/**************************************************************************\
MODULE: mat_GF2
SUMMARY:
The class mat_GF2 implements matrices over GF(2).
Each row is a vec_GF2 of the same length.
For a mat_GF2 M, one may access row i of M as M[i],
indexing from 0, or as M(i), indexing from 1.
Individual elements of M may be accessed as M[i][j],
indexing from 0, or M(i, j), indexing from 1.
Some restrictions apply (see vec_GF2.txt for details).
Alternatively, one may use methods get and put.
\**************************************************************************/
#include <NTL/vec_vec_GF2.h>
class mat_GF2 {
public:
mat_GF2(); // initially 0 x 0
mat_GF2(const mat_GF2& a);
mat_GF2& operator=(const mat_GF2& a);
~mat_GF2();
mat_GF2(INIT_SIZE_TYPE, long n, long m);
// mat_T(INIT_SIZE, n, m) initializes an n x m matrix,
// clearing all bits.
void SetDims(long n, long m);
// M.SetDims(n, m) makes M have dimension n x m. If the number of
// columns (m) changes, previous storage is freed, and space for M
// is reallocated and initialized; otherwise, more rows are
// allocated as necessary (when number of rows increases),
// excess rows are retained (when number of rows decreases),
// and--importantly--the contents do not change.
long NumRows() const;
// M.NumRows() returns the number of rows of M
long NumCols() const;
// M.NumCols() returns the number of columns of M
vec_GF2& operator[](long i);
const vec_GF2& operator[](long i) const;
// access row i, initial index 0. Any attempt to change the length
// of this row will raise an error.
vec_GF2& operator()(long i);
const vec_GF2& operator()(long i) const;
// access row i, initial index 1. Any attempt to change the length
// of this row will raise an error.
GF2 get(long i, long j) const;
// returns entry (i, j), indexing from 0
void put(long i, long j, GF2 a);
void put(long i, long j, long a);
// set entry (i, j) to a, indexing from 0
// Here are the subscripting operations defined using
// the "helper" classes subscript_GF2 and const_subscript_GF2.
subscript_GF2 operator()(long i, long j);
const_subscript_GF2 operator()(long i, long j) const;
long position(const vec_GF2& a) const;
// returns index of a in matrix, or -1 if not present;
// equivalent to rep(*this).position(a);
long position1(const vec_GF2& a) const;
// returns index of a in matrix, or -1 if not present;
// equivalent to rep(*this).position1(a);
void kill(); // free space and make 0 x 0.
};
const vec_vec_GF2& rep(const mat_GF2& a);
// read-only access to underlying representation.
void swap(mat_GF2& X, mat_GF2& Y);
// swap X and Y (fast pointer swap)
void conv(mat_GF2& X, const vec_vec_GF2& A);
mat_GF2 to_mat_GF2(const vec_vec_GF2& A);
// convert a vector of vec_GF2's to a matrix
// equality testing:
long operator==(const mat_GF2& A, const mat_GF2& B);
long operator!=(const mat_GF2& A, const mat_GF2& B);
// Input/Output:
// input format is the same as for a vector of vec_GF2s.
istream& operator>>(istream&, mat_GF2&);
ostream& operator<<(ostream&, const mat_GF2&);
// procedural arithmetic routines:
void add(mat_GF2& X, const mat_GF2& A, const mat_GF2& B);
// X = A + B
void sub(mat_GF2& X, const mat_GF2& A, const mat_GF2& B);
// X = A - B = A + B
void negate(mat_GF2& X, const mat_GF2& A);
// X = -A = A
void mul(mat_GF2& X, const mat_GF2& A, const mat_GF2& B);
// X = A * B
void mul(vec_GF2& x, const mat_GF2& A, const vec_GF2& b);
// x = A * b
void mul(vec_GF2& x, const vec_GF2& a, const mat_GF2& B);
// x = a * B
void mul(mat_GF2& X, const mat_GF2& A, GF2 b);
void mul(mat_GF2& X, const mat_GF2& A, long b);
// X = A * b
void mul(mat_GF2& X, GF2 a, const mat_GF2& B);
void mul(mat_GF2& X, long a, const mat_GF2& B);
// X = a * B
void determinant(GF2& d, const mat_GF2& A);
GF2 determinant(const mat_GF2& A);
// d = determinant of A
void transpose(mat_GF2& X, const mat_GF2& A);
mat_GF2 transpose(const mat_GF2& A);
// X = transpose of A
void solve(GF2& d, vec_GF2& x, const mat_GF2& A, const vec_GF2& b);
// A is an n x n matrix, b is a length n vector. Computes d = det(A).
// If d != 0, solves x*A = b.
void inv(GF2& d, mat_GF2& X, const mat_GF2& A);
// A is an n x n matrix. Computes d = det(A). If d != 0,
// computes X = A^{-1}.
void sqr(mat_GF2& X, const mat_GF2& A);
mat_GF2 sqr(const mat_GF2& A);
// X = A*A
void inv(mat_GF2& X, const mat_GF2& A);
mat_GF2 inv(const mat_GF2& A);
// X = A^{-1}; error is raised if A is singular
void power(mat_GF2& X, const mat_GF2& A, const ZZ& e);
mat_GF2 power(const mat_GF2& A, const ZZ& e);
void power(mat_GF2& X, const mat_GF2& A, long e);
mat_GF2 power(const mat_GF2& A, long e);
// X = A^e; e may be negative (in which case A must be nonsingular).
void ident(mat_GF2& X, long n);
mat_GF2 ident_mat_GF2(long n);
// X = n x n identity matrix
long IsIdent(const mat_GF2& A, long n);
// test if A is n x n identity matrix
void diag(mat_GF2& X, long n, GF2 d);
mat_GF2 diag(long n, GF2 d);
// X = n x n diagonal matrix with diagonal element d
long IsDiag(const mat_GF2& A, long n, long d);
// test if X is an n x n diagonal matrix with diagonal element (d mod 2)
long gauss(mat_GF2& M);
long gauss(mat_GF2& M, long w);
// Performs unitary row operations so as to bring M into row echelon
// form. If the optional argument w is supplied, stops when first w
// columns are in echelon form. The return value is the rank (or the
// rank of the first w columns).
void image(mat_GF2& X, const mat_GF2& A);
// The rows of X are computed as basis of A's row space. X is is row
// echelon form
void kernel(mat_GF2& X, const mat_GF2& A);
// Computes a basis for the kernel of the map x -> x*A. where x is a
// row vector.
// miscellaneous:
void clear(mat_GF2& X);
// X = 0 (dimension unchanged)
long IsZero(const mat_GF2& A);
// test if A is the zero matrix (any dimension)
// arithmetic operator notation:
mat_GF2 operator+(const mat_GF2& a, const mat_GF2& b);
mat_GF2 operator-(const mat_GF2& a, const mat_GF2& b);
mat_GF2 operator*(const mat_GF2& a, const mat_GF2& b);
mat_GF2 operator-(const mat_GF2& a);
// matrix/scalar multiplication:
mat_GF2 operator*(const mat_GF2& a, GF2 b);
mat_GF2 operator*(const mat_GF2& a, long b);
mat_GF2 operator*(GF2 a, const mat_GF2& b);
mat_GF2 operator*(long a, const mat_GF2& b);
// matrix/vector multiplication:
vec_GF2 operator*(const mat_GF2& a, const vec_GF2& b);
vec_GF2 operator*(const vec_GF2& a, const mat_GF2& b);
// assignment operator notation:
mat_GF2& operator+=(mat_GF2& x, const mat_GF2& a);
mat_GF2& operator-=(mat_GF2& x, const mat_GF2& a);
mat_GF2& operator*=(mat_GF2& x, const mat_GF2& a);
mat_GF2& operator*=(mat_GF2& x, GF2 a);
mat_GF2& operator*=(mat_GF2& x, long a);
vec_GF2& operator*=(vec_GF2& x, const mat_GF2& a);