, which is completely anal-
ogous to the fundamental theorem of finite abelian groups. Both of these
results are really special cases of a more general decomposition theorem for
modules over a principal ideal domain.

Let V be an F [X]-module. Assume that as an F -vector space, V has
finite dimension ` > 0, and that the F [X]-exponent of V is generated by the
monic polynomial φ ∈ F [X] (note that 1 ≤ deg(φ) ≤ `). Show that there
exist monic, non-constant polynomials φ1, . . . , φt ∈ F [X] such that
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• φi | φi+1 for i = 1, . . . , t− 1, and

• V is isomorphic, as an F [X]-module, to the direct product of F [X]-
modules

V ′ := F [X]/(φ1)× · · · × F [X]/(φt).

Moreover, show that the polynomials φ1, . . . , φt satisfying these conditions
are uniquely determined, and that φt = φ.

Hint: one can just mimic the proof of Theorem 8.44, where the exponent
of a group corresponds to the F [X]-exponent of an F [X]-module, and the
order of a group element corresponds to the F [X]-order of an element of
an F [X]-module — everything translates rather directly, with just a few
minor, technical differences, and the previous exercise is useful in proving
the uniqueness part of the theorem. 2

Exercise 19.22. Let us adopt the same assumptions and notation as
in Exercise 19.21, and let τ ∈ LF (V ) be the map that sends α ∈ V to
X�α. Further, let σ : V → V ′ be the isomorphism of that exercise, and let
τ ′ ∈ LF (V ′) be the X-multiplication map on V ′.

(a) Show that σ ◦ τ = τ ′ ◦ σ.

(b) From part (a), derive the following: there exists an ordered basis for
V over F , with respect to which the matrix representing τ is the
“block diagonal” matrix

T =


C1

C2

. . .
Ct

 ,

where each Ci is the companion matrix of φi (see Example 15.1).

2

Exercise 19.23. Let us adopt the same assumptions and notation as in
Exercise 19.21.

(a) Using the result of that exercise, show that V is isomorphic, as an
F [X]-module, to a direct product of F [X]-modules

F [X]/(pe1
1 )× · · · × F [X]/(per

r ),

where the pi are monic irreducible polynomials (not necessarily dis-
tinct) and the ei are positive integers, and this direct product is unique
up to the order of the factors.
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(b) Using part (a), show that there exists an ordered basis for V over
F , with respect to which the matrix representing τ is the “block
diagonal” matrix

T ′ =


C ′

1

C ′
2

. . .
C ′

r

 ,

where each C ′
i is the companion matrix of pei

i .

2

Exercise 19.24. Let us adopt the same assumptions and notation as in
Exercise 19.21.

(a) Suppose α ∈ V corresponds to ([f1 mod φ1], . . . , [ft mod φt]) ∈ V ′

under the isomorphism of that exercise. Show that the F [X]-order of
α is generated by the polynomial

lcm(φ1/ gcd(f1, φ1), . . . , φt/ gcd(ft, φt)).

(b) Using part (a), give a short and simple proof of the result of Exer-
cise 19.19.

2

19.7 Notes

Berlekamp [14] and Massey [56] discuss an algorithm for finding the minimal
polynomial of a linearly generated sequence that is closely related to the one
presented in §19.2, and which has a similar complexity. This connection
between Euclid’s algorithm and finding minimal polynomials of linearly
generated sequences has been observed by many authors, including Mills
[60], Welch and Scholtz [94], and Dornstetter [30].

The algorithm presented in §19.3, is due to Wiedemann [95], as are
the algorithms for solving sparse linear systems in §19.4, as well as the
statement and proof outline of the result in Exercise 19.19.

Our proof of Theorem 19.5 is based on an exposition by Morrison [61].
Exercise 19.7 is based on an algorithm of Brent and Kung [17]. Using

fast matrix and polynomial arithmetic, Shoup [87] shows how to implement
the algorithms in §19.5 so as to use just O(`(ω+1)/2) operations in F , where
ω is the exponent for matrix multiplication, and so (ω + 1)/2 < 1.7.



Chapter 20

Finite Fields

This chapter develops some of the basic theory of finite fields. As we already
know (see Theorem 9.7), every finite field must be of cardinality pw, for
some prime p and positive integer w. The main results of this chapter are:

• for any prime p and positive integer w, there exists a finite field of
cardinality pw, and

• any two finite fields of the same cardinality are isomorphic.

20.1 Preliminaries

In this section, we prove a few simple facts that will be useful in this and
later chapters; also, for the reader’s convenience, we recall a few basic
algebraic concepts that were discussed in previous chapters, but which will
play important roles in this chapter.

Theorem 20.1. Let F be a field, and let k, ` be positive integers. Then
Xk − 1 divides X` − 1 if and only if k divides `.

Proof. Let ` = kq + r, with 0 ≤ r < k. We have

X` ≡ XkqXr ≡ Xr (mod Xk − 1),

and Xr ≡ 1 (mod Xk − 1) if and only if r = 0. 2

Theorem 20.2. Let a ≥ 2 be an integer and let k, ` be positive integers.
Then ak − 1 divides a` − 1 if and only if k divides `.

Proof. The proof is analogous to that of Theorem 20.1. We leave the
details to the reader. 2

One may combine these two theorems, obtaining:

415



416 Finite Fields

Theorem 20.3. Let a ≥ 2 be an integer, k, ` be positive integers, and F

a field. Then Xak − X divides Xa` − X if and only if k divides `.

Proof. We have Xak−X divides Xa`−X iff Xak−1−1 divides Xa`−1−1, and by
Theorem 20.1, this happens iff ak−1 divides a`−1, which by Theorem 20.2
happens iff k divides `. 2

Let F be a field. A polynomial f ∈ F [X] is called square-free if it is not
divisible by the square of any polynomial of degree greater than zero. Using
formal derivatives, we obtain the following useful criterion for establishing
that a polynomial is square-free:

Theorem 20.4. If F is a field, and f ∈ F [X] with gcd(f,D(f)) = 1, then
f is square-free.

Proof. Suppose f is not square-free, and write f = g2h, for g, h ∈ F [X]
with deg(g) > 0. Taking formal derivatives, we have

D(f) = 2gD(g)h + g2D(h),

and so clearly, g is a common divisor of f and D(f). 2

We end this section by recalling some concepts discussed earlier, mainly
in §17.1, §17.5, and §17.6.

Suppose F is a field, and E is an extension field of F ; that is, F is a
subfield of E, or F is embedded in E via some canonical embedding, and
we identify elements of F with their images in E under this embedding. We
may naturally view E as an F -vector space. Assume that as an F -vector
space, E has finite dimension ` > 0. This dimension ` is called the degree
of E over F , and is denoted (E : F ); moreover, E is called a finite extension
of F .

We may also naturally view E as an F -algebra, either via the inclusion
map or via some canonical embedding. Let E′ be another field extension
of F , and let ρ : E → E′ be a ring homomorphism (which in fact, must be
injective). Then ρ is an F -algebra homomorphism if and only if ρ(a) = a
for all a ∈ F .

For any α ∈ E, the set F [α] = {g(α) : g ∈ F [X]} is a subfield of E
containing F . Moreover, there exists a non-zero polynomial g of degree
at most ` such that g(α) = 0. The monic polynomial φ of least degree
such that φ(α) = 0 is called the minimal polynomial of α over F , and
this polynomial is irreducible over F . The field F [X]/(φ) is isomorphic, as
an F -algebra, to F [α], via the map that sends [g mod φ] ∈ F [X]/(φ) to
g(α) ∈ F [α]. We have (F [α] : F ) = deg(φ), and this value is called the
degree of α over F . If E′ is an extension field of F , and if ρ : F [α]→ E′ is
an F -algebra homomorphism, then the action of ρ is completely determined
by its action on α; indeed, for any g ∈ F [X], we have ρ(g(α)) = g(ρ(α)).
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20.2 The Existence of Finite Fields

Let F be a finite field. As we saw in Theorem 9.7, F must have cardinality
pw, where p is prime and w is a positive integer, and p is the characteristic of
F . However, we can say a bit more than this. As discussed in Example 9.41,
the field Zp is embedded in F , and so we may simply view Zp as a subfield
of F . Moreover, it must be the case that w is equal to (F : Zp).

We want to show that there exist finite fields of every prime-power
cardinality. Actually, we shall prove a more general result:

If F is a finite field, then for every integer ` ≥ 1, there exists
an extension field E of degree ` over F .

For the remainder of this section, F denotes a finite field of cardinality
q = pw, where p is prime and w ≥ 1.

Suppose for the moment that E is an extension of degree ` over F . Let
us derive some basic facts about E. First, observe that E has cardinality
q`. By Theorem 9.16, E∗ is cyclic, and the order of E∗ is q` − 1. If γ ∈ E∗

is a generator for E∗, then every non-zero element of E can be expressed
as a power of γ; in particular, every element of E can be expressed as a
polynomial in γ with coefficients in F ; that is, E = F [γ]. Let φ ∈ F [X] be
the minimal polynomial of γ over F , which is an irreducible polynomial of
degree `. It follows that F is isomorphic (as an F -algebra) to F [X]/(φ).

So we have shown that any extension of F of degree ` must be isomor-
phic, as an F -algebra, to F [X]/(φ) for some irreducible polynomial φ ∈ F [X]
of degree `. Conversely, given any irreducible polynomial φ over F of de-
gree `, we can construct the finite field F [X]/(φ), which has degree ` over
F . Thus, the question of the existence of a finite fields of degree ` over F
reduces to the question of the existence of an irreducible polynomial over
F of degree `.

We begin with a simple generalization Fermat’s little theorem:

Theorem 20.5. For any a ∈ F ∗, we have aq−1 = 1, and for any a ∈ F ,
we have aq = a.

Proof. The multiplicative group of units F ∗ of F has order q−1, and hence,
every a ∈ F ∗ satisfies the equation aq−1 = 1. Multiplying this equation by
a yields aq = a for all a ∈ F ∗, and this latter equation obviously holds for
a = 0 as well. 2

Theorem 20.6. We have

Xq − X =
∏
a∈F

(X− a).
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Proof. The polynomial

(Xq − X)−
∏
a∈F

(X− a)

has degree less than q, but has q distinct roots (namely, every element of
F ), and hence must be the zero polynomial. 2

The following theorem generalizes Example 17.6:

Theorem 20.7. Let E be an F -algebra. Then the map ρ : E → E that
sends α ∈ E to αq is an F -algebra homomorphism.

Proof. Recall that E being an F -algebra simply means that E is a ring
and that there is a ring homomorphism τ : F → E, and because F is a
field, either τ is injective or E is trivial. Also, recall that ρ being an F -
algebra homomorphism simply means that ρ is a ring homomorphism and
ρ(τ(a)) = τ(a) for all a ∈ F .

Now, if E is trivial, there is nothing to prove. Otherwise, as E contains a
copy of F , it must have characteristic p. Since q is a power of the character-
istic, the fact that ρ is a ring homomorphism follows from the discussion in
Example 9.42. Moreover, by Theorem 20.5, we have τ(a)q = τ(aq) = τ(a)
for all a ∈ F . 2

Theorem 20.8. Let E be a finite extension of F , and consider the map
σ : E → E that sends α ∈ E to αq ∈ E. Then σ is an F -algebra automor-
phism on E. Moreover, if α ∈ E is such that σ(α) = α, then α ∈ F .

Proof. The fact that σ is an F -algebra homomorphism follows from
the previous theorem. Any ring homomorphism from a field into a field
is injective (see Exercise 9.32). Surjectivity follows from injectivity and
finiteness.

For the second statement, observe that σ(α) = α if and only of α is a
root of the polynomial Xq − X, and since all q elements of F are already
roots of this polynomial, there can be no other roots. 2

The map σ defined in Theorem 20.8 is called the Frobenius map on
E over F . As it plays a fundamental role in the study of finite fields, let
us develop a few simple properties right away.

Since the composition of two F -algebra automorphisms is also an F -
algebra automorphism, for any i ≥ 0, the i-fold composition σi that sends
α ∈ E to αqi

is also an F -algebra automorphism.
Since σ is an F -algebra automorphism, the inverse function σ−1 is also

an F -algebra automorphism. Hence, σi is an F -algebra automorphism for
all i ∈ Z. If E has degree ` over F , then applying Theorem 20.5 to the
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field E, we see that σ` is the identity map, from which it follows that
σ−1 = σ`−1. More generally, we see that for any i ∈ Z, we have σi = σj ,
where j = i rem `.

Thus, in considering integer powers of σ, we need only consider the
powers σ0, σ1, . . . , σ`−1. Furthermore, the powers σ0, σ1, . . . , σ`−1 are all
distinct maps. To see this, assume that σi = σj for some i, j with 0 ≤ i <
j < `. Then σj−i would be the identity map, which would imply that all
of the q` elements of E were roots of the polynomial Xqj−i − X, which is a
non-zero polynomial of degree less that q`, and this yields a contradiction.

The following theorem generalizes Theorem 20.6:

Theorem 20.9. For k ≥ 1, let Pk denote the product of all the monic
irreducible polynomials in F [X] of degree k. For all positive integers `, we
have

Xq`

− X =
∏
k|`

Pk,

where the product is over all positive divisors k of `.

Proof. First, we claim that the polynomial Xq` − X is square-free. This
follows immediately from Theorem 20.4, since D(Xq` − X) = q`Xq`−1 − 1 =
−1.

So we have reduced the proof to showing that if f is a monic irreducible
polynomial of degree k, then f divides Xq` − X if and only if k | `. Let
E := F [X]/(f), and let η := [X mod f ] ∈ E, which is a root of f .

For the first implication, assume that f divides Xq` − X. We want to
show that k | `. Now, if Xq` − X = fg, then ηq` − η = f(η)g(η) = 0, so
ηq`

= η. Therefore, if σ is the Frobenius map on E over F , then we have
σ`(η) = η. We claim that σ`(α) = α for all α ∈ E. To see this, recall from
Theorem 17.1 that for all h ∈ F [X] and β ∈ E, we have σ`(h(β)) = h(σ`(β)).
Moreover, any α ∈ E can be expressed as h(η) for some h ∈ F [X], and so

σ`(α) = σ`(h(η)) = h(σ`(η)) = h(η) = α.

That proves the claim.
From the claim, it follows that every element of E is a root of Xq` − X.

That is,
∏

α∈E(X− α) divides Xq` − X. Applying Theorem 20.6 to the field
E, we see that

∏
α∈E(X− α) = Xqk − X, and hence Xqk − X divides Xq` − X.

By Theorem 20.3, this implies k divides `.
For the second implication, suppose that k | `. We want to show that

f | Xq` − X. Since f is the minimal polynomial of η, and since η is a root
of Xqk − X, we must have that f divides Xqk − X. Since k | `, and applying
Theorem 20.3 once more, we see that Xqk − X divides Xq` − X. That proves
the second implication, and hence, the theorem. 2
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For ` ≥ 1, let Π(`) denote the number of monic irreducible polynomials
of degree ` in F [X].

Theorem 20.10. For all ` ≥ 1, we have

q` =
∑
k|`

kΠ(k). (20.1)

Proof. Just equate the degrees of both sides of the identity in Theo-
rem 20.9. 2

From Theorem 20.10 it is easy to deduce that Π(`) > 0 for all `, and in
fact, one can prove a density result — essentially a “prime number theorem”
for polynomials over finite fields:

Theorem 20.11. For all ` ≥ 1, we have

q`

2`
≤ Π(`) ≤ q`

`
, (20.2)

and

Π(`) =
q`

`
+ O

(
q`/2

`

)
. (20.3)

Proof. First, since all the terms in the sum on the right hand side of
(20.1) are non-negative, and `Π(`) is one of these terms, we may deduce
that `Π(`) ≤ q`, which proves the second inequality in (20.2). Since this
holds for all `, we have

`Π(`) = q` −
∑
k|`
k<`

kΠ(k) ≥ q` −
∑
k|`
k<`

qk ≥ q` −
b`/2c∑
k=1

qk.

Let us set

S(q, `) :=
b`/2c∑
k=1

qk =
q

q − 1
(qb`/2c − 1),

so that `Π(`) ≥ q` − S(q, `). It is easy to see that S(q, `) = O(q`/2), which
proves (20.3). For the first inequality of (20.2), it suffices to show that
S(q, `) ≤ q`/2. One can check this directly for ` ∈ {1, 2, 3} (verify), and for
` ≥ 4, we have

S(q, `) ≤ q`/2+1 ≤ q`−1 ≤ q`/2.

2

We note that the inequalities in (20.2) are tight, in the sense that Π(`) =
q`/2` when q = 2 and ` = 2, and Π(`) = q` when ` = 1. The first inequality
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in (20.2) implies not only that Π(`) > 0, but that the fraction of all monic
degree ` polynomials that are irreducible is at least 1/2`, while (20.3) says
that this fraction gets arbitrarily close to 1/` as either q or ` are sufficiently
large.

Exercise 20.1. Starting from Theorem 20.10, show that

Π(`) = `−1
∑
k|`

µ(k)q`/k,

where µ is the Möbius function (see §2.6). 2

Exercise 20.2. How many irreducible polynomials of degree 30 over Z2

are there? 2

20.3 The Subfield Structure and Uniqueness
of Finite Fields

We begin with a result that holds for field extensions in general.

Theorem 20.12. Let E be an extension of a field F , and let σ be an
F -algebra automorphism on E. Then the set E′ := {α ∈ E : σ(α) = α} is
a subfield of E containing F .

Proof. By definition, σ acts as the identity function on F , and so F ⊆ E′.
To show that E′ is a subring of E, it suffices to show that E′ is closed under
addition and multiplication. To show that E′ is closed under addition, let
α, β ∈ E′. Then σ(α + β) = σ(α) + σ(β) = α + β, and hence α + β ∈ E′.
Replacing “+” by “·” in the above argument shows that E′ is closed under
multiplication. We conclude that E′ is a subring of E.

To complete the proof that E′ is a subfield of E, we need to show that
if 0 6= α ∈ E′ and β ∈ E with αβ = 1, then β ∈ E′. We have

αβ = 1 = σ(1) = σ(αβ) = σ(α)σ(β) = ασ(β),

and hence αβ = ασ(β); canceling α, we obtain β = σ(β), and so β ∈ E′. 2

The subfield E′ in the above theorem is called the subfield of E fixed
by σ. Turning our attention again to finite fields, the following theorem
completely characterizes the subfield structure of a finite field.

Theorem 20.13. Let E be an extension of degree ` of a finite field F ,
and let σ be the Frobenius map on E over F . Then the intermediate fields
E′, with F ⊆ E′ ⊆ E, are in one-to-one correspondence with the divisors k
of `, where the divisor k corresponds to the subfield of E fixed by σk, which
has degree k over F .
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Proof. Let q be the cardinality of F . Let k be a divisor of `. Now, by
Theorem 20.6, the polynomial Xq` −X splits into distinct linear factors over
E, and by Theorem 20.3, the polynomial Xqk − X divides Xq` − X. Hence,
Xqk − X also splits into distinct linear factors over E. This says that the
subfield of E fixed by σk, which consists of the roots of Xqk−X, has precisely
qk elements, and hence is an extension of degree k over F . That proves the
existence part of the theorem.

As for uniqueness, we have to show that any intermediate field is of this
type. Let E′ be an intermediate field of degree k over F . By Theorem 20.6,
we have Xqk − X =

∏
α∈E′(X− α) and Xq` − X =

∏
α∈E(X− α), from which

it follows that Xqk − X divides Xq` − X, and so by Theorem 20.3, we must
have k | `. There can be no other intermediate fields of the same degree k

over F , since the elements of such a field would also be roots of Xqk − X. 2

The next theorem shows that up to isomorphism, there is only one finite
field of a given cardinality.

Theorem 20.14. Let E,E′ be extensions of the same degree over a finite
field F . Then E and E′ are isomorphic as F -algebras.

Proof. Let q be of cardinality F , and let ` be the degree of the extensions.
As we have argued before, we have E′ = F [α′] for some α′ ∈ E′, and so E′ is
isomorphic as an F -algebra to F [X]/(φ), where φ is the minimal polynomial
of α′ over F . As φ is an irreducible polynomial of degree `, by Theorem 20.9,
φ divides Xq`−X, and by Theorem 20.6, Xq`−X =

∏
α∈E(X−α), from which

it follows that φ has a root α ∈ E. Since φ is irreducible, φ is the minimal
polynomial of α over F , and hence F [α] is isomorphic as an F -algebra to
F [X]/(φ). Since α has degree ` over F , we must have E = F [α]. 2

Exercise 20.3. This exercise develops an alternative proof for the exis-
tence of finite fields — however, it does not yield a density result for irre-
ducible polynomials. Let F be a finite field of cardinality q, and let ` ≥ 1
be an integer. Let E be a splitting field for the polynomial Xq` − X ∈ F [X]
(see Theorem 17.19), and let σ be the Frobenius map on E over F . Let
E′ be the subfield of E fixed by σ`. Show that E′ is an extension of F of
degree `. 2

Exercise 20.4. Let E be an extension of degree ` over a finite field F of
cardinality q. Show that at least half the elements of E have degree ` over
F , and that the total number of elements of degree ` over F is q` +O(q`/2).
2
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20.4 Conjugates, Norms and Traces

Throughout this section, F denotes a finite field of cardinality q, E denotes
an extension over F of degree `, and σ denotes the Frobenius map on E
over F .

Consider an element α ∈ E. We say that β ∈ E is conjugate to α
(over F ) if β = σi(α) for some i ∈ Z. The reader may verify that the
“conjugate to” relation is an equivalence relation. We call the equivalence
classes of this relation conjugacy classes, and we call the elements of the
conjugacy class containing α the conjugates of α.

Starting with α, we can start listing conjugates:

α, σ(α), σ2(α), . . . .

As σ` is the identity map, this list will eventually start repeating. Let
k be the smallest positive integer such that σk(α) = σi(α) for some i =
0, . . . , k − 1. It must be the case that i = 0 — otherwise, applying σ−1

to the equation σk(α) = σi(α) would yield σk−1(α) = σi−1(α), and since
0 ≤ i− 1 < k − 1, this would contradict the minimality of k.

Thus, α, σ(α), . . . , σk−1(α) are all distinct, and σk(α) = α. More-
over, for any i ∈ Z, we have σi(α) = σj(α), where j = i rem k, and so
α, σ(α), . . . , σk−1(α) are all the conjugates of α. Also, σi(α) = α if and
only if k divides i. Since σ`(α) = α, it must be the case that k divides `.

With α and k as above, consider the polynomial

φ :=
k−1∏
i=0

(X− σi(α)).

The coefficients of φ obviously lie in E, but we claim that in fact, they lie
in F . This is easily seen as follows. Consider the extension of the map
σ from E to E[X] that applies σ coefficient-wise to polynomials. This was
discussed in Example 9.48, where we saw that the extended map, which we
also denote by σ, is a ring homomorphism from E[X] into E[X]. Applying
σ to φ, we obtain

σ(φ) =
k−1∏
i=0

σ(X− σi(α)) =
k−1∏
i=0

(X− σi+1(α)) =
k−1∏
i=0

(X− σi(α)),

since σk(α) = α. Thus we see that σ(φ) = φ. Writing φ =
∑

i aiXi, we
see that σ(ai) = ai for all i, and hence by Theorem 20.8, ai ∈ F for all i.
Hence φ ∈ F [X]. We further claim that φ is the minimal polynomial of α.
To see this, let f ∈ F [X] be any polynomial over F for which α is a root.
Then for any integer i, by Theorem 17.1, we have

0 = σi(0) = σi(f(α)) = f(σi(α)).
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Thus, all the conjugates of α are also roots of f , and so φ divides f . That
proves that φ is the minimal polynomial of α. Since φ is the minimal
polynomial of α and deg(φ) = k, it follows that the number k is none other
than the degree of α over F .

Let us summarize the above discussion as follows:

Theorem 20.15. Let α ∈ E be of degree k over F , and let φ be the
minimal polynomial of α over F . Then k is the smallest positive integer
such that σk(α) = α, the distinct conjugates of α are α, σ(α), . . . , σk−1(α),
and φ factors over E (in fact, over F [α]) as

φ =
k−1∏
i=0

(X− σi(α)).

Another useful way of reasoning about conjugates is as follows. First,
if α = 0, then the degree of α over F is 1, and there is nothing more to
say, so let us assume that α ∈ E∗. If r is the multiplicative order of α,
then note that any conjugate σi(α) also has multiplicative order r — this
follows from the fact that for any positive integer s, αs = 1 if and only if
(σi(α))s = 1. Also, note that we must have r | |E∗| = q`−1, or equivalently,
q` ≡ 1 (mod r). Focusing now on the fact that σ is the q-power map, we
see that the degree k of α is the smallest positive integer such that αqk

= α,
which holds iff αqk−1 = 1, which holds iff qk ≡ 1 (mod r). Thus, the degree
of α over F is simply the multiplicative order of q modulo r. Again, we
summarize these observations as a theorem:

Theorem 20.16. If α ∈ E∗ has multiplicative order r, then the degree of
α over F is equal to the multiplicative order of q modulo r.

Let us define the polynomial

χ :=
`−1∏
i=0

(X− σi(α)).

It is easy to see, using the same type of argument as above, that χ ∈ F [X],
and indeed, that

χ = φ`/k.

The polynomial χ is called the characteristic polynomial of α (from
E to F ).

Two functions that are often useful are the “norm” and “trace.” The
norm of α (from E to F ) is defined as

NE/F (α) :=
`−1∏
i=0

σi(α),
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while the trace of α (from E to F ) is defined as

TrE/F (α) :=
`−1∑
i=0

σi(α).

It is easy to see that both the norm and trace of α are elements of F ,
as they are fixed by σ; alternatively, one can see this by observing that
they appear, possibly with a minus sign, as coefficients of the characteristic
polynomial χ — indeed, the constant term of χ is equal to (−1)`NE/F (α),
and the coefficient of X`−1 in χ is −TrE/F (α).

The following two theorems summarize the most important facts about
the norm and trace functions.

Theorem 20.17. The function NE/F , restricted to E∗, is a group ho-
momorphism from E∗ onto F ∗.

Proof. We have

NE/F (α) =
`−1∏
i=0

αqi

= α
P`−1

i=0 qi

= α(q`−1)/(q−1).

Since E∗ is a cyclic group of order q` − 1, the image of the (q` − 1)/(q −
1)-power map on E∗ is the unique subgroup of E∗ of order q − 1 (see
Theorem 8.31). Since F ∗ is a subgroup of E∗ of order q− 1, it follows that
the image of this power map is F ∗. 2

Theorem 20.18. The function TrE/F is an F -linear map from E onto
F .

Proof. The fact that TrE/F is an F -linear map is a simple consequence of
the fact that σ is an F -algebra automorphism (verify). As discussed above,
TrE/F maps into F . Since the image of TrE/F is a subspace of F , the
image is either {0} or F , and so it suffices to show that TrE/F does not
map all of E to zero. But an element α ∈ E is in the kernel of TrE/F if
and only of α is a root of the polynomial

X + Xq + · · ·+ Xq`−1
,

which has degree q`−1. Since E contains q` elements, not all elements of E
can lie in the kernel of TrE/F . 2

Example 20.1. As an application of some of the above theory, let us
investigate the factorization of the polynomial Xr − 1 over F , a finite field
of cardinality q. Let us assume that r > 0 and is relatively prime to q. Let
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E be a splitting field of Xr − 1 (see Theorem 17.19), so that E is a finite
extension of F in which Xr − 1 splits into linear factors:

Xr − 1 =
r∏

i=1

(X− αi).

We claim that the roots αi of Xr − 1 are distinct — this follows from
the Theorem 20.4 and the fact that gcd(Xr − 1, rXr−1) = 1.

Next, observe that the r roots of Xr − 1 in E actually form a subgroup
of E∗, and since E∗ is cyclic, this subgroup must be cyclic as well. So the
roots of Xr−1 form a cyclic subgroup of E∗ of order r. Let ζ be a generator
for this group. Then all the roots of Xr − 1 are contained in F [ζ], and so
we may as well assume that E = F [ζ].

Let us compute the degree of ζ over F . By Theorem 20.16, the degree
` of ζ over F is the multiplicative order of q modulo r. Moreover, the
φ(r) roots of Xr − 1 of multiplicative order r are partitioned into φ(r)/`
conjugacy classes, each of size `; indeed, as the reader is urged to verify,
these conjugacy classes are in one-to-one correspondence with the cosets of
the subgroup of Z∗r generated by [q mod r], where each such coset C ⊆ Z∗r
corresponds to the conjugacy class {ζa : [a mod r] ∈ C}.

More generally, for any s | r, any root of Xr−1 whose multiplicative order
is s has degree k over F , where k is the multiplicative order of q modulo
s. As above, the φ(s) roots of multiplicative order s are partitioned into
φ(s)/k conjugacy classes, which are in one-to-one correspondence with the
cosets of the subgroup of Z∗s generated by [q mod s].

This tells us exactly how Xr − 1 splits into irreducible factors over F .
Things are a bit simpler when r is prime, in which case, from the above
discussion, we see that

Xr − 1 = (X− 1)
(r−1)/`∏

i=1

fi,

where each fi is an irreducible polynomial of degree `, and ` is the multi-
plicative order of q modulo r.

In the above analysis, instead of constructing the field E using Theo-
rem 17.19, one could instead simply construct E as F [X]/(φ), where φ is any
irreducible polynomial of degree `, and where ` is the multiplicative order
of q modulo r. We know that such a polynomial φ exists by Theorem 20.11,
and since E has cardinality q`, and r | (q`− 1) = |E∗|, and E∗ is cyclic, we
know that E∗ contains an element ζ of multiplicative order r, and each of
the r distinct powers of ζ are roots of Xr − 1, and so this E is a splitting
field Xr − 1 over F . 2

Exercise 20.5. Let E be a finite extension of a finite field F . Show that
for a ∈ F , we have NE/F (a) = a` and TrE/F (a) = `a. 2
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Exercise 20.6. Let E be a finite extension of a finite field F . Let E′ be
an intermediate field, F ⊆ E′ ⊆ E. Show that

(a) NE/F (α) = NE′/F (NE/E′(α)), and

(b) TrE/F (α) = TrE′/F (TrE/E′(α)).

2

Exercise 20.7. Let F be a finite field, and let f ∈ F [X] be a monic
irreducible polynomial of degree `. Let E = F [X]/(f) = F [η], where η :=
[X mod f ].

(a) Show that
D(f)

f
=

∞∑
j=1

TrE/F (ηj−1)X−j .

(b) From part (a), deduce that the sequence

TrE/F (ηj−1) (j = 1, 2, . . .)

is linearly generated over F with minimal polynomial f .

(c) Show that one can always choose a polynomial f so that sequence in
part (b) is purely periodic with period q` − 1.

2

Exercise 20.8. Let F be a finite field, and f ∈ F [X] an irreducible poly-
nomial of degree k over F . Let E be an extension of degree ` over F . Show
that over E, f factors as the product of d distinct irreducible polynomials,
each of degree k/d, where d = gcd(k, `). 2

Exercise 20.9. Let E be a finite extension of a finite field F of charac-
teristic p. Show that if α ∈ E and 0 6= a ∈ F , and if α and α + a are
conjugate over F , then p divides the degree of α over F . 2

Exercise 20.10. Let F be a finite field of characteristic p. For a ∈ F ,
consider the polynomial f := Xq − X− a ∈ F [X].

(a) Show that if F = Zp and a 6= 0, then f is irreducible.

(b) More generally, show that if TrF/Zp
(a) 6= 0, then f is irreducible, and

otherwise, f splits into distinct linear factors over F .

2

Exercise 20.11. Let E be a finite extension of a finite field F . Let α, β ∈
E, where α has degree a over F , β has degree b over F , and gcd(a, b) = 1.
Show that α + β has degree ab over F . 2
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Exercise 20.12. Let E be a finite extension of a finite field F . Show that
any F -algebra automorphism on E must be a power of a the Frobenius map
on E over F . 2

Exercise 20.13. Show that for all primes p, the polynomial X4 + 1 is
reducible in Zp[X]. (Contrast this to the fact that this polynomial is irre-
ducible in Q[X], as discussed in Exercise 17.28.) 2

Exercise 20.14. This exercise depends on the concepts and results in
§19.6. Let F be a finite field and let E be an extension of degree `. Let σ
be the Frobenius map on E over F .

(a) Show that the minimal polynomial of σ over F is X` − 1.

(b) Show that there exists β ∈ E such that the minimal polynomial of β
under σ is X` − 1.

(c) Conclude that β, σ(β), . . . , σ`−1(β) is a basis for E over F . This type
of basis is called a normal basis.

2



Chapter 21

Algorithms for Finite Fields

This chapter discusses efficient algorithms for factoring polynomials over
finite fields, and related problems, such as testing if a given polynomial is
irreducible, and generating an irreducible polynomial of given degree.

Throughout this chapter, F denotes a finite field of cardinality
q and characteristic p, where q = pw for some positive integer
w.

In addition to performing the usual arithmetic and comparison opera-
tions in F , we assume that our algorithms have access to the numbers p, w,
and q, and have the ability to generate random elements of F . Generating
such a random field element will count as one “operation in F ,” along with
the usual arithmetic operations. Of course, the “standard” way of repre-
senting F as either Zp (if w = 1), or as the ring of polynomials modulo an
irreducible polynomial over Zp of degree w (if w > 1), satisfy the above re-
quirements, and also allow for the implementation of arithmetic operations
in F that take time O(len(q)2) on a RAM (using simple, quadratic-time
arithmetic for polynomials and integers).

21.1 Testing and Constructing Irreducible
Polynomials

Let f ∈ F [X] be a monic polynomial of degree ` > 0. We develop here an
efficient algorithm that determines if f is irreducible.

The idea is a simple application of Theorem 20.9. That theorem says
that for any integer k ≥ 1, the polynomial Xqk−X is the product of all monic
irreducibles whose degree divides k. Thus, gcd(Xq−X, f) is the product of all
the distinct linear factors of f . If f has no linear factors, then gcd(Xq2−X, f)
is the product of all the distinct quadratic irreducible factors of f . And so
on. Now, if f is not irreducible, it must be divisible by some irreducible

429
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polynomial of degree at most `/2, and if g is an irreducible factor of f of
minimal degree, say k, then we have k ≤ `/2 and gcd(Xqk − X, f) 6= 1.
Conversely, if f is irreducible, then gcd(Xqk − X, f) = 1 for all positive
integers k up to `/2. So to test if f is irreducible, it suffices to check if
gcd(Xqk − X, f) = 1 for all positive integers k up to `/2 — if so, we may
conclude that f is irreducible, and otherwise, we may conclude that f is
not irreducible. To carry out the computation efficiently, we note that if
h ≡ Xqk

(mod f), then gcd(h− X, f) = gcd(Xqk − X, f).
The above observations suggest the following algorithm, which takes as

input a monic polynomial f ∈ F [X] of degree ` > 0, and outputs true if f
is irreducible, and false otherwise:

Algorithm IPT:

h← X rem f
for k ← 1 to b`/2c do

h← hq rem f
if gcd(h− X, f) 6= 1 then return false

return true

The correctness of Algorithm IPT follows immediately from the above
discussion. As for the running time, we have:

Theorem 21.1. Algorithm IPT uses O(`3 len(q)) operations in F .

Proof. Consider an execution of a single iteration of the main loop. The
cost of the qth-powering step (using a standard repeated-squaring algo-
rithm) is O(len(q)) multiplications modulo f , and so O(`2 len(q)) opera-
tions in F . The cost of the gcd computation is O(`2) operations in F .
Thus, the cost for a single loop iteration is O(`2 len(q)) operations in F ,
from which it follows that the cost for the entire algorithm is O(`3 len(q))
operations in F . 2

Algorithm IPT is a “polynomial time” algorithm, since the length of the
binary encoding of the input is about ` len(q), and so the algorithm runs in
time polynomial in its input length, assuming that arithmetic operations in
F run take time polynomial in len(q). Indeed, using a standard representa-
tion for F , each operation in F takes time O(len(q)2) on a RAM, and so the
running time on a RAM for the above algorithm would be O(`3 len(q)3),
that is, cubic in the bit-length of the input.

Let us now consider the related problem of constructing an irreducible
polynomial of specified degree ` > 0. To do this, we can simply use the
result of Theorem 20.11, which has the following probabilistic interpreta-
tion: if we choose a random, monic polynomial f of degree ` over F , then
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the probability that f is irreducible is Θ(1/`). This suggests the following
probabilistic algorithm:

Algorithm RIP:

repeat
choose f0, . . . , f`−1 ∈ F at random
set f ← X` +

∑`−1
i=0 fiXi

test if f is irreducible using Algorithm IPT
until f is irreducible
output f

Theorem 21.2. Algorithm RIP uses an expected number of O(`4 len(q))
operations in F , and its output is uniformly distributed over all monic ir-
reducibles of degree `.

Proof. Because of Theorem 20.11, the expected number of loop iterations
of the above algorithm is O(`). Since Algorithm IPT uses O(`3 len(q))
operations in F , the statement about the running time of Algorithm RIP
is immediate. The statement about its output distribution is clear. 2

The expected running-time estimate in Theorem 21.2 is actually a bit
of an over-estimate. The reason is that if we generate a random polynomial
of degree `, it is likely to have a small irreducible factor, which will be
discovered very quickly by Algorithm IPT. In fact, it is known (see §21.7)
that the expected value of the least degree irreducible factor of a random
monic polynomial of degree ` over F is O(len(`)), from which it follows
that the expected number of operations in F performed by Algorithm RIP
is actually O(`3 len(`) len(q)).

Exercise 21.1. Design and analyze a deterministic algorithm that takes
as input a list of irreducible polynomials f1, . . . , fr ∈ F [X], where `i :=
deg(fi) for i = 1, . . . , r, and ` :=

∑r
i=1 `i. Assuming that the degrees

`1, . . . , `r are pairwise relatively prime, your algorithm should output an
irreducible polynomial f ∈ F [X] of degree ` using O(`3) operations in F . 2

Exercise 21.2. Let f ∈ F [X] be a monic irreducible polynomial of degree
`, let E := F [X]/(f), and let η := [X mod f ] ∈ E. Design and analyze a
deterministic algorithm that takes as input the polynomial f defining the
extension E, and outputs the values

sj := TrE/F (ηj) ∈ F (j = 0, . . . , `− 1),
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using O(`2) operations in F . Show that given an arbitrary α ∈ E, along
with the values s0, . . . , s`−1, one can compute TrE/F (α) using just O(`)
operations in F . 2

Exercise 21.3. Design and analyze a probabilistic algorithm that given
a monic irreducible polynomial f ∈ F [X] of degree ` as input, generates
as output a random monic irreducible polynomial g ∈ F [X] of degree `
(i.e., g should be uniformly distributed over all such polynomials), using an
expected number of O(`2.5) operations in F . 2

Exercise 21.4. Let f ∈ F [X] be a monic polynomial of degree ` > 0.
Also, let η := [X mod f ] ∈ E, where E is the F -algebra E := F [X]/(f).

(a) Show how to compute — given as input α ∈ E and ηqm ∈ E (for some
integer m > 0) — the value αqm ∈ E, using just O(`2.5) operations
in F . Hint: see Theorems 17.1 and 20.7, as well as Exercise 19.7.

(b) Show how to compute — given as input ηqm ∈ E and ηqm′

∈ E,
where m and m′ are positive integers — the value ηqm+m′

∈ E, using
O(`2.5) operations in F .

(c) Show how to compute — given as input ηq ∈ E and a positive integer
m — the value ηqm ∈ E, using O(`2.5 len(m)) operations in F . Hint:
use a repeated-squaring-like algorithm.

2

Exercise 21.5. This exercise develops an alternative irreducibility test.

(a) Show that a monic polynomial f ∈ F [X] of degree ` > 0 is irreducible
if and only if Xq` ≡ X (mod f) and gcd(Xq`/s − X, f) = 1 for all primes
s | `.

(b) Using part (a) and the result of the previous exercise, show how to
determine if f is irreducible using O(`2.5 len(`)k+`2 len(q)) operations
in F , where k is the number of distinct prime factors of `.

(c) Show that the operation count in part (b) can be reduced to
O(`2.5 len(`) len(k) + `2 len(q)). Hint: see Exercise 3.29.

2

21.2 Computing Minimal Polynomials in
F [X]/(f) (III)

We consider, for the third and final time, the problem considered in §18.3
and §19.5: f ∈ F [X] is a monic polynomial of degree ` > 0, and E :=
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F [X]/(f) = F [η], where η := [X mod f ]; we are given an element α ∈ E,
and want to compute the minimal polynomial φ ∈ F [X] of α over F . We
develop an alternative algorithm, based on the theory of finite fields. Unlike
the algorithms in §18.3 and §19.5, this algorithm only works when F is finite
and the polynomial f is irreducible, so that E is also a finite field.

From Theorem 20.15, we know that the degree of α over F is the smallest
positive integer k such that αqk

= α. By successive qth powering, we can
compute the conjugates of α, and determine the value k, using O(k len(q))
operations in E, and hence O(k`2 len(q)) operations in F .

Now, we could simply compute the minimal polynomial φ by directly
using the formula

φ(Y) =
k−1∏
i=0

(Y− αqi

). (21.1)

This would involve computations with polynomials in the variable Y whose
coefficients lie in the extension field E, although at the end of the compu-
tation, we would end up with a polynomial all of whose coefficients lie in
F . The cost of this approach would be O(k2) operations in E, and hence
O(k2`2) operations in F .

A more efficient approach is the following. Substituting η for Y in the
identity (21.1), we have

φ(η) =
k−1∏
i=0

(η − αqi

).

Using this formula, we can compute (given the conjugates of α) the value
φ(η) ∈ E using O(k) operations in E, and hence O(k`2) operations in
F . Now, φ(η) is an element of E, and for computational purposes, it is
represented as [g mod f ] for some polynomial g ∈ F [X] of degree less than
`. Moreover, φ(η) = [φ mod f ], and hence φ ≡ g (mod f). In particular, if
k < `, then g = φ; otherwise, if k = `, then g = φ − f . In either case, we
can recover φ from g with an additional O(`) operations in F .

Thus, given the conjugates of α, we can compute φ using O(k`2) op-
erations in F . Adding in the cost of computing the conjugates, this gives
rise to an algorithm that computes the minimal polynomial of α using
O(k`2 len(q)) operations in F .

In the worst case, then, this algorithm uses O(`3 len(q)) operations in
F . A reasonably careful implementation needs space for storing a constant
number elements of E, and hence O(`) elements of F . For very small
values of q, the efficiency of this algorithm will be comparable to that of
the algorithm in §19.5, but for large q, it will be much less efficient. Thus,
this approach does not really yield a better algorithm, but it does serve to
illustrate some of the ideas of the theory of finite fields.
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21.3 Factoring Polynomials: The Cantor-
Zassenhaus Algorithm

In the remaining sections of this chapter, we develop efficient algorithms
for factoring polynomials over the finite field F .

The algorithm we discuss in this section is due to Cantor and Zassen-
haus. The algorithm has two stages:

distinct degree factorization: The input polynomial is decomposed
into factors so that each factor is a product of distinct irreducibles of
the same degree (and the degree of those irreducibles is also deter-
mined).

equal degree factorization: Each of the factors produced in the distinct
degree factorization stage are further factored into their irreducible
factors.

The algorithm we present for distinct degree factorization is a determin-
istic, polynomial-time algorithm. The algorithm we present for equal degree
factorization is a probabilistic algorithm that runs in expected polynomial
time (and whose output is always correct).

21.3.1 Distinct degree factorization

The problem, more precisely stated, is this: given a monic polynomial
f ∈ F [X] of degree `, produce a list of polynomial/integer pairs (g, k),
where

• each g is a product of distinct monic irreducible polynomials of degree
k, and

• the product of all the polynomials g in the list is equal to f .

This problem can be easily solved using Theorem 20.9, using a simple
variation of the algorithm we discussed in §21.1 for irreducibility testing.
The basic idea is this. We can compute g := gcd(Xq − X, f), so that g is
the product of all the distinct linear factors of f . We can remove the factor
g from f , but after doing so, f may still contain some linear factors (if
the original polynomial was not square-free), and so we have to repeat the
above step until no linear factors are discovered. Having removed all linear
factors from f , we next compute gcd(Xq2 − X, f), which will be the product
of all the distinct quadratic irreducibles dividing f , and we can remove
these from f — although Xq2 − X is the product of all linear and quadratic
irreducibles, since we have already removed the linear factors from f , the
gcd will give us just the quadratic factors of f . As above, we may have
to repeat this a few times to remove all the quadratic factors from f . In
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general, for k = 1, . . . , `, having removed all the irreducible factors of degree
less than k from f , we compute gcd(Xqk − X, f) to obtain the product of all
the distinct irreducible factors of f of degree k, repeating as necessary to
remove all such factors.

The above discussion yields the following algorithm, which takes as
input a monic polynomial f ∈ F [X] of degree ` > 0:

Algorithm DDF:

h← X rem f
k ← 1
while f 6= 1 do

h← hq rem f
g ← gcd(h− X, f)
while g 6= 1 do

output (g, k)
f ← f/g
h← h rem f
g ← gcd(h− X, f)

k ← k + 1

The correctness of Algorithm DDF follows from the discussion above.
As for the running time:

Theorem 21.3. Algorithm DDF uses O(`3 len(q)) operations in F .

Proof. Note that the body of the outer loop is executed at most ` times,
since after ` iterations, we will have removed all the factors of f . Thus,
we perform at most ` qth-powering steps, each of which takes O(`2 len(q))
operations in F , and so the total contribution to the running time of these is
O(`3 len(q)) operations in F . We also have to take into account the cost of
the gcd computations. We perform one gcd computation in every iteration
of the main loop, for a total of ` such computations. We also perform
an “extra” gcd computation whenever we discover a non-trivial factor of
f ; however, since we only discover at most ` such non-trivial factors, we
perform at most ` such “extra” gcd computations. So the total number of
gcd computations is at most 2`, and as each of these takes O(`2) operations
in F , they contribute a term of O(`3) to the total operation count. This
term is dominated by the cost of the qth-powering steps (as is the cost of
the division step in the inner loop), and so the total cost of Algorithm DDF
is O(`3 len(q)) operations in F . 2
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21.3.2 Equal degree factorization

The problem, more precisely stated, is this: given a monic polynomial
g ∈ F [X] of degree ` > 0, and an integer k > 0, such that g is of the form

g = g1 · · · gr

for distinct monic irreducible polynomials g1, . . . , gr, compute these irre-
ducible factors of g. Note that given g and k, the value of r easily deter-
mined, since r = `/k.

If r = 1, we have nothing to do. So assume that r > 1.
By the Chinese remainder theorem, we have an F -algebra isomorphism

θ : E1 × · · · × Er → E,

where for i = 1, . . . , r, Ei is the extension field F [X]/(gi) of degree k over
F , and E is the F -algebra E := F [X]/(g).

We have to treat the cases p = 2 and p > 2 separately. We first treat
the case p = 2. Let us define the function F : E → E that sends α ∈ E to∑wk−1

j=0 α2j

(the algorithm in the case p > 2 will only differ in the definition
of F). Note that each Ei is an extension of Z2 of degree wk. For α ∈ E, if
α = θ(α1, . . . , αr), then we have

F(α) =
∑

j

(θ(α1, . . . , αr))2
j

=
∑

j

θ(α2j

1 , . . . , α2j

r )

= θ(
∑

j

α2j

1 , . . . ,
∑

j

α2j

r )

= θ(TrE1/Z2(α1), . . . ,TrEr/Z2(αr)).

That is, F acts component-wise as the trace from Ei to Z2.
Now, suppose we choose α ∈ E at random. Then if α = θ(α1, . . . , αr),

the αi will be independently distributed, with each αi uniformly distributed
over Ei. Since TrEi/Z2 is an F -linear map from Ei onto Z2, it follows that
the values ci := TrEi/Z2(αi) will be independently and uniformly dis-
tributed over Z2. Thus, if a := rep(F(α)) (i.e., a ∈ F [X] is the polynomial
of degree less than ` such that F(α) = [a mod g]), then gcd(a, g) will be
the product of those factors gi of g such that ci = 0. We will fail to get a
non-trivial factorization only if the ci are either all 0 or all 1, which in the
worst case, when r = 2, happens with probability 1/2.

So our equal degree factorization algorithm in this case is a probabilis-
tic, recursive algorithm that takes as input a monic polynomial g ∈ F [X] of
degree ` (we allow ` = 0 to simplify the recursion), and an integer k > 0,
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such that g is the product of r := `/k distinct monic irreducible poly-
nomials, each of degree k, and runs as follows, where E := F [X]/(g) and
F : E → E is the map that sends α to

∑wk−1
j=0 α2j

:

Algorithm EDF:

If r = 0 then
return

if r = 1 then
output g, return

choose α at random from E
d← gcd(rep(F(α)), g)
recursively factor g and g/d

The correctness of Algorithm EDF follows from the above discussion.
As for its expected running time, we can get a quick-and-dirty upper bound
as follows:

• The expected number of trials until we get a non-trivial split is O(1).

• Each trial costs O(k`2 len(q)) operations in F .

• The algorithm finishes after getting r − 1 non-trivial splits.

• Therefore, the total expected cost is O(rk`2 len(q)), or O(`3 len(q)),
operations in F .

This analysis gives a bit of an over-estimate — it does not take into account
the fact that we expect to get fairly “balanced” splits. For the purposes
of analyzing the overall running time of the Cantor-Zassenhaus algorithm,
this bound suffices; however, the following analysis gives a tight bound:

Theorem 21.4. In the case p = 2, Algorithm EDF uses an expected num-
ber of O(k`2 len(q)) operations in F .

Proof. First, let us analyze the cost of a single invocation of the body the
algorithm, not counting the cost of the recursive calls. This is dominated by
the cost of computing F(α), which is O(wk`2), or O(k`2 len(q)), operations
in F .

Second, let us analyze the expected value of the depth D of the recursion
tree associated with the computation. To be more precise, let us say that
the root of the tree is at level 1, the children of the root are at level 2, and
so on. D is the maximum level of any “internal” node in the recursion tree
at which there remain some unsplit factors. We claim that E[D] = O(len r).
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To prove this claim, we use of the fact that

E[D] =
∑
t≥1

P[D ≥ t].

For i = 1, . . . , r and j = i + 1, . . . , r, define Dij to be the number of levels
in the recursion tree in which the factors gi and gj remain unseparated.
Now, at any invocation of the body of the recursive step, if gi and gj have
not been separated, then they will be with probability 1/2. It follows that

P[Dij ≥ t] ≤ 2−(t−1).

Also note that D ≥ t implies that Dij ≥ t for some i, j, and hence

P[D ≥ t] ≤
r∑

i=1

r∑
j=i+1

P[Dij ≥ t] ≤ r22−t.

So we have

E[D] =
∑
t≥1

P[D ≥ t]

=
∑

t≤2 log2 r

P[D ≥ t] +
∑

t>2 log2 r

P[D ≥ t]

≤ 2 log2 r +
∑

t>2 log2 r

r22−t

≤ 2 log2 r +
∑
t≥0

2−t

= 2 log2 r + 2.

That proves the claim.
Third, consider any one level in the recursion tree, and suppose there

are s internal nodes in the tree at this level, and that there are ri irre-
ducible factors at the ith such node, for i = 1, . . . , s, so that

∑s
i=1 ri ≤ r.

The amount of work done at the ith node at this level is O(r2
i k3 len(q))

operations in F , and so the total amount of work done at this level is O(τ)
operations in F , where

τ =
s∑

i=1

r2
i k3 len(q)

= k3 len(q)
s∑

i=1

r2
i ≤ k3 len(q)

( s∑
i=1

ri

)2

≤ k3 len(q)r2

= k`2 len(q).
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Putting this all together, since expected depth of the recursion tree is
O(len(r)), and the total amount of work done at any one level in the recur-
sion tree is O(k`2 len(q)) operations in F , it follows that the expected num-
ber of operations in F performed by this algorithm is O(k`2 len(q) len(r)).
Unfortunately, this does not give us the result we want — we have an extra
multiplicative factor of len(r).

We have to work a bit harder to get the stated bound of O(k`2 len(q)).
There are a number of ways to do this. We sketch one such way, which is
a bit ad hoc, but sufficient for our purposes. Let us define

S :=
r∑

i=1

r∑
j=i+1

Dij .

We claim that the total work performed by the algorithm is O(k3 len(q)·
S). To see why this is so, consider any node in the recursion tree, and
suppose that at this node, we are trying to split gi1 · · · gim

, where 2 ≤
m ≤ r. The number of operations in F performed at this node is at most
ck3m2 len(q), for some constant c. Moreover, each pair of indices (ij , ij′),
with 1 ≤ j < j′ ≤ m, contributes 1 to the sum defining S, for a total
contribution from pairs at this node of m(m − 1)/2 ≥ m2/4. The claim
now follows immediately.

We next claim that E[Dij ] = O(1), for all i, j. Indeed,

E[Dij ] =
∑
t≥1

P[Dij ≥ t] ≤
∑
t≥1

2−(t−1) = 2.

It follows that the expected number of operations in F performed by
the algorithm is at most a constant times

k3 len(q)E[S] = k3 len(q)
r∑

i=1

r∑
j=i+1

E[Dij ] = O(k3 len(q)r2),

which is O(k`2 len(q)). 2

Now assume that p > 2, so that p, and hence also q, is odd. Each group
E∗

i is a cyclic group of order qk−1. Therefore, the image of the (qk−1)/2-
power map on E∗

i is {±1}. If we choose αi ∈ Ei at random, then either

αi = 0, which happens with probability 1/qk, or α
(qk−1)/2
i is equally likely

to be 1 or −1.
Consider the (qk − 1)/2-power map on E. For α ∈ E, if α =

θ(α1, . . . , αr), we have

α(qk−1)/2 = θ(α(qk−1)/2
1 , . . . , α(qk−1)/2

r ).
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Now, suppose we choose α ∈ E at random. Then if α = θ(α1, . . . , αr),
the αi will be independently distributed, with each αi uniformly distributed
over Ei. Moreover, the values ci := α

(qk−1)/2
i will be independently dis-

tributed, with each ci distributed as follows:

ci =

 0 with probability 1/qk,
1 with probability (qk − 1)/2qk,
−1 with probability (qk − 1)/2qk.

Thus, if a := rep(α(qk−1)/2−1), then gcd(a, g) will be the product of those
factors gi of g such that ci = 1. We will fail to get a non-trivial factorization
only if the ci are either all 1 or all not 1. Consider the worst case, namely,
when r = 2. In this case, a simple calculation shows that the probability
that we fail to split these two factors is(

qk − 1
2qk

)2

+
(

qk + 1
2qk

)2

=
1
2
(1 + 1/q2k).

The (very) worst case is when qk = 3, in which case the probability of
failure is at most 5/9.

So our equal degree factorization algorithm in this case is the same as
Algorithm EDF above, except that we define the function F : E → E so
that it sends α ∈ E to α(qk−1)/2 − 1.

The same quick-and-dirty analysis given just above Theorem 21.4 ap-
plies here as well, but just as before, we can do better:

Theorem 21.5. In the case p > 2, Algorithm EDF uses an expected num-
ber of O(k`2 len(q)) operations in F .

Proof. The analysis is essentially the same as in the case p = 2, except
that now the probability that we fail to split a given pair of irreducible
factors is at most 5/9, rather than equal to 1/2. The details are left as an
exercise for the reader. 2

21.3.3 Analysis of the whole algorithm

Given an arbitrary polynomial f ∈ F [X] of degree ` > 0, the distinct degree
factorization step takes O(`3 len(q)) operations in F . This step produces a
number of polynomials that must be subjected to equal degree factorization.
If there are s such polynomials, where the ith polynomial has degree `i, for
i = 1, . . . , s, then

∑s
i=1 `i = `. Now, the equal degree factorization step for

the ith polynomial takes an expected number of O(`3i len(q)) operations in F
(actually, our initial, “quick and dirty” estimate is good enough here), and
so it follows that the total expected cost of all the equal degree factorization
steps is O(

∑
i `3i len(q)), which is O(`3 len(q)), operations in F . Putting this

all together, we conclude:
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Theorem 21.6. The Cantor-Zassenhaus factoring algorithm uses an ex-
pected number of O(`3 len(q)) operations in F .

This bound is tight, since in the worst case, when the input is irreducible,
the algorithm really does do this much work.

Exercise 21.6. This exercise extends the techniques developed in Exer-
cise 21.4. Let f ∈ F [X] be a monic polynomial of degree ` > 0, and let
η := [X mod f ] ∈ E, where E := F [X]/(f). For integer m > 0 and α ∈ E
define

Tm(α) := α + αq + · · ·+ αqm−1
and Nm(α) := ααq · · ·αqm−1

.

(a) Show how to compute — given as input ηqm ∈ E and ηqm′

, where m
and m′ are positive integers, along with Tm(α) and Tm′(α), for some
α ∈ E — the values ηqm+m′

and Tm+m′(α), using O(`2.5) operations
in F .

(b) Using part (a), show how to compute — given as input ηq ∈ E, α ∈ E,
and a positive integer m — the value Tm(α), using O(`2.5 len(m))
operations in F .

(c) Repeat parts (a) and (b), except with “N” replacing “T .”

2

Exercise 21.7. Using the result of the previous exercise, show how to
implement Algorithm EDF so that it uses an expected number of

O(`2.5 len(k) + `2 len(q))

operations in F . 2

Exercise 21.8. This exercise depends on the concepts and results in
§19.6. Let F be a finite field of cardinality q and let E be an extension
of degree `, specified by an irreducible polynomial of degree ` over F . De-
sign and analyze an efficient probabilistic algorithm that finds a normal
basis for E over F (see Exercise 20.14). Hint: there are a number of ap-
proaches to solving this problem; one way is to start by factoring X` − 1
over F , and then turn the construction in Theorem 19.7 into an efficient
probabilistic procedure; if you mimic Exercise 11.2, your entire algorithm
should use O(`3 len(`) len(q)) operations in F (or O(`3 len(r) len(q)) oper-
ations, where r is the number of distinct irreducible factors of X` − 1 over
F ). 2
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21.4 Factoring Polynomials: Berlekamp’s Al-
gorithm

We now develop an alternative algorithm, due to Berlekamp, for factoring
a polynomial over the finite field F .

This algorithm usually starts with a pre-processing phase to reduce the
problem to that of factoring square-free polynomials. There are a number
of ways to carry out this step. We present a simple-minded method here
that is sufficient for our purposes.

21.4.1 A simple square-free decomposition algorithm

Let f ∈ F [X] be a monic polynomial of degree ` > 0. Suppose that f is
not square-free. According to Theorem 20.4, d := gcd(f,D(f)) 6= 1, and
so we might hope to get a non-trivial factorization of f by computing d;
however, we have to consider the possibility that d = f . Can this happen?
The answer is “yes,” but if it does happen that d = f , we can still get a
non-trivial factorization of f by other means:

Theorem 21.7. Suppose that f ∈ F [X] is a polynomial of degree ` > 0,
and that gcd(f,D(f)) = f . Then f = g(Xp) for some g ∈ F [X]. Moreover,
if g =

∑
i giXi, then f = hp, where h =

∑
i gp(w−1)

i Xi.

Proof. Since deg(D(f)) < deg(f), if gcd(f,D(f)) = f , then we must
have D(f) = 0. If f =

∑`
i=0 fiXi, then D(f) =

∑`
i=1 ifiXi−1. Since

this derivative must be zero, it follows that all the coefficients fi with
i 6≡ 0 (mod p) must be zero to begin with. That proves that f = g(Xp) for
some g ∈ F [X]. Furthermore, if h is defined as above, then

hp =
(∑

i

gp(w−1)

i Xi

)p

=
∑

i

gpw

i Xip =
∑

i

gi(Xp)i = g(Xp) = f.

2

This suggests the following recursive algorithm. The input is the poly-
nomial f as above, and a parameter s, which is set to 1 on the initial
invocation. The output is a list of pairs (gi, si) such that each gi is a
square-free, non-constant polynomial over F and f =

∏
i gsi

i .
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Algorithm SFD:

d← gcd(f,D(f))
if d = 1 then

output (f, s)
else if d 6= f then

recursively process (d, s) and (f/d, s)
else

let f = X` +
∑`−1

i=0 fiXi // note that fi = 0 except when p | i
set h← X`/p +

∑`/p−1
i=0 (fpi)pw−1

Xi // note that h = f1/p

recursively process (h, ps)

The correctness of Algorithm SFD follows from the discussion above.
As for its running time:

Theorem 21.8. Algorithm SFD uses O(`3 + `(w − 1) len(p)) operations
in F .

Proof. It is fairly easy to see that the total number of recursive invocations
is O(`) (verify). From this, it follows that the total cost contributed by
the gcd computations is O(`3) operations in F . The only remaining cost
to consider is that of computing the pw−1th powers in F (if w = 1, of
course, there is no cost). We claim that the total number of such powering
steps is at most `, and hence, if these are implemented using a repeated-
squaring algorithm, the total cost of these steps is O(`(w − 1) len(p)). To
prove this claim, let C(f) be the maximum number of pw−1th powering
steps performed for an input polynomial f . We prove by induction on the
recursion depth of the algorithm that C(f) ≤ deg(f) for all f . Now, if f is
square-free, then the algorithm halts immediately without performing any
powering steps, and so C(f) = 0 ≤ deg(f). Otherwise, if d = gcd(f,D(f))
is a proper divisor of f , the algorithm recursively processes d and f/d, and
so by induction,

C(f) = C(d) + C(f/d) ≤ deg(d) + deg(f/d) = deg(f).

Otherwise, the algorithm performs deg(f)/p powering steps, and recursively
processes a polynomial h of degree deg(f)/p, and so by induction

C(f) = deg(f)/p + C(h) ≤ 2 deg(f)/p ≤ deg(f).

2

The running-time bound in Theorem 21.8 is tight. This cubic behavior
is evoked, for example, on inputs that are powers of a single irreducible
polynomial of constant degree.
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Although it suffices for our immediate purpose as a pre-processing step
in Berlekamp’s factoring algorithm, Algorithm SFD is by no means the most
efficient algorithm possible for square-free decomposition of polynomials.
We return to this issue below, in §21.6.

21.4.2 The main factoring algorithm

Let us now assume we have a monic square-free polynomial f of degree ` > 0
that we want to factor into irreducibles, such as is output by the square-free
decomposition algorithm above. We first present the mathematical ideas
underpinning the algorithm.

Let E be the F -algebra E := F [X]/(f). We define a subset B of E as
follows:

B := {α ∈ E : αq = α}.

It is easy to see that B is a subalgebra of E. Indeed, for α, β ∈ B, we
have (α + β)q = αq + βq = α + β, and similarly, (αβ)q = αqβq = αβ.
Furthermore, one sees that cq = c for all c ∈ F , and hence B is a subalgebra.
The subalgebra B is called the Berlekamp subalgebra of E.

Let us take a closer look at the subalgebra B. To do this, suppose that
the factorization of f into irreducibles is

f = f1 · · · fr,

and let
θ : E1 × · · · × Er → E

be the F -algebra isomorphism from the Chinese remainder theorem, where
Ei := F [X]/(fi) is an extension field of F of finite degree for i = 1, . . . , r.
Now, for α = θ(α1, . . . , αr) ∈ E, we have αq = α if and only if αq

i = αi for
i = 1, . . . , r; moreover, by Theorem 20.8, we know that for any αi ∈ Ei,
we have αq

i = αi if and only if αi ∈ F . Thus, we may characterize B as
follows:

B = {θ(c1, . . . , cr) : c1, . . . , cr ∈ F}.

Since B is a subalgebra of E, then as F -vector spaces, B is a sub-
space of E. Of course, E has dimension ` over F , with the natural basis
1, η, . . . , η`−1, where η := [X mod f ]. As for the Berlekamp subalgebra,
from the above characterization of B, it is evident that

θ(1, 0, . . . , 0), θ(0, 1, 0, . . . , 0), . . . , θ(0, . . . , 0, 1)

is a basis for B over F , and hence, B has dimension r over F .
Now we come to the actual factoring algorithm.
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Stage 1: Construct a basis for B

The first stage of Berlekamp’s factoring algorithm constructs a basis for B
over F . We can easily do this using Gaussian elimination, as follows. Let
ρ : E → E be the map that sends α ∈ E to αq − α. Since the qth power
map on E is an F -algebra homomorphism (see Theorem 20.7) — and in
particular, an F -linear map — the map ρ is also F -linear. Moreover, the
kernel of ρ is none other than the Berlekamp subalgebra B. So to find a
basis for B, we simply need to find a basis for the kernel of ρ using Gaussian
elimination over F , as in §15.4.

To perform the Gaussian elimination, we need to choose an ordered
basis for E over F , and construct a matrix Q ∈ F `×` that represents
ρ with respect to that ordered basis as in §15.2, so that evaluation of ρ
corresponds to multiplying a row vector on the right by Q. We are free to
choose an ordered basis in any convenient way, and the most convenient
ordered basis, of course, is (1, η, . . . , η`−1), as this directly corresponds to
the way we represent elements of E for computational purposes. Let ε :
F 1×` → E be the F -vector space isomorphism that sends the coordinate
vector (a0, . . . , a`−1) to the corresponding element

∑
i aiη

i ∈ E. The maps
ε and ε−1 are best thought of as “type conversion operators” that require
no actual computation to evaluate. The matrix Q, then, is the `× ` matrix
whose ith row, for i = 1, . . . , `, is ε−1(ρ(ηi−1)). Note that if α := ηq, then

ρ(ηi−1) = (ηi−1)q − ηi−1 = (ηq)i−1 − ηi−1 = αi−1 − ηi−1.

This observation allows us to construct the rows of Q by first computing α
as ηq via repeated squaring, and then just computing successive powers of
α.

After we construct the matrix Q, we apply Gaussian elimination to get
row vectors v1, . . . , vr that form a basis for the row null space of Q. It is at
this point that our algorithm actually discovers the number r of irreducible
factors of f . We can then set βi := ε(vi) for i = 1, . . . , r to get our basis
for B.

Putting this altogether, we have the following algorithm to compute
a basis for the Berlekamp subalgebra. The algorithm takes as input a
monic square-free polynomial f of degree ` > 0, and runs as follows, where
E := F [X]/(f), η := [X mod f ] ∈ E, and ε : F 1×` → E is the map that
sends (a0, . . . , a`−1) to

∑
i aiη

i:
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Algorithm B1:

let Q be an `× ` matrix over F (initially with undefined entries)
compute α← ηq using repeated squaring
β ← 1E

for i← 1 to ` do
// invariant: β = αi−1 = (ηi−1)q

Q(i)← ε−1(β)
Q(i, i)← Q(i, i)− 1
β ← βα

compute a basis v1, . . . , vr of the row null space of Q using
Gaussian elimination

set βi ← ε(vi) for i = 1, . . . , r
output β1, . . . , βr

The correctness of Algorithm B1 is clear from the above discussion. As
for the running time:

Theorem 21.9. Algorithm B1 uses O(`2 len(q) + `3) operations in F .

Proof. This is just a matter of counting. The computation of α takes
O(len(q)) operations in E using repeated squaring, and hence O(`2 len(q))
operations in F . To build the matrix Q, we have to perform an additional
O(`) operations in E to compute the successive powers of α, which trans-
lates into O(`3) operations in F . Finally, the cost of Gaussian elimination
is an additional O(`3) operations in F . 2

Stage 2: Recursive splitting

The second stage of Berlekamp’s factoring algorithm is a probabilistic, re-
cursive algorithm that takes as input a monic square-free polynomial f and
an auxiliary list (β1, . . . , βr) of elements which span the Berlekamp sub-
algebra B of E := F [X]/(f). This algorithm is initially invoked with the
original input polynomial f to be factored, along with the basis constructed
in Stage 1 above.

The algorithm chooses c1, . . . , cr ∈ F at random, and computes β :=∑
i ciβi. The element β will be uniformly distributed over B, and hence, if

β = θ(b1, . . . , br),

then the bi will be uniformly and independently distributed over F . Anal-
ogous to Algorithm EDF in §21.3.2, let us define a function F : E → E as
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follows:

F(β) :=

{ ∑w−1
j=0 β2j

if p = 2,
β(q−1)/2 − 1 if p > 2.

(21.2)

With β as above, then just as in Algorithm EDF, we have that d :=
gcd(rep(F(β)), f) will be a non-trivial factor of f with probability at least
1/2, if p = 2, and probability at least 4/9, if p > 2. If we succeed in
splitting f in this way, then we proceed recursively, factoring g1 := d and
g2 := f/d. Note, however, that for the recursive step, we have to supply
spanning sets for the Berlekamp subalgebras of F [X]/(g1) and F [X]/(g2). To
do this, we simply reduce each βi modulo g1 and g2. It is clear that each
of these reduced lists form a spanning set for the corresponding Berlekamp
subalgebra. To simplify notation, for α ∈ E, and g | f , let us define
[α mod g] := [rep(α) mod g] ∈ F [X]/(g). In any recursive step, we can tell
when we have an irreducible factor, since this happens if and only if the
Berlekamp subalgebra coincides with F .

Our recursive splitting algorithm, then, takes as input a monic square-
free polynomial f of degree ` (we allow ` = 0 to simplify the recursion),
along with an auxiliary list (β1, . . . , βr) of elements that span the Berlekamp
subalgebra of E := F [X]/(f), and runs as follows, where the function
F : E → E is as defined in (21.2):

Algorithm B2:

if ` = 0 return
if β1, . . . , βr ∈ F then

// f must be irreducible
output f
return

choose c1, . . . , cr ∈ F at random
β ← c1β1 + · · ·+ crβr

d← gcd(rep(F(β)), f)
g1 ← d, g2 ← f/d
for i = 1, 2, recursively process gi using the list

([β1 mod gi], . . . , [βr mod gi])

Note that in the above recursive specification, the quantity r refers to
the number of factors of the original input polynomial f , which will not in
general be the same as the number of irreducible factors of the factor of f
being processed at a particular stage in the recursion.

The correctness of Algorithm B2 follows from the above discussion. It
is clear that Algorithm B2 runs in expected polynomial time, since the
expected number of trials until we get a non-trivial split is O(1), the cost of
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each trial is polynomially bounded, and we are done after r− 1 non-trivial
splits. A more careful analysis reveals:

Theorem 21.10. Algorithm B2 uses an expected number of

O(r`2 + `2 len(q) len(r))

operations in F .

Proof. Let us break the cost (i.e., the number of operations in F ) into two
parts: the cost C1 of computing the auxiliary list ([β1 mod gi], . . . , [βr mod
gi]) in the cases where we actually have a non-trivial split, and the cost C2

comprising all other computations.
We claim that

C1 = O(r`2).

We leave the proof of this as an exercise (see below).
As for C2, the analysis is essentially the same as that of Algorithm EDF,

and we obtain
E[C2] = O(`2 len(q) len(r)).

The proof of this follows the same line of reasoning as in the first half of the
proof of Theorem 21.4: one proves that the expected depth of the recursion
is O(len(r)) and that the work per level in the recursion tree is O(`2 len(q))
operations in F .

Unlike in the case of Algorithm EDF, we cannot get rid of the “len(r)”
factor. For example, when the input polynomial is the product of an ir-
reducible factor of degree `/2, and `/2 linear factors, then we expect that
the large irreducible factor will appear at a depth of Ω(len(`)) in the recur-
sion tree, and hence will cause an expected number of Ω(`2 len(q) len(`))
operations in F to be performed. 2

21.4.3 Analysis of the whole algorithm

Putting together Algorithm SFD with algorithms B1 and B2, we get
Berlekamp’s complete factoring algorithm. The running time bound is eas-
ily estimated from the results already proved:

Theorem 21.11. Berlekamp’s factoring algorithm uses an expected num-
ber of O(`3 + `2 len(`) len(q)) operations in F .

So we see that Berlekamp’s algorithm is in fact faster than the Cantor-
Zassenhaus algorithm, whose expected operation count is O(`3 len(q)). The
speed advantage of Berlekamp’s algorithm grows as q gets large. The one
disadvantage of Berlekamp’s algorithm is space: it requires space for Θ(`2)
elements of F , while the Cantor-Zassenhaus algorithm requires space for
only O(`) elements of F . One can in fact implement the Cantor-Zassenhaus
algorithm so that it uses O(`3 + `2 len(q)) operations in F , while using only
space for O(`1.5) elements of F — see Exercise 21.11 below.
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Exercise 21.9. Prove the claim made in the proof of Theorem 21.10 that
C1 = O(r`2). Hint: make an induction argument, based on the fact that the
cost of reducing b ∈ F [X]<` modulo g1 and g2, where deg(g1)+deg(g2) = `,
is O(deg(g1) deg(g2)). 2

Exercise 21.10. Using the ideas behind Berlekamp’s factoring algo-
rithm, devise a deterministic irreducibility test that given monic polynomial
of degree ` over a finite field F of cardinality q uses O(`3 + `2 len(q)) oper-
ations in F . 2

Exercise 21.11. Compared to the Cantor-Zassenhaus algorithm,
Berlekamp’s algorithm has the drawback that it requires space for Θ(`2)
elements of F . This exercise develops a variant of Cantor-Zassenhaus
that uses O(`3 + `2 len(q)) operations in F , while using space for only
O(`1.5) elements of F . By making use of Algorithm SFD and the variant
of Algorithm EDF discussed in Exercise 21.6, our problem is reduced to
that of implementing Algorithm DDF within the stated time and space
bounds, assuming that the input polynomial is square-free.

(a) For non-negative integers i, j, with i 6= j, show that the irreducible
polynomials in F [X] that divide Xqi − Xqj

are precisely those whose
degree divides i− j.

(b) Let f ∈ F [X] be a monic polynomial of degree ` > 0, and let m ≈
`1/2. Let η := [X mod f ] ∈ E, where E := F [X]/(f). Show how to
compute

ηq, ηq2
, . . . , ηqm−1

∈ E and ηqm

, ηq2m

, . . . , ηq(m−1)m

∈ E

using O(`3+`2 len(q)) operations in F , and space for O(`1.5) elements
of F .

(c) Combine the results of parts (a) and (b) to implement Algorithm
DDF on square-free inputs of degree `, so that it uses O(`3+`2 len(q))
operations in F , and space for O(`1.5) elements of F .

2

21.5 ♣ Deterministic Factorization Algo-
rithms

The algorithms of Cantor and Zassenhaus and of Berlekamp are probabilis-
tic. The exercises below develop a deterministic variant of the Cantor-
Zassenhaus algorithm. (One can also develop deterministic variants of
Berlekamp’s algorithm, with similar complexity.)
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This algorithm is only practical for finite fields of small characteristic,
and is anyway mainly of theoretical interest, since from a practical perspec-
tive, there is nothing wrong with the above probabilistic method. In all of
these exercises, we assume that we have access to a basis ε1, . . . , εw for F
as a vector space over Zp.

To make the Cantor-Zassenhaus algorithm deterministic, we only need
to develop a deterministic variant of Algorithm EDF, as Algorithm DDF is
already deterministic.

Exercise 21.12. Let g = g1 · · · gr, where the gi are distinct monic ir-
reducible polynomials in F [X]. Assume that r > 1, and let ` := deg(g).
For this exercise, the degrees of the gi need not be the same. For an in-
termediate field F ′, with Zp ⊆ F ′ ⊆ F , let us call a set S = {λ1, . . . , λs}
of polynomials in F [X]<` a separating set for g over F ′ if the following
conditions hold:

• for i = 1, . . . , r and u = 1, . . . , s, there exists cui ∈ F ′ such that
λu ≡ cui (mod gi), and

• for any distinct pair of indices i, j, with 1 ≤ i < j ≤ r, there exists
u = 1, . . . , s such that cui 6= cuj .

Show that if S is a Zp-separating set for g, then the following algorithm
completely factors g using O(p|S|`2) operations in F .

C ← {g}
for each λ ∈ S do

for each a ∈ Zp do
C ′ ← ∅
for each h ∈ C do

d← gcd(λ− a, h)
if d = 1 then

C ′ ← C ∪ {h}
else

C ′ ← C ∪ {d, h/d}
C ← C ′

output C

2

Exercise 21.13. Let g be as in the previous exercise. Show that if S is
a separating set for g over F , then the set

S′ := {
w−1∑
i=0

(εjλ)pi

rem g : 1 ≤ j ≤ w, λ ∈ S}
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is a separating set for g over Zp. Show how to compute this set using
O(|S|`2 len(p)w(w − 1)) operations in F . 2

Exercise 21.14. Let g be as in the previous two exercises, but further
suppose that each irreducible factor of g is of the same degree, say k. Let
E := F [X]/(g) and η := [X mod g] ∈ E. Define the polynomial φ ∈ E[Y]
as follows:

φ :=
k−1∏
i=0

(Y− ηqi

).

If
φ = Yk + αk−1Y

k−1 + · · ·+ α0,

with α0, . . . , αk−1 ∈ E, show that the set

S := {rep(αi) : 0 ≤ i ≤ k − 1}

is separating set for g over F , and can be computed deterministically using
O(k len(q)+k2) operations in E, and hence O((k len(q)+k2)`2) operations
in F . 2

Exercise 21.15. Put together all of the above pieces, together with Al-
gorithm DDF, so as to obtain a deterministic algorithm for factoring poly-
nomials over F that uses (`+w+p)O(1) operations in F , and make a careful
estimate of the running time of your algorithm. 2

The following exercises show that the problem of factoring polynomials
over F reduces in deterministic polynomial time to the problem of finding
roots of polynomials over Zp.

Exercise 21.16. Let g be as in Exercise 21.12. Suppose that S =
{λ1, . . . , λs} is a separating set for g over Zp, and φu ∈ F [X] is the minimal
polynomial over F of [λu mod g] ∈ F [X]/(g) for u = 1, . . . , s. Show that
each φu is the product of linear factors over Zp, and that given S along with
the roots of all the φu, we can deterministically factor g using (|S|+ `)O(1)

operations in F . Hint: see Exercise 17.9. 2

Exercise 21.17. Using the previous exercise, show that the problem of
factoring a polynomial over a finite field F reduces in deterministic poly-
nomial time to the problem of finding roots of polynomials over the prime
field of F . 2

21.6 ♣ Faster Square-Free Decomposition

The algorithm presented in §21.4.1 for square-free decomposition was sim-
ple and suitable for our immediate purposes, but is certainly not the most
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efficient algorithm possible. The following exercises develop a faster algo-
rithm for this problem.

We begin with an exercise that more fully develops the connection be-
tween square-free polynomials and formal derivatives for polynomials over
arbitrary fields:

Exercise 21.18. Let K be an arbitrary field, and let f ∈ K[X] with
deg(f) > 0.

(a) Show that if D(f) = 0, then the characteristic of K must be a prime
p, and f must be of the form f = g(Xp) for some g ∈ K[X].

(b) Show that if K is a finite field or a field of characteristic zero, then
f is square-free if and only if d := gcd(f,D(f)) = 1; moreover, if
d 6= 1, then either deg(d) < deg(f), or K has prime characteristic p
and f = hp for some h ∈ K[X].

(c) Give an example of a field K of characteristic p and an irreducible
polynomial f ∈ K[X] such that f = g(Xp) for some g ∈ K[X].

2

Next, we consider the problem of square-free decomposition of poly-
nomials over fields of characteristic zero, which is simpler than the corre-
sponding problem over finite fields.

Exercise 21.19. Let f ∈ K[X] be a monic polynomial over a field K of
characteristic zero. Suppose that the factorization of f into irreducibles is

f = fe1
1 · · · fer

r .

Show that
f

gcd(f,D(f))
= f1 · · · fr.

2

Exercise 21.20. Let K be a field of characteristic zero. Consider the
following algorithm that takes as input a monic polynomial f ∈ K[X] of
degree ` > 0:

j ← 1, g ← f/ gcd(f,D(f))
repeat

f ← f/g, h← gcd(f, g), m← g/h
if m 6= 1 then output (m, j)
g ← h, j ← j + 1

until g = 1
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Using the result of the previous exercise, show that this algorithm out-
puts a list of pairs (gi, si), such that each gi is square-free, f =

∏
i gsi

i , and
the gi are pairwise relatively prime. Furthermore, show that this algorithm
uses O(`2) operations in K. 2

We now turn our attention to square-free decomposition of polynomials
over finite fields:

Exercise 21.21. Let f ∈ F [X] be a monic polynomial over F (which,
as usual, has characteristic p and cardinality q = pw). Suppose that the
factorization of f into irreducibles is

f = fe1
1 · · · fer

r .

Show that
f

gcd(f,D(f))
=

∏
1≤i≤r

ei 6≡0 (mod p)

fi.

2

Exercise 21.22. Consider the following algorithm that takes as input a
monic polynomial f ∈ F [X] of degree ` > 0:

s← 1
repeat

j ← 1, g ← f/ gcd(f,D(f))
repeat

f ← f/g, h← gcd(f, g), m← g/h
if m 6= 1 then output (m, js)
g ← h, j ← j + 1

until g = 1
if f 6= 1 then

// f is a pth power
// we compute a pth root as in Algorithm SFD
f ← f1/p, s← ps

until f = 1

Using the result of the previous exercise, show that this algorithm out-
puts a list of pairs (gi, si), such that each gi is square-free, f =

∏
i gsi

i , and
the gi are pairwise relatively prime. Furthermore, show that this algorithm
uses O(`2 + `(w − 1) len(p)) operations in F . 2

21.7 Notes

The average-case analysis of Algorithm IPT, assuming its input is random,
and the application to the analysis of Algorithm RIP, is essentially due to
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Ben-Or [13]. If one implements Algorithm RIP using fast polynomial arith-
metic, one gets an expected cost of O(`2+o(1) len(q)) operations in F . Note
that Ben-Or’s analysis is a bit incomplete — see Exercise 32 in Chapter 7
of Bach and Shallit [11] for a complete analysis of Ben-Or’s claims.

The asymptotically fastest probabilistic algorithm for constructing an
irreducible polynomial over F of degree ` is due to Shoup [87]. That algo-
rithm uses an expected number of O(`2+o(1) + `1+o(1) len(q)) operations in
F , and in fact does not follow the “generate and test” paradigm of Algo-
rithm RIP, but uses a completely different approach. As far as deterministic
algorithms for constructing irreducible polynomials of given degree over F ,
the only efficient methods known are when the characteristic p of F is small
(see Chistov [22], Semaev [79], and Shoup [85]). Exercise 21.5 is based on
[87].

The algorithm in §21.2 for computing minimal polynomials over finite
fields is due to Gordon [36].

The Cantor-Zassenhaus algorithm was initially developed by Cantor
and Zassenhaus [21], although many of the basic ideas can be traced back
quite a ways. A straightforward implementation of this algorithm using
fast polynomial arithmetic uses an expected number of O(`2+o(1) len(q))
operations in F .

Berlekamp’s algorithm was initially developed by Berlekamp [14, 15],
but again, many of the basic idea go back a long way. A straightforward
implementation using fast polynomial arithmetic uses an expected number
of O(`3 + `1+o(1) len(q)) operations in F ; the term `3 may be replaced by
`ω, where ω is the exponent of matrix multiplication (see §15.6).

The square-free decomposition of a polynomial over a field K of char-
acteristic zero can be computed using an algorithm of Yun [96] using
O(`1+o(1)) operations in K. For finite fields F of cardinality pw, one can
adapt Yun’s algorithm so that it uses O(`1+o(1)+`(w−1) len(p)) operations
in F (see Exercise 14.30 in von zur Gathen and Gerhard [32]).

The asymptotically fastest algorithms for factoring polynomials over a
finite field F are due to von zur Gathen, Kaltofen, and Shoup: the algorithm
of von zur Gathen and Shoup [33] uses an expected number of O(`2+o(1) +
`1+o(1) len(q)) operations in F ; the algorithm of Kaltofen and Shoup [47]
has a cost that is subquadratic in the degree — it uses an expected number
of O(`1.815 len(q)0.407) operations in F . Exercises 21.4 and 21.6 are based
on [33]. Although the “fast” algorithms in [33] and [47] are mainly of
theoretical interest, a variant in [47], which uses O(`2.5 + `1+o(1) len(q))
operations in F , and space for O(`1.5) elements of F , has proven to be
quite practical (Exercise 21.11 develops some of these ideas; see also Shoup
[88]).



Chapter 22

Deterministic Primality Testing

Until very recently, there was no known deterministic, polynomial time
algorithm for testing whether a given integer n > 1 is a prime. However,
that is no longer the case — the breakthrough algorithm of Agrawal, Kayal,
and Saxena, or AKS algorithm for short, is just such an algorithm. Not
only is the result itself remarkable, but the algorithm is striking in both its
simplicity, and in the fact that the proof of its running time and correctness
are completely elementary (though ingenious).

We should stress at the outset that although this result is an important
theoretical result, as of yet, it has no real practical significance: probabilistic
tests, such as the Miller-Rabin test discussed in Chapter 10, are much more
efficient, and the suitably practical minded person is not at all bothered
by the fact that such algorithms may in theory make a mistake with an
incredibly small probability.

22.1 The Basic Idea

The algorithm is based on the following fact:

Theorem 22.1. Let n > 1 be an integer. If n is prime, then for all
a ∈ Zn, we have the following identity in the ring Zn[X]:

(X + a)n = Xn + a (22.1)

Conversely, if n is composite, then for all a ∈ Z∗n, the identity (22.1) does
not hold.

Proof. Note that

(X + a)n = Xn + an +
n−1∑
i=1

(
n

i

)
aiXn−i.

455
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If n is prime, then by Fermat’s little theorem (Theorem 2.16), we have
an = a, and by Exercise 1.11, all of the binomial coefficients

(
n
i

)
, for i =

1, . . . , n−1, are divisible by n, and hence their images in the ring Zn vanish.
That proves that the identity (22.1) holds when n is prime.

Conversely, suppose that n is composite and that a ∈ Z∗n. Consider any
prime factor p of n, and suppose n = pkm, where p - m.

We claim that pk -
(
n
p

)
. To prove the claim, one simply observes that(

n

p

)
=

n(n− 1) · · · (n− p + 1)
p!

,

and the numerator of this fraction is an integer divisible by pk, but no
higher power of p, and the denominator is divisible by p, but no higher
power of p. That proves the claim.

From the claim, and the fact that a ∈ Z∗n, it follows that the coefficient
of Xn−p in (X+ a)n is not zero, and hence the identity (22.1) does not hold.
2

Of course, Theorem 22.1 does not immediately give rise to an efficient
primality test, since just evaluating the left-hand side of the identity (22.1)
takes time Ω(n) in the worst case. The key observation of Agrawal, Kayal,
and Saxena is that if (22.1) holds modulo Xr − 1 for a suitably chosen
value of r, and for sufficiently many a, then n must be prime. To make
this idea work, one must show that a suitable r exists that is bounded by
a polynomial in len(n), and that the number of different values of a that
must be tested is also bounded by a polynomial in len(n).

22.2 The Algorithm and its Analysis

Here is the primality test. It takes as input an integer n > 1.
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Algorithm AKS:

1. if n is of the form ab for integers a > 1 and b > 1 then
return false

2. find the smallest integer r > 1 such that either
gcd(n, r) > 1

or
gcd(n, r) = 1 and
[n mod r] ∈ Z∗r has multiplicative order > 4 len(n)2

3. if r = n then
return true

4. if gcd(n, r) > 1 then
return false

5. for j ← 1 to 2 len(n)br1/2c+ 1 do
if (X + j)n 6≡ Xn + j (mod Xr − 1) in the ring Zn[X] then

return false
6. return true

A few remarks on implementation are in order:

• In step 1, we can use the algorithm for perfect-power testing discussed
in §10.5, which is a deterministic, polynomial-time algorithm.

• The search for r in step 2 can just be done by brute-force search;
likewise, the determination of the multiplicative order of [n mod r] ∈
Z∗r can be done by brute force — after verifying that gcd(n, r) = 1,
compute successive powers of n modulo r until we get 1.

We want to prove that Algorithm AKS runs in polynomial time and
is correct. To prove that it runs in polynomial time, it clearly suffices to
prove that there exists an integer r satisfying the condition in step 2 that
is bounded by a polynomial in len(n), since all other computations can be
carried out in time (r + len(n))O(1). Correctness means that if it outputs
true if and only if n is prime.

The question of the running time of Algorithm AKS is settled by the
following fact:

Theorem 22.2. For integers n > 1 and m ≥ 1, the least prime r such
that r - n and the multiplicative order of [n mod r] ∈ Z∗r is greater than m
is O(m2 len(n)).

Proof. Call a prime r “good” if r - n and the multiplicative order of
[n mod r] ∈ Z∗r is greater than m, and otherwise call r “bad.” If r is bad,
then either r | n or r | (nd−1) for some d = 1, . . . ,m. Thus, any bad prime
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r satisfies

r | n
m∏

d=1

(nd − 1).

If all primes r up to some given bound x ≥ 2 are bad, then the product of
all primes up to x divides n

∏m
d=1(n

d − 1), and so in particular,

∏
r≤x

r ≤ n
m∏

d=1

(nd − 1),

where the first product is over all primes r up to x. Taking logarithms, we
obtain ∑

r≤x

log r ≤ log
(

n
m∏

d=1

(nd − 1)
)
≤ (log n)

(
1 +

m∑
d=1

d

)
= (log n)(1 + m(m + 1)/2).

But by Theorem 5.6, we have ∑
r≤x

log r ≥ cx

for some constant c > 0, from which it follows that

x ≤ c−1(log n)(1 + m(m + 1)/2),

and the theorem follows. 2

From this theorem, it follows that the value of r found in step 2 —
which need not be prime — will be O(len(n)5). From this, we obtain:

Theorem 22.3. Algorithm AKS can be implemented so as to run in time
O(len(n)16.5).

Proof. As discussed above, the value of r determined in step 2 will
be O(len(n)5). It is fairly straightforward to see that the running time
of the algorithm is dominated by the running time of step 5. Here, we
have to perform O(r1/2 len(n)) exponentiations to the power n in the ring
Zn[X]/(Xr−1). Each of these exponentiations takes O(len(n)) operations in
Zn[X]/(Xr − 1), each of which takes O(r2) operations in Zn, each of which
takes time O(len(n)2). This yields a running time bounded by a constant
times

r1/2 len(n)× len(n)× r2 × len(n)2 = r2.5 len(n)4.

Substituting the bound O(len(n)5) for r, we obtain the stated bound in the
theorem. 2

As for the correctness of Algorithm AKS, we first show:
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Theorem 22.4. If the input to Algorithm AKS is prime, then the output
is true.

Proof. Assume that the input n is prime. The test in step 1 will certainly
fail. If the algorithm does not return true in step 3, then certainly the test
in step 4 will fail as well. If the algorithm reaches step 5, then all of the
tests in the loop in step 5 will fail — this follows from Theorem 22.1. 2

The interesting case is the following:

Theorem 22.5. If the input to Algorithm AKS is composite, then the
output is false.

The proof of this theorem is rather long, and is the subject of the re-
mainder of this section.

Suppose the input n is composite. If n is a prime power, then this will be
detected in step 1, so we may assume that n is not a prime power. Assume
that the algorithm has found a suitable value of r in step 2. Clearly, the
test in 3 will fail. If the test in step 4 passes, we are done, so we may
assume that this test fails; that is, we may assume that all prime factors
of n are greater than r. Our goal now is to show that one of the tests in
the loop in step 5 must pass. The proof will be by contradiction: we shall
assume that none of the tests pass, and derive a contradiction.

The assumption that none of the tests in step 5 fail means that in the
ring Zn[X], the following congruences hold:

(X + j)n ≡ Xn + j (mod Xr − 1) (j = 1, . . . , 2 len(n)br1/2c+ 1). (22.2)

For the rest of the proof, we fix any particular prime divisor p of n — the
choice does not matter. Since p | n, we have a natural ring homomorphism
from Zn[X] to Zp[X] (see Example 9.48), which implies that the congruences
(22.2) hold in the ring of polynomials over Zp as well. From now on, we
shall work exclusively with polynomials over Zp.

Let us state in somewhat more abstract terms the precise assumptions
we are making in order to derive our contradiction:

(A0) n > 1, r > 1, and ` ≥ 1 are integers, p is a prime dividing
n, and gcd(n, r) = 1.

(A1) n is not a prime power.

(A2) p > r.

(A3) The congruences

(X + j)n ≡ Xn + j (mod Xr − 1) (j = 1, . . . , `)

hold in the ring Zp[X].
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(A4) The multiplicative order of [n mod r] ∈ Z∗r is greater than
4 len(n)2.

(A5) ` > 2 len(n)br1/2c.

The rest of the proof will rely only on these assumptions, and not on
any other details of Algorithm AKS. From now on, only assumption (A0)
will be implicitly in force. The other assumptions will be explicitly invoked
as necessary. Our goal is to show that assumptions (A1), (A2), (A3), (A4),
and (A5) cannot all be true simultaneously.

Define the Zp-algebra E := Zp[X]/(Xr − 1), and let η := [X mod (Xr −
1)] ∈ E, so that E = Zp[η]. Every element of E can be expressed uniquely
as g(η) = [g mod (Xr − 1)], for g ∈ Zp[X] of degree less than r, and for an
arbitrary polynomial g ∈ Zp[X], we have g(η) = 0 if and only if (Xr − 1) | g.
Note that η ∈ E∗ and has multiplicative order r: indeed, ηr = 1, and ηs−1
cannot be zero for s < r, since Xs − 1 has degree less than r.

Assumption (A3) implies that we have a number of interesting identities
in the Zp-algebra E:

(η + j)n = ηn + j (j = 1, . . . , `).

For the polynomials gj := X + j ∈ Zp[X], with j in the given range, these
identities say that gj(η)n = gj(ηn).

In order to exploit these identities, we study more generally functions
σk, for various integer values k, that send g(η) ∈ E to g(ηk), for arbitrary
g ∈ Zp[X], and we investigate the implications of the assumption that such
functions behave like the kth power map on certain inputs. To this end, let
Z(r) denote the set of all positive integers k such that gcd(r, k) = 1. Note
that the set Z(r) is multiplicative; that is, 1 ∈ Z(r), and for all k, k′ ∈ Z(r),
we have kk′ ∈ Z(r). Also note that because of our assumption (A0), both
n and p are in Z(r). For integer k ∈ Z(r), let σ̂k : Zp[X] → E be the
polynomial evaluation map that sends g ∈ Zp[X] to g(ηk). This is of course
a Zp-algebra homomorphism, and we have:

Lemma 22.6. For all k ∈ Z(r), the kernel of σ̂k is (Xr−1), and the image
of σ̂k is E.

Proof. Let J := ker(σ̂k), which is an ideal of Zp[X], of course. Let
k′ be a positive integer such that kk′ ≡ 1 (mod r), which exists because
gcd(r, k) = 1.

To show that J = (Xr − 1), we first observe that

σ̂k(Xr − 1) = (ηk)r − 1 = (ηr)k − 1 = 1k − 1 = 0,

and hence (Xr − 1) ⊆ J .
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Next, we show that J ⊆ (Xr − 1). Let g ∈ J . We want to show that
(Xr − 1) | g. Now, g ∈ J means that g(ηk) = 0. If we set h := g(Xk),
this implies that h(η) = 0, which means that (Xr − 1) | h. So let us write
h = (Xr − 1)f , for some f ∈ Zp[X]. Then

g(η) = g(ηkk′) = h(ηk′) = (ηk′r − 1)f(ηk′) = 0,

which implies that (Xr − 1) | g.
That finishes the proof that J = (Xr − 1).
Finally, to show that σ̂k is surjective, suppose we are given an arbitrary

element of E, which we can express as g(η) for some g ∈ Zp[X]. Now set
h := g(Xk′), and observe that

σ̂k(h) = h(ηk) = g(ηkk′) = g(η).

2

Because of lemma 22.6, then by Theorem 9.26, the map σk : E → E
that sends g(η) ∈ E to g(ηk), for g ∈ Zp[X], is well defined, and is a ring
automorphism — indeed, a Zp-algebra automorphism — on E. Note that
for any k, k′ ∈ Z(r), we have

• σk = σk′ if and only if ηk = ηk′ if and only if k ≡ k′ (mod r), and

• σk ◦ σk′ = σk′ ◦ σk = σkk′ .

So in fact, the set of all σk forms an abelian group (with respect to com-
position) that is isomorphic to Z∗r .

It is perhaps helpful (but not necessary for the proof) to examine the
behavior of the map σk in a bit more detail. Let α ∈ E, and let

α =
r−1∑
i=0

giη
i

be the canonical representation of α. Since gcd(r, k) = 1, the map that
π : {0, . . . , r− 1} → {0, . . . , r− 1} that sends i to ki rem r is a permutation
whose inverse is the permutation π′ that sends i to k′i rem r, where k′ is a
multiplicative inverse of k modulo r. Then we have

σk(α) =
r−1∑
i=0

giη
ki =

r−1∑
i=0

giη
π(i) =

r−1∑
i=0

gπ′(i)η
i.

Thus, the action of σk is to permute the coordinate vector (g0, . . . , gr−1)
of α, sending α to the element in E whose coordinate vector is
(gπ′(0), . . . , gπ′(r−1)). So we see that although we defined the maps σk in
a rather “high brow” algebraic fashion, their behavior in concrete terms is
actually quite simple.
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Recall that the pth power map on E is a Zp-algebra homomorphism
(see Theorem 20.7), and so for all α ∈ E, if α = g(η) for g ∈ Zp[X], then
(by Theorem 17.1) we have

αp = g(η)p = g(ηp) = σp(α).

Thus, σp acts just like the pth power map on all elements of E.
We can restate assumption (A3) as follows:

(η + j)n = σn(η + j) (j = 1, . . . , `).

That is to say, the map σn acts just like the nth power map on the elements
η + j for j = 1, . . . , `.

Now, although the σp map must act like the pth power map on all of
E, there is no good reason why the σn map should act like the nth power
map on any particular element of E, and so the fact that it does so on all
the elements η + j for j = 1, . . . , ` looks decidedly suspicious. To turn our
suspicions into a contradiction, let us start by defining some notation. For
α ∈ E, let us define

C(α) := {k ∈ Z(r) : σk(α) = αk},

and for k ∈ Z(r), let us define

D(k) := {α ∈ E : σk(α) = αk}.

In words: C(α) is the set of all k for which σk acts like the kth power map
on α, and D(k) is the set of all α for which σk acts like the kth power map
on α. From the discussion above, we have p ∈ C(α) for all α ∈ E, and it is
also clear that 1 ∈ C(α) for all α ∈ E. Also, it is clear that α ∈ D(p) for
all α ∈ E, and 1E ∈ D(k) for all k ∈ Z(r).

The following two simple lemmas say that the sets C(α) and D(k) are
multiplicative.

Lemma 22.7. For any α ∈ E, if k ∈ C(α) and k′ ∈ C(α), then kk′ ∈
C(α).

Proof. If σk(α) = αk and σk′(α) = αk′ , then

σkk′(α) = σk(σk′(α)) = σk(αk′) = (σk(α))k′ = (αk)k′ = αkk′ ,

where we have made use of the homomorphic property of σk. 2

Lemma 22.8. For any k ∈ Z(r), if α ∈ D(k) and β ∈ D(k), then αβ ∈
D(k).
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Proof. If σk(α) = αk and σk(β) = βk, then

σk(αβ) = σk(α)σk(β) = αkβk = (αβ)k,

where again, we have made use of the homomorphic property of σk. 2

Let us define

• s to be the multiplicative order of [p mod r] ∈ Z∗r , and

• t to be the order of the subgroup of Z∗r generated by [p mod r] and
[n mod r].

Since r | (ps − 1), if we take any extension field F of degree s over Zp

(which we know exists by Theorem 20.11), then since F ∗ is cyclic (Theo-
rem 9.15) and has order ps−1, we know that there exists an element ζ ∈ F ∗

of multiplicative order r (Theorem 8.31). Let us define the polynomial eval-
uation map τ̂ : Zp[X]→ F that sends g ∈ Zp[X] to g(ζ) ∈ F . Since Xr − 1 is
clearly in the kernel of τ̂ , then by Theorem 9.27, the map τ : E → F that
sends g(η) to g(ζ), for g ∈ Zp[X], is a well-defined ring homomorphism, and
actually, it is a Zp-algebra homomorphism.

For concreteness, one could think of F as Zp[X]/(φ), where φ is an
irreducible factor of Xr − 1 of degree s. In this case, we could simply take
ζ to be [X mod φ] (see Example 20.1), and the map τ̂ above would be just
the natural map from Zp[X] to Zp[X]/(φ).

The key to deriving our contradiction is to examine the set S :=
τ(D(n)), that is, the image under τ of the set D(n) of all elements α ∈ E
for which σn acts like the nth power map.

Lemma 22.9. Under assumption (A1), we have

|S| ≤ n2bt1/2c.

Proof. Consider the set of integers

I := {nupv : u, v = 0, . . . , bt1/2c}.

We first claim that |I| > t. To prove this, we first show that each
distinct pair (u, v) gives rise to a distinct value nupv. To this end, we make
use of our assumption (A1) that n not a prime power, and so is divisible
by some prime q other than p. Thus, if (u′, v′) 6= (u, v), then either

• u 6= u′, in which case the power of q in the prime factorization of nupv

is different from that in nu′pv′ , or

• u = u′ and v 6= v′, in which case the power of p in the prime factor-
ization of nupv is different from that in nu′pv′ .
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The claim now follows from the fact that both u and v range over a set of
size bt1/2c+1 > t1/2, and so there are strictly more than t such pairs (u, v).

Next, recall that t was defined to be the order of the subgroup of Z∗r
generated by [n mod r] and [p mod r]; equivalently, t is the number of dis-
tinct residue classes of the form [nupv mod r], where u and v range over
all non-negative integers. Since each element of I is of the form nupv, and
|I| > t, we may conclude that there must be two distinct elements of I, call
them k and k′, that are congruent modulo r. Furthermore, any element of
I is a product of two positive integers each of which is at most nbt

1/2c, and
so both k and k′ lie in the range 1, . . . , n2bt1/2c.

Now, let α ∈ D(n). This is equivalent to saying n ∈ C(α). We always
have 1 ∈ C(α) and p ∈ C(α), and so by lemma 22.7, we have nupv ∈ C(α)
for all non-negative integers u, v, and so in particular, k, k′ ∈ C(α).

Since both k and k′ are in C(α), we have

σk(α) = αk and σk′(α) = αk′ .

Since k ≡ k′ (mod r), we have σk = σk′ , and hence

αk = αk′ .

Now apply the homomorphism τ , obtaining

τ(α)k = τ(α)k′ .

Since this holds for all α ∈ D(n), we conclude that all elements of S are
roots of the polynomial Xk − Xk′ . Since k 6= k′, we see that Xk − Xk′ is a
non-zero polynomial of degree at most max{k, k′} ≤ n2bt1/2c, and hence
can have at most n2bt1/2c roots in the field F (Theorem 9.14). 2

Lemma 22.10. Under assumptions (A2) and (A3), we have

|S| ≥ 2min(t,`) − 1.

Proof. Let m := min(t, `). Under assumption (A3), we have η + j ∈ D(n)
for j = 1, . . . ,m. Under assumption (A2), we have p > r > t ≥ m, and
hence the integers j = 1, . . . ,m are distinct modulo p. Define

P :=
{ m∏

j=1

(X+j)ej ∈ Zp[X] : ej ∈ {0, 1} for j = 1, . . . ,m, and
m∑

j=1

ej < m

}
.

That is, we form P by taking products over all subsets S ( {X + j : j =
1, . . . ,m}. Clearly, |P | = 2m − 1.

Define P (η) := {f(η) ∈ E : f ∈ P} and P (ζ) := {f(ζ) ∈ F : f ∈ P}.
Note that τ(P (η)) = P (ζ), and that by lemma 22.8, P (η) ⊆ D(n).
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Therefore, to prove the lemma, it suffices to show that |P (ζ)| = 2m −
1. Suppose that this is not the case. This would give rise to distinct
polynomials g, h ∈ Zp[X], both of degree at most t− 1, such that such that

g(η) ∈ D(n), h(η) ∈ D(n), and τ(g(η)) = τ(h(η)).

So we have n ∈ C(g(η)) and (as always) 1, p ∈ C(g(η)). Likewise, we have
1, n, p ∈ C(h(η)). By lemma 22.7, for all integers k of the form nupv, where
u and v range over all non-negative integers, we have

k ∈ C(g(η)) and k ∈ C(h(η)).

For any such k, since τ(g(η)) = τ(h(η)), we have τ(g(η))k = τ(h(η))k, and
hence

0 = τ(g(η))k − τ(h(η))k

= τ(g(η)k)− τ(h(η)k) (τ is a homomorphism)
= τ(g(ηk))− τ(h(ηk)) (k ∈ C(g(η)) and k ∈ C(h(η)))
= g(ζk)− h(ζk) (definition of τ).

Thus, the polynomial f := g−h ∈ Zp[X] is a non-zero polynomial of degree
at most t − 1, having roots ζk in the field F for all k of the form nupv.
Now, t is by definition the number of distinct residue classes of the form
[nupv mod r] ∈ Z∗r . Also, since ζ has multiplicative order r, for integers
k, k′, we have ζk = ζk′ if and only if k ≡ k′ (mod r). Therefore, as k ranges
over all integers of the form nupv, ζk ranges over precisely t distinct values
in F . But since all of these values are roots of the polynomial f , which is
non-zero and of degree at most t− 1, this is impossible (Theorem 9.14). 2

We are now (finally!) in a position to complete the proof of Theo-
rem 22.5. Under assumptions (A1), (A2), and (A3), Lemmas 22.9 and
22.10 imply that

2min(t,`) − 1 ≤ |S| ≤ n2bt1/2c. (22.3)

The contradiction is provided by the following:

Lemma 22.11. Under assumptions (A4) and (A5), we have

2min(t,`) − 1 > n2bt1/2c.

Proof. Observe that log2 n ≤ len(n), and so it suffices to show that

2min(t,`) − 1 > 22 len(n)bt1/2c,

and for this, it suffices to show that

min(t, `) > 2 len(n)bt1/2c,
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since for any integers a, b with a > b ≥ 1, we have 2a > 2b + 1.
To show that t > 2 len(n)bt1/2c, it suffices to show that t > 2 len(n)t1/2,

or equivalently, that t > 4 len(n)2. But observe that by definition, t is the
order of the subgroup of Z∗r generated by [n mod r] and [p mod r], which
is at least as large as the multiplicative order of [n mod r] in Z∗r , and by
assumption (A4), this is larger than 4 len(n)2.

Finally, directly by assumption (A5), we have ` > 2 len(n)bt1/2c. 2

That concludes the proof of Theorem 22.5.

Exercise 22.1. Show that if Conjecture 5.26 is true, then the value of r
discovered in step 2 of Algorithm AKS satisfies r = O(len(n)2). 2

22.3 Notes

The algorithm presented here is due to Agrawal, Kayal, and Saxena. The
paper is currently available only on the Internet [5]. The analysis in the
original version of the paper made use of a deep number-theoretic result
of Fouvry [31], but it was subsequently noticed that the algorithm can be
fully analyzed using just elementary arguments (as we have done here).

If fast algorithms for integer and polynomial arithmetic are used, then
using the analysis presented here, it is easy to see that the algorithm runs
in time O(len(n)10.5+o(1)). More generally, it is easy to see that the al-
gorithm runs in time O (̃r1.5+o(1) len(n)3+o(1)), where r is the value de-
termined in step 2 of the algorithm. In our analysis of the algorithm, we
were able to obtain the bound r = O(len(n)5), leading to the running-
time bound O(len(n)10.5+o(1)). Using Fouvry’s result, one can show that
r = O(len(n)3), leading to a running-time bound of O(len(n)7.5+o(1)).
Moreover, if Conjecture 5.26 on the density of Sophie Germain primes is
true, then one could show that r = O(len(n)2) (see Exercise 22.1), which
would lead to a running-time bound of O(len(n)6+o(1)).

Prior to this algorithm, the fastest deterministic, rigorously proved pri-
mality test was one introduced by Adleman, Pomerance, and Rumely [4],
called the Jacobi Sum Test, which runs in time

O(len(n)c len(len(len(n))))

for some constant c. Note that for numbers n with less than 2256 bits, the
value of len(len(len(n))) is as most 8, and so this algorithm runs in time
O(len(n)8c) for any n that one could ever actually write down.

We also mention the earlier work of Adleman and Huang [3], who gave
a probabilistic algorithm whose output is always correct, and which runs
in expected polynomial time (i.e., a Las Vegas algorithm, in the parlance
of §7.2).



Appendix A

Some Useful Facts

1. Some handy inequalities. The following inequalities involving expo-
nentials and logarithms are very handy.

(i) For all real x, we have

1 + x ≤ ex,

or, taking logarithms,

log(1 + x) ≤ x.

(ii) For all real x ≥ 0, we have

e−x ≤ 1− x + x2/2,

or, taking logarithms,

−x ≤ log(1− x + x2/2).

(iii) For all real x with 0 ≤ x ≤ 1/2, we have

1− x ≥ e−x−x2
≥ e−2x,

or, taking logarithms,

log(1− x) ≥ −x− x2 ≥ −2x.

2. Estimating sums by integrals. Using elementary calculus, it is easy
to estimate sums over a monotone sequences in terms of a definite
integral, by interpreting the integral as the area under a curve. Let
f be a real-valued function that is continuous and monotone on the
closed interval [a, b], where a and b are integers. Then we have

min(f(a), f(b)) ≤
b∑

i=a

f(i)−
∫ b

a

f(x)dx ≤ max(f(a), f(b)).

467
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3. Integrating piece-wise continuous functions. In discussing the Rie-
mann integral

∫ b

a
f(x)dx, many introductory calculus texts only dis-

cuss in any detail the case where the integrand f is continuous on
the closed interval [a, b], in which case the integral is always well de-
fined. However, the Riemann integral is well defined for much broader
classes of functions. For our purposes in this text, it is convenient and
sufficient to work with integrands that are piece-wise continuous
on [a, b], that is, there exist real numbers x0, x1, . . . , xk and functions
f1, . . . , fk, such that a = x0 ≤ x1 ≤ · · · ≤ xk = b, and for 1 ≤ i ≤ k,
the function fi is continuous on the closed interval [xi−1, xi], and
agrees with f on the open interval (xi−1, xi). In this case, f is inte-
grable on [a, b], and indeed∫ b

a

f(x)dx =
k∑

i=1

∫ xi

xi−1

fi(x)dx.

It is not hard to prove this equality, using the basic definition of the
Riemann integral; however, for our purposes, we can also just take
the value of the expression on the right-hand side as the definition of
the integral on the left-hand side.

We also say that f is piece-wise continuous on [a,∞) if for all b ≥ a,
f is piece-wise continuous on [a, b]. In this case, we may define the
improper integral

∫∞
a

f(x)dx as the limit, as b → ∞, of
∫ b

a
f(x)dx,

provided the limit exists.

4. Infinite series. It is a basic fact from calculus that if an infinite series∑∞
i=1 xi of non-negative terms converges to a value y, than any infinite

series whose terms are a rearrangement of the xi’s converges to the
same value y.

An infinite series
∑∞

i=1 xi, where now some of the xi’s may be nega-
tive, is called absolutely convergent if the series

∑∞
i=1 |xi| is conver-

gent. It is a basic fact from calculus that if an infinite series
∑∞

i=1 xi is
absolutely convergent, then not only does the series itself converge to
some value y, but any infinite series whose terms are a rearrangement
of the xi’s also converges to the same value y.

5. Double infinite series. The topic of double infinite series may not
be discussed in a typical introductory calculus course; we summa-
rize here the basic facts that we need. We state these facts without
proof, but all of them are fairly straightforward applications of the
definitions.

Suppose that xij , i, j = 1, 2, . . . are non-negative real numbers. The
ith row gives a series

∑
j xij , and if each of these converges, one can

form the double infinite series
∑

i

∑
j xij . Similarly, one may for the
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double infinite series
∑

j

∑
i xij One may also arrange the terms xij

in a single infinite series
∑

ij xij , using some enumeration of the set of
pairs (i, j). Then these three series either all diverge or all converge
to the same value.

If we drop the requirement that the xij ’s are non-negative, but instead
require that the single infinite series

∑
ij xij is absolutely convergent,

then these three series all converge to the same value.

As a special application of the above discussion, if the series
∑

i ai

is absolutely convergent and converges to A, and if the series
∑

j bj

is absolutely convergent and converges to B, then if we arrange the
terms aibj in any way in a single infinite series

∑
ij aibj , this latter

series is absolutely convergent and converges to AB.
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Index of Notation

Entries are listed in order of appearance.

∞: arithmetic with infinity, 1
log: natural logarithm, 1
exp: exponential function, 1
∅: the empty set, 1
A ∪B: union of two sets, 1
A ∩B: intersection of two sets, 1
A \B: difference of two sets, 1
S1 × · · · × Sn: Cartesian

product, 1
S×n: n-wise cartesian product, 2
f(S): image of a set, 2
f−1(S): pre-image of a set, 2
f ◦ g: function composition, 2
Z: the integers, 4
b | a: b divides a, 4
bxc: floor of x, 6
a rem b: integer remainder, 6
dxe: ceiling of x, 6
aZ: ideal generated by a, 7
a1Z + · · ·+ akZ: ideal generated

by a1, . . . , ak, 7
gcd: greatest common divisor, 9
νp(n): largest power to which p

divides n, 10
lcm: least common multiple, 11
Q: the rational numbers, 11
a ≡ b (mod n): a congruent to b

modulo n, 15

s rem n: extended remainder
notation for s ∈ Q, 19

Zn: residue classes modulo n, 22
φ: Euler’s phi function, 25
µ: Möbius function, 29
O, Ω,Θ, o,∼: asymptotic

notation, 34
len: length (in bits) of an

integer, 46
rep(α): canonical representative

of α ∈ Zn, 48
π(x): number of primes up to x,

73
ϑ: Chebyshev’s theta function,

75
li: logarithmic integral, 86
ζ: Riemann’s zeta function, 87
P: probability function, 95
P[A | B]: conditional probability

of A given B, 98
E[X]: expected value of X, 108
Var[X]: variance of X, 110
E[X | B]: conditional expectation

of X given B, 112
∆[X;Y ]: statistical distance, 123
mG: {ma : a ∈ G}, 172
G{m}: {a ∈ G : ma = 0G}, 173
Gm: {am : a ∈ G}, 173
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478 Index of Notation

H1 + H2: {h1 + h2 : h1 ∈
H1, h2 ∈ H2}, 176

H1 ·H2: {h1h2 : h1 ∈ H1, h2 ∈
H2}, 176

a ≡ b (mod H): a− b ∈ H, 177
a + H: coset of H containing a,

177
aH: coset of H containing a

(multiplicative
notation), 177

G/H: quotient group, 178
[G : H]: index, 178
ker(ρ): kernel, 180
img(ρ): image, 180
G ∼= G′: isomorphic groups, 183
〈a〉: subgroup generated by a,

189
〈a1, . . . , ak〉: subgroup generated

by a1, . . . , ak, 189
R: real numbers, 199
C: complex numbers, 199
z̄: complex conjugate of z, 200
N(z): norm of z ∈ C, 200
b | a: b divides a, 201
R∗: multiplicative group of units

of R, 201
Z[i]: Gaussian integers, 205
Q(m): {a/b : gcd(b, m) = 1}, 206
R[X]: ring of polynomials, 207
deg(a): degree of a polynomial,

209
lc(a): leading coefficient of a

polynomial, 209
a rem b: polynomial remainder,

210
D(a): formal derivative of a, 213
a1R + · · ·+ akR: ideal generated

by a1, . . . , ak, 217
(a1, . . . , ak): ideal generated by

a1, . . . , ak, 217
R/I: quotient ring, 218
[a mod I]: the coset a + I, 218
[a mod d]: the coset a + dR, 218
R ∼= R′: isomorphic rings, 223

logγ α: discrete logarithm, 254
(a | p): Legendre symbol, 269
(a | n): Jacobi symbol, 271
Jn: Jacobi map, 272
aM : {aα : α ∈M}, 285
M{a}: {α ∈M : aα = 0M}, 285
〈α1, . . . , αn〉R: submodule

spanned by α1, . . . , αn,
286

R[X]<`: polynomials of degree
less than `, 286

M/N : quotient module, 286
M ∼= M ′: isomorphic modules,

288
dimF (V ): dimension, 294
A(i, j): (i, j) entry of A, 300
A(i): ith row of A, 300
A(·, j): jth column of A, 300
Rm×n: m× n matrices over R,

300
A>: transpose of A, 302
Ψ(y, x): number of y-smooth

integers up to x, 316
gcd: greatest common divisor

(polynomial), 347
lcm: least common multiple

(polynomial), 348
s rem n: extended remainder

notation for s ∈ F (X),
350

(E : F ): degree of an extension,
355

R[[X]]: formal power series, 357
R((X)): formal Laurent series, 358
R((X−1)): reversed formal

Laurent series, 359
deg(a): degree of a ∈ R((X−1)),

359
lc(a): leading coefficient of

a ∈ R((X−1)), 359
bac: floor of a ∈ R((X−1)), 360
len: length of a polynomial, 372
rep(α): canonical representative

of α ∈ R[X]/(n), 374
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DF (V ): dual space, 397
LF (V ): space of linear

transformations, 407
NE/F (α): norm, 424
TrE/F (α): trace, 425
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Abel’s identity, 81
abelian group, 167
Adleman, L. M., 162, 166, 336,

337, 466
Agrawal, M., 455, 466
Alford, W., 252
algebra, 338
algebraic

element, 355
extension, 355

Apostol, T. M., 94
approximately computes, 147
arithmetic function, 28
Artin’s conjecture, 71
associate

elements of an integral
domain, 361

polynomials, 345
associative binary operation, 3
asymptotic notation, 34
Atlantic City algorithm, 148
automorphism

algebra, 339
group, 183
module, 288
ring, 223
vector space, 292

baby step/giant step method,
257

Bach, E., 94, 166, 252, 265, 273,

281, 454
basis, 289
Bayes’ theorem, 99
Bellare, M., 337
Ben-Or, M., 454
Berlekamp subalgebra, 444
Berlekamp’s algorithm, 442
Berlekamp, E. R., 414, 454
Bernoulli trial, 96
Bertrand’s postulate, 77
big-O, -Omega, -Theta, 34
bijection, 2
bijective, 2
binary gcd algorithm, 57
binary operation, 3
binary relation, 2
binomial distribution, 107, 113
binomial theorem, 201
birthday paradox, 118
bivariate polynomial, 215
boolean circuits, 53
Brent, R. P., 414
Brillhart, J., 335
Buhler, J. P., 336
Burgess, D. A., 282

C, 199
cancellation law

for integer congruences, 18
for polynomial congruences,

350

480



Index 481

in an integral domain, 203
Canfield, E., 336
canonical representative

integer, 48
polynomial, 374

Cantor, D. G., 454
Cantor-Zassenhaus algorithm,

434
Carmichael number, 234
Carmichael, R. D., 252
Cartesian product, 1
ceiling function, 6
characteristic of a ring, 200
characteristic polynomial, 424
Chebyshev’s inequality, 115
Chebyshev’s theorem, 73
Chebyshev’s theta function, 75
Chernoff bound, 116
Chinese remainder theorem

general, 229
integer, 20, 61
polynomial, 350, 381

Chistov, A. L., 454
classification of cyclic groups,

189
collision probability, 128
column null space, 313
column rank, 313
column space, 313
column vector, 300
common divisor

in an integral domain, 362
integer, 8
polynomial, 346

common multiple
in an integral domain, 363
integer, 11
polynomial, 348

commutative binary operation, 3
commutative ring with unity, 198
companion matrix, 305
complex conjugation, 200
composite, 5
conditional distribution, 98, 103

conditional expectation, 112
conditional probability, 98
congruence, 15, 177
conjugacy class, 423
conjugate, 423
constant polynomial, 207
constant term, 209
continued fraction method, 335
coordinate vector, 304

of a projection, 397
Coppersmith, D., 336
Cormen, T. H., 266
coset, 177
Crandall, R., 54, 93, 94, 337
cyclic, 189

Damg̊ard, I., 253
degree

of a polynomial, 209
of a reversed formal Laurent

series, 359
of an element in an

extension field, 355
of an extension, 355

δ-uniform, 128
Denny, T., 337
derivative, 213
deterministic poly-time

equivalent, 263
deterministic poly-time

reducible, 263
diagonal matrix, 302
Diffie, W., 266
Diffie-Hellman key establishment

protocol, 261
Diffie-Hellman problem, 262
dimension, 294
direct product

of algebras, 338
of groups, 171
of modules, 284
of rings, 200

Dirichlet inverse, 33
Dirichlet product, 29
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Dirichlet series, 89
Dirichlet’s theorem, 91
Dirichlet, G., 94
discrete logarithm, 254

algorithm for computing,
256, 317

discrete probability distribution,
132

discriminant, 212
disjoint, 2
distinct degree factorization,

434, 449
divides, 4, 201
divisible by, 4, 201
division with remainder property

integer, 6
polynomial, 210, 346

divisor, 4, 201
Dixon, J., 335
Dornstetter, J. L., 414
dual space, 397

Eisenstein’s criterion, 370
elementary row operation, 308
elliptic curve method, 336
equal degree factorization, 436,

441
equivalence class, 2
equivalence relation, 2
Eratosthenes

sieve of, 84
Erdős, P., 336
error correcting code, 68, 387
error probability, 147
Euclidean algorithm

extended
integer, 58
polynomial, 378

integer, 55
polynomial, 377

Euclidean domain, 364
Euler’s identity, 87
Euler’s phi function, 25

and factoring, 249

Euler’s theorem, 27
Euler, L., 93
event, 96
execution path, 141
exp, 1
expected polynomial time, 140
expected running time, 140
expected value, 108
exponent, 193

module, 289
extended Euclidean algorithm

integer, 58
polynomial, 378

extended Gaussian elimination,
310

extension field, 206, 354
extension ring, 205

factoring
and Euler’s phi function,

249
factoring algorithm

integer, 324, 331
deterministic, 375

polynomial, 434, 442
deterministic, 449

Fermat’s little theorem, 28
field, 201
field of fractions, 342
finite dimensional, 294
finite extension, 355
finite fields

existence, 417
subfield structure, 421
uniqueness, 421

finite probability distribution, 95
finitely generated

abelian group, 189
module, 289

fixed field, 421
floor function, 6

reversed formal Laurent
series, 360

formal derivative, 213
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formal Laurent series, 358
formal power series, 357
Fouvry, E., 466
Frobenius map, 418
fundamental theorem of

arithmetic, 5
fundamental theorem of finite

abelian groups, 195
fundamental theorem of finite

dimensional
F [X]-modules, 412

von zur Gathen, J., 390, 454
Gauss’ lemma, 269
Gaussian elimination, 308
Gaussian integers, 205, 226, 364,

366
gcd

integer, 9
polynomial, 347

generating polynomial, 392
generator, 189

algorithm for finding, 254
geometric distribution, 133, 134,

136
Gerhard, J., 390, 454
Goldwasser, S., 282
Gordon, D. M., 337
Gordon, J., 454
Granville, A., 252
greatest common divisor

in an integral domain, 362
integer, 8
polynomial, 346

group, 167
guessing probability, 128

Hadamard, J., 93
Halberstam, H., 253
Hardy, G. H., 93, 94
hash function, 120

universal, 121
Heath-Brown, D., 94
Hellman, M., 266
Hensel lifting, 278

homomorphism
algebra, 339
group, 180
module, 287
ring, 222
vector space, 292

Horner’s rule, 374
Huang, M.-D., 466
hybrid argument, 131
Hypothesis H, 92

ideal, 7, 216
generated by, 7, 217
maximal, 220
prime, 219
principal, 7, 217

identity element, 167
identity matrix, 302
image, 2
image of a random variable, 103
Impagliazzo, R., 138
inclusion/exclusion principle, 97
index, 178
index calculus method, 337
indicator variable, 103
infinite extension, 355
infinite order, 170
injective, 2
integral domain, 202
inverse

multiplicative, 201
of a group element, 167
of a matrix, 305

inverse function, 2
invertible matrix, 306
irreducible element, 361
irreducible polynomial, 345

algorithm for generating,
431

algorithm for testing, 429
number of, 420

isomorphism
algebra, 339
group, 183
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module, 288
ring, 223
vector space, 292

Iwaniec, H., 265

Jacobi map, 272
Jacobi symbol, 271

algorithm for computing,
274

Jameson, G., 93, 94
joint distribution, 103

k-wise independent, 104
Kalai, A., 166
Kaltofen, E., 454
Karatsuba, A. A., 53
Kayal, N., 455, 466
kernel, 180
kills, 193
Kim, S. H., 253
Knuth, D. E., 53, 54
von Koch, H., 93
Kung, H. T., 414

Lagrange interpolation formula,
351

Las Vegas algorithm, 148
law of large numbers, 116
law of quadratic reciprocity, 269
lcm

integer, 11
polynomial, 348

leading coefficient, 209
of a reversed formal Laurent

series, 359
least common multiple

in an integral domain, 363
integer, 11
polynomial, 348

left inverse, 306
leftover hash lemma, 129
Legendre symbol, 269
Lehmann, D., 253
Lehmer, D., 335
Leiserson, C. E., 266

len, 46, 372
length

of a polynomial, 372
of an integer, 46

Lenstra, Jr., H. W., 336
Levin, L., 138
li, 86
linear map, 287
linear transformation, 407
linearly dependent, 289
linearly generated sequence, 391

minimal polynomial of, 392
of full rank, 397

linearly independent, 289
little-o, 34
Littlewood, J. E., 94
log, 1
logarithmic integral, 86
lowest terms, 11
Luby, M., 138, 165

Markov’s inequality, 114
Massey, J., 414
matrix, 299
Maurer, U., 253
maximal ideal, 220
memory cells, 37
Menezes, A., 166
Mertens’ theorem, 82
Micali, S., 282
Miller, G. L., 252, 253
Miller-Rabin test, 233
Mills, W., 390, 414
min entropy, 128
minimal polynomial, 353

algorithm for computing,
376, 406, 433

of a linear transformation,
408

of a linearly generated
sequence, 392

of a vector under a linear
transformation, 409

Möbius function (µ), 29
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Möbius inversion formula, 30
mod, 15
modular square root, 267

algorithm for computing,
276

module, 283
modulus, 15
monic associate, 345
monic polynomial, 209
monomial, 213, 215, 216
Monte Carlo algorithm, 148
Morrison, K., 414
Morrison, M., 335
multi-variate polynomial, 216
multiple root, 212
multiplication map, 180, 199, 289
multiplicative function, 29
multiplicative group of units, 201
multiplicative inverse, 24

in a ring, 201
modulo integers, 17
modulo polynomials, 349

multiplicative order, 27, 189
multiplicative order modulo n,

27
multiplicity, 212
mutually independent

events, 98
random variables, 104

natural map, 184
Newton interpolation, 381
Newton’s identities, 361
Niven, I., 273
non-constant polynomial, 207
non-trivial ring, 200
norm, 200, 424
normal basis, 428
number field sieve, 336

Oesterlé, J., 94
one-sided error, 148
van Oorschot, P., 166, 266
order

in a module, 289

of a group element, 189
of an abelian group, 170

ordered basis, 304

pairwise disjoint, 2
pairwise independent

events, 98
hash function, 120
random variables, 104

pairwise relatively prime
integer, 11
polynomial, 349

partition, 2
perfect power, 247
period, 71
periodic sequence, 70
phi function of Euler, 25
PID, 365
pivot sequence, 307
Pohlig, S., 266
Pollard, J. M., 266, 336
polynomial

associate, 345
irreducible, 345
monic, 209
primitive, 367
reducible, 345

polynomial evaluation map, 224,
340

polynomial time, 38
expected, 140
strict, 140

Pomerance, C., 54, 93, 94, 252,
253, 336, 337, 466

de la Vallée Poussin, C.-J., 93, 94
power map, 180
pre-image, 2
pre-period, 71
prefix free, 141
primality test

deterministic, 455
probabilistic, 230

prime
ideal, 219
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in an integral domain, 363
number, 5

prime number theorem, 85
irreducible polynomials over

a finite field, 420
primitive polynomial, 367
principal ideal, 7, 217
principal ideal domain, 365
probabilistic algorithm, 139
probability distribution

conditional, 98
discrete, 132
finite, 95

probability function, 95
product distribution, 97
program, 37
projection, 397
public key cryptography, 266
purely periodic, 71

Q, 11
quadratic formula, 212
quadratic reciprocity, 269
quadratic residue, 267
quadratic residuosity

algorithm for testing, 275
assumption, 280

quadratic sieve, 332
quantum computer, 337
quotient algebra, 338
quotient group, 178
quotient module, 286
quotient ring, 218
quotient space, 292

R, 199
Rabin, M. O., 252
Rackoff, C., 335
RAM, 36
random access machine, 36
random self reduction, 165
random variable, 103

conditional distribution of,
103

conditional expectation, 112

distribution of, 103
expected value, 108
image, 103
independent, 104
joint distribution, 103
k-wise independent, 104
mutually independent, 104
pairwise independent, 104
real, 103
variance, 110

randomized algorithm, 139
rank, 313
rational function field, 344
rational function reconstruction,

385
rational reconstruction, 65
real random variable, 103
recursion tree, 266
Redmond, D., 94
reduced row echelon form, 307
reducible polynomial, 345
Reed, I., 390
Reed-Solomon code, 68, 387
relatively prime

in an integral domain, 362
integers, 9
polynomials, 347

rem, 6, 19, 210, 350
Renyi entropy, 128
rep, 48, 374
repeated-squaring algorithm, 49
representation, 264
representative

of a coset, 177
of a residue class, 22
of an equivalence class, 2

residue class, 22
residue class ring, 218
reversed formal Laurent series,

359
Richert, H., 253
Riemann hypothesis, 87, 252
Riemann’s zeta function, 87
Riemann, B., 93
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right inverse, 306
ring, 198
ring of polynomials, 207
Rivest, R. L., 162, 166, 266
Rogaway, P., 337
root of a polynomial, 211
Rosser, J., 93
row null space, 311
row rank, 313
row space, 311
row vector, 300
RSA cryptosystem, 162
Rumely, R. S., 466

sample mean, 115
sample space, 95
Saxena, N., 455, 466
scalar, 283
scalar matrix, 302
scalar multiplication, 283
Schirokauer, O., 337
Schoenfeld, L., 93
Schönhage, A., 53
Scholtz, R., 414
secret sharing scheme, 382
Semaev, I. A., 454
separating set, 450
Shallit, J., 94, 273, 454
Shamir, A., 52, 162, 166, 390
Shanks, D., 266
shift register sequence, 393
Shor, P., 337
Shoup, V., 265, 414, 454
sieve of Eratosthenes, 84
simple root, 212
smooth number, 316, 331
Solomon, G., 390
Solovay, R., 252, 281
solving linear congruences

integer, 19
polynomial, 350

Sophie Germain prime, 92
splitting field, 356
square root (modular), 267

algorithm for computing,
276

square-free
integer, 12
polynomial, 416

square-free decomposition
algorithm, 442, 452

standard basis, 290
statistical distance, 123
Stein, C., 266
Strassen, V., 53, 252, 281
strict polynomial time, 140
subalgebra, 339
subfield, 206
subgroup, 172

generated by, 189
submodule, 285

generated (or spanned) by,
286

subring, 205
subspace, 292
surjective, 2

theta function of Chebyshev, 75
total degree, 215, 216
trace, 425
transcendental element, 355
transpose, 302
trial division, 230
trivial ring, 200
twin primes conjecture, 93
two-sided error, 148

UFD, 361
ultimately periodic sequence, 70
unique factorization

in a Euclidean domain, 364
in a PID, 365
in D[X], 367
in F [X], 346
in Z, 5

unique factorization domain, 361
unit, 201
universal family of hash

functions, 121
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Vandermonde matrix, 351
Vanstone, S., 166
variance, 110
vector, 283
vector space, 292

Walfisz, A., 93
Wang, Y., 265
Weber, D., 337
Welch, L., 414
well-behaved complexity

function, 51
Wiedemann, D., 414
Wiener, M., 266
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