/**************************************************************************\

MODULE: GF2XFactoring

SUMMARY:

Routines are provided for factorization in F_2[X], as well as routines
for related problems such as testing irreducibility and constructing
irreducible polynomials of given degree.

\**************************************************************************/

#include <NTL/GF2X.h>
#include <NTL/pair_GF2X_long.h>

void SquareFreeDecomp(vec_pair_GF2X_long& u, const GF2X& f);
vec_pair_GF2X_long SquareFreeDecomp(const GF2X& f);

// Performs square-free decomposition.  f must be monic.  If f =
// prod_i g_i^i, then u is set to a list of pairs (g_i, i).  The list
// is is increasing order of i, with trivial terms (i.e., g_i = 1)
// deleted.


void DDF(vec_pair_GF2X_long& factors, const GF2X& f, long verbose=0);
vec_pair_GF2X_long DDF(const GF2X& f, long verbose=0);

// This computes a distinct-degree factorization.  The input must be
// monic and square-free.  factors is set to a list of pairs (g, d),
// where g is the product of all irreducible factors of f of degree d.
// Only nontrivial pairs (i.e., g != 1) are included.



void EDF(vec_GF2X& factors, const GF2X& f, long d, long verbose=0);
vec_GF2X EDF(const GF2X& f, long d, long verbose=0);

// Performs equal-degree factorization.  f is monic, square-free, and
// all irreducible factors have same degree.  d = degree of
// irreducible factors of f

void SFCanZass(vec_GF2X& factors, const GF2X& f, long verbose=0);
vec_GF2X SFCanZass(const GF2X& f, long verbose=0);


// Assumes f is monic and square-free.  returns list of factors of f.


void CanZass(vec_pair_GF2X_long& factors, const GF2X& f, long verbose=0);
vec_pair_GF2X_long CanZass(const GF2X& f, long verbose=0);

// returns a list of factors, with multiplicities.  f must be monic.
// Calls SquareFreeDecomp and SFCanZass.


void mul(GF2X& f, const vec_pair_GF2X_long& v);
GF2X mul(const vec_pair_GF2X_long& v);

// multiplies polynomials, with multiplicities


/**************************************************************************\

                            Irreducible Polynomials

\**************************************************************************/

long IterIrredTest(const GF2X& f);

// performs an iterative deterministic irreducibility test, based on
// DDF.  Fast on average (when f has a small factor).

void BuildSparseIrred(GF2X& f, long n);
GF2X BuildSparseIrred_GF2X(long n);

// Builds a monic irreducible polynomial of degree n.
// If there is an irreducible trinomial X^n + X^k + 1,
// then the one with minimal k is chosen.
// Otherwise, if there is an irreducible pentanomial 
// X^n + X^k3 + X^k2 + x^k1 + 1, then the one with minimal
// k3 is chosen (minimizing first k2 and then k1).
// Otherwise, if there is niether an irreducible trinomial
// or pentanomial, the routine result from BuildIrred (see below)
// is chosen---this is probably only of academic interest,
// since it a reasonable, but unproved, conjecture that they
// exist for every n > 1.

// For n <= 2048, the polynomial is constructed
// by table lookup in a pre-computed table.

// The GF2XModulus data structure and routines (and indirectly GF2E) 
// are optimized to deal with the output from BuildSparseIrred.

void BuildIrred(GF2X& f, long n);
GF2X BuildIrred_GF2X(long n);

// Build a monic irreducible poly of degree n.  The polynomial
// constructed is "canonical" in the sense that it is of the form
// f=X^n + g, where the bits of g are the those of the smallest
// non-negative integer that make f irreducible.  

// The GF2XModulus data structure and routines (and indirectly GF2E) 
// are optimized to deal with the output from BuildIrred.

// Note that the output from BuildSparseIrred will generally yield
// a "better" representation (in terms of efficiency) for
// GF(2^n) than the output from BuildIrred.



void BuildRandomIrred(GF2X& f, const GF2X& g);
GF2X BuildRandomIrred(const GF2X& g);

// g is a monic irreducible polynomial.  Constructs a random monic
// irreducible polynomial f of the same degree.