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Abstract

We describe and analyze a new digital signature scheme. The new scheme is quite efficient,
does not require the the signer to maintain any state, and can be proven secure against adaptive
chosen message attack under a reasonable intractability assumption, the so-called strong RSA
assumption. Moreover, a hash function can be incorporated into the scheme in such a way that
it is also secure in the random oracle model under the standard RSA assumption.

1 Introduction

We describe new, quite efficient digital signature schemes whose security is based on the strong
RSA assumption.

By security, we mean security against an adaptive chosen message attack, as defined in [GMRS8].
This is the strongest type of security for a digital signature scheme that one can expect, and a
signature scheme that is secure in this sense can be safely deployed in the widest possible range
of applications. To prove that our new schemes are secure, we need to make the strong RSA
assumption, recently introduced by [BP97]. We also need a collision-resistant hash function—
actually, as we shall see, a universal one-way hash function [NY89] is sufficient.

Our new schemes are interesting in that they are state-free, unlike other provably secure schemes
[GMRS88, DN94, CD96]; our schemes are more efficient than these schemes as well. From a practical
point of view, this state-freeness property is at least, if not more, important than efficiency. We
achieve this at the expense using of a potentially stronger assumption than is made in [GMRSS,
DN94, CD96].

We stress that in discussing proofs of security, we are not making use of the “random oracle”
model of computation, but rather, we are working in the “real world” of computation.

The random oracle model is a formal model in which a cryptographic hash function is treated
as if it were a black box containing a random function. We stress that with respect to proofs of
security, a proof in the random oracle model should not be viewed as just a stronger intractability
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assumption. It is at best a heuristic device that gives strong evidence that a scheme cannot be
broken—however, it is entirely possible that a scheme can be secure in the random oracle model, and
yet be broken without violating any particular intractability assumption, and without exhibiting any
particular weakness in the cryptographic hash function (see [CGH98]). The random oracle model
was first introduced in an informal way in [FS87], and was later formalized and further developed
and applied in [BR93]. Subsequently, it has been used to analyze numerous cryptographic schemes
(see, e.g., [PS96)).

The standard “hash and invert” RSA signature is provably secure in the random oracle model
under the standard RSA assumption, but in the “real world,” its security is not well understood.

We also make the further observation that—at almost no cost—another hash function can be
incorporated into our new schemes in such a way that they are also secure in the random oracle
model under the standard RSA assumption. In this sense, our schemes can be made to be at least
as secure as a standard RSA signature.

The strong RSA assumption is the assumption that the following problem is hard to solve.
Given a randomly chosen RSA modulus n and a random z € Z;, find r > 1 and y € Z}, such that
y" = z. Note that this differs from the ordinary RSA assumption, in that for the RSA assumption,
the exponent r is chosen independently of z, whereas for the strong RSA assumption, » may be
chosen in a way that depends on z.

Independently, Gennaro, Halevi, and Rabin [GHR99] have also recently discovered efficient,
state-free signature schemes based on the strong RSA assumption. Our schemes are actually quite
different from theirs, and we think that all of these different schemes are of interest from both
a theoretical and practical perspective, because they are the only truly practical and state-free
schemes available that admit a proof of security under a natural intractability assumption. More-
over, our scheme is potentially more efficient for the following reason. The paper [GHR99] contains
several signature schemes, but the only fully proved scheme requires a “trapdoor” or “chameleon”
collision-resistant hash function with the following very special property: its output is a prime
number. Implementing such a hash function is both awkward and potentially computationally
expensive. Indeed, depending on the security parameters and implementation details, evaluating
this hash function can dominate the running time of the signing algorithm. Our scheme sidesteps
this problem altogether. While the signing algorithm still has to generate a prime number, it has a
great deal of flexibility in how this is done, yielding a much more efficient algorithm. Basically, our
signing algorithm just needs to generate any prime number of appropriate length (e.g., 161 bits)
subject only to the requirement that the probability of generating the same prime twice is small.

Our new schemes can be seen as variations of the scheme of Cramer and Damgard [CD96],
which itself is an adaptation of [DN94], additionally using ideas from [GQ88] and [GMRSS]. In §2,
we discuss the RSA and strong RSA assumptions in somewhat greater detail. In §3, we present
and analyze our basic scheme. In §4, borrowing ideas from the proof of security in §3, we show
that the problem defining the strong RSA assumption is random self reducible. In §5, we present
and analyze a variation based on trapdoor hashing. In §6, we sketch an algorithm for fast prime
generation, as required by the signing algorithm, and discuss how the intractability assumption can
be weakened by using hash functions. In §7, we make some observations and recommendations for
implementing the key generation algorithm. In §8, we briefly discuss an implementation of our new
scheme and its performance.

2 The RSA and Strong RSA Assumptions

In this section, we review the RSA and strong RSA assumptions in somewhat more detail.



The RSA problem is the following. Given a randomly generated RSA modulus n, an exponent
r, and a random z € Z}, find y € Z;, such that y" = 2. The exponent r is drawn from a particular
distribution—particular distributions give rise to particular versions of the RSA problem. The RSA
assumption is the assumption that this problem is hard to solve.

The flexzible RSA problem is the following. Given an RSA modulus n and a random z € Zy, find
r > 1 and y € Z; such that y" = z. The choice of r may be restricted in some fashion—particular
restrictions give rise to particular versions of the flexible RSA problem. The strong RSA assumption
is the assumption that this problem is hard to solve. Note that this differs from the ordinary RSA
assumption, in that for the RSA assumption, the exponent r is chosen independently of z, whereas
for the strong RSA assumption,  may be chosen in a way that depends on z.

The strong RSA assumption was introduced in [BP97], and has subsequently been used in the
analysis of several cryptographic schemes (see, e.g., [FO99, GHR99]). This is a potentially stronger
assumption than the RSA assumption, but at the present time, the only known method for breaking
either assumption is to solve the integer factorization problem.

One of the nice features about the RSA problem is that it is random self reducible. That is,
having fixed n and 7, then the problem of computing y = 2z!/" for an arbitrary z € Z; can be
reduced to the problem of computing § = 2'/" for random %z € Z;. This means that given an
efficient algorithm to solve the latter problem, one can efficiently solve the former problem. This
is a well-known and quite trivial reduction: given z, choose s € Z; at random, and set z = s"z.
Then we have y = §/s.

The existence of such a random self reduction adds credibility to the RSA assumption, since if
there is an algorithm that solves the RSA problem for a given n and for a non-negligible fraction
of choices of z, then there is another algorithm that solves the RSA problem for the same n for all
choices of z.

There is also a random self reduction for the flexible RSA problem, at least in the particular
version that we need for proving the security of our signature scheme. Just as for the RSA prob-
lem, this random self reduction adds credibility to the strong RSA assumption. This random self
reduction appears to be new (or at least, not very well known), and can be derived from our proof
of security of our signature scheme, and we present it in §4.

3 The Basic Scheme

In this section we describe the basic scheme, and give a proof of its security.

The scheme is parameterized by two security parameters, [ and I’, where [ + 1 < I’. Reasonable
choices might be [ = 160 and I’ = 512. The scheme makes use of a collision-resistant hash function
H whose output can be interpreted as a positive integer less than 2. A reasonable choice for H
might be SHA-1.

For a positive integer n, we let QR,, denote the subgroup of Z? of squares (i.e., the quadratic
residues modulo n).

Key Generation Two random /’-bit primes p and ¢ are chosen, where p = 2p’ +1 and ¢ = 2¢’ +1,
with both p’ and ¢’ prime. Let n = pq. Also chosen are:

e random h,z € QR,;

e a random (I + 1)-bit prime e’.

The public key is
(n,h,z,¢€).



The private key is
(P, a)-

Signature Generation To sign a message m (an arbitrary bit string), a random (I 4 1) bit prime
e # €' is chosen, and a random 3’ € QR,, is chosen. The equation

Y=z hH (z')
is solved for y, where z’ satisfies the equation
(v)°

Note that y can be calculated using the factorization of n in the private key. The signature is

/

= ¢/pH(m)

(e;y,9").

Signature Verification To verify a putative signature (e,y,%’) on a message m, it is first checked
that e is an odd (I + 1)-bit number different from €’. Second, #' = (y')¢ h=H(™) is computed.
Third, it is checked that z = yeh~H("),

Implementation Notes

We remark that the signature verification algorithm does not need to verify that e is prime.

To speed both verification and signing, the public key might contain A~! instead of h.

In generating a signature, the only full-length exponentiation that needs to be performed is in
the computation of 4. The cost of this can be significantly reduced, as follows. First, we can arrange
that = h® for a random number a mod p’q’, where a is stored in the secret key. This is acceptable,
because h is with overwhelming probability a generator of QR,,, and thus the distribution of the
public key does not change significantly. Now, if d is the inverse of e mod p'q’, then y = h?, where
b =da+ dH(z') mod p'q’. So the computation of y involves exponentiation with the fized base h
to the power b. Using pre-computation techniques [LL94], we can substantially reduce the number
of modular multiplications using a table of pre-computed numbers.

Of course, in all of the above, one utilizes the Chinese Remainder Theorem as well to speed the
exponentiations.

We also note that the primes generated by the signer do not have to be random primes. The
only requirement is that the probability of generating the same prime twice is negligible.

Using these implementation ideas, together with a fast prime generator like the one described
in §6, one can obtain a scheme that is quite competitive with standard RSA in terms of efficiency
(see §8).

Proof of Security
Now we proceed to prove the security of the above scheme.

Theorem 1 The above signature scheme is secure against adaptive chosen message attack, under
the strong RSA assumption and the assumption that H is collision-resistant.

Before proving this theorem, for convenience, we state the following well-known, but useful
lemma (see, e.g., [GQS8S8]).



Lemma 1 Gwen z,y € Z;, along with a,b € Z, such that z* = y? and ged(a,b) = 1, one can
efficiently compute T € Z; such that 2% = y.

To prove this lemma, we use the extended Euclidean algorithm to compute integers b’ and k
such that bb' = 1 + ak. A simple calculation then shows that & = z¥y~* does the job. That
completes the proof of Lemma 1.

Now we turn to the proof of Theorem 1. Let us consider a forging algorithm that makes ¢
signing queries and then produces a forgery. For 1 < i < ¢, let m; be the ith message signed, let
(ei, i, yl) be the ith signature, and let z} be defined as z; = (y})* h=H(™). Let (e,y,y’) be the
forgery on message m (so m # m; for all 1 < i < t). Also, let &' = (y/)¢ h=H (™),

We distinguish between three types of forgeries:

Type I For some 1 <j <t, e=e; and 2’ = 7).

Type II For some 1 < j <t, e =¢; and 2’ # 7.
Type ITI For all 1 <i <t e #e;.

We assume that no two e; are equal, and so a forgery has a unique type. We also assume that
no e; is equal to €.

If there is a forger that succeeds with non-negligible probability, then there exists either Type I
forger, a Type II forger, or a Type III forger, one of which succeeds with non-negligible probability.
We show that any of these forgers can be turned into an algorithm breaking the strong RSA
assumption. In fact, a forger of Types I or IT can be used to break the RSA assumption, and the
proof of this is quite similar to proofs in [CD96]. We only need the strong RSA assumption in case
the forger is Type III.

Type I Forger

Suppose we have a Type I forger that succeeds with non-negligible probability. We want to show
how to use this forger to efficiently solve the RSA problem. That is, we are given n, a random
z € Z7, and a random (! 4 1)-bit prime 7, and we want to compute 24T

We describe a simulator that interacts with the forger. We choose random (I + 1)-bit primes
e1,...,¢6¢, and we create a public key as follows. We set

h =21l
We next choose w € Z; at random and set
r=w> Hz i

Finally, we set ¢/ = r.

Now, to sign message m;, the simulator chooses y; € QR,, at random, and computes z; =
(yz’-)e'h_H (mi)  Next, the simulator solves the equation yit = zhtl (%) for y;, which is can easily do,
since it knows the e;th roots of z and h.

It is easy to see that the simulator perfectly simulates the forger’s view.

Now suppose the forger creates a Type I forgery (e,y,%’) on a message m. So for some 1 < j < ¢,
e =e;j and 7' = x;. This yields two equations

(y/)e’ _ x/hH(m);
(y;_)e _ x/hH(m]‘).



Since we are assuming H is collision-resistant, we may assume that H(m) # H(m;). Thus, dividing
these two equations, we can calculate v € Z} and an integer a Z0 (mod €’) such that

/

ve = h% = zZaHiei

Moreover, since ged(2a[]; e;,€’) = 1 and €’ = r, we can easily compute an rth root of z by applying
the algorithm of Lemma 1.

Type II Forger

As in the Type I case, we are given n, z € Z and r, and we want to find an rth root of z.

We may assume that the value j in the definition of a Type II forgery is fixed. If not, we can
guess it.

Again, we describe a simulator. We create a public key as follows. For 1 <4 < ¢, with i # 7,
we choose e; to be a random (I + 1)-bit prime. We set e; = r. We also select €’ to be a random
(I + 1)-bit prime. We set

=22 e

We choose w € Z;, at random, and set

Yj = 11}2 Hi#]’ ei,
We choose u € Z; at random, and set
1,2
:EJ =u .
We compute )
x = y;jh_H(xj).

Next, we describe how to sign message m,. First, suppose i # j. We choose y; € QR,, at
random, and compute as z; = (yg)e'h_H(mi). Then, since we know the e;th roots of z and h, we
can easily compute the corresponding value y;.

Second, suppose i = j. Since we know the e’th roots of h and =
value y; The correct value of y; has already been determined.

That completes the description of the simulator. It is easy to see that the simulator perfectly
simulates the forger’s view.

Now suppose the forger creates a Type II forgery (e,y,y’) on a message m, where e = e; and
' # x. Then we have

I.

j» we can compute the correct

ye _ th(m’);

y; = chH @)

Then by an argument similar to that in the Type I case, we can divide these two equations,
and calculate an rth root of z.



Type III Forger

Given a Type III forger, we show how to efficiently solve the flexible RSA problem. That is, given
n and z € Z;, compute r > 1 and an rth root of z.

The simulator runs as follows. We choose random (I + 1)-bit primes €, ey, ..., e;. We set
h = Z2e’ Hz €i
Now we choose a random a € {1,...,n%}, and set x = h?.

Now, by construction, QR,, is a cyclic group of order p'q’. We can assume that h generates
QR,,, since this happens with overwhelming probability.

Now let a = bp’'q’ + ¢, where 0 < ¢ < p'q’. Because a was chosen at random from a suitably
large interval, the distribution of ¢ is statistically indistinguishable from the uniform distribution on
{0,...,p'q’—1}. Moreover, the conditional distribution of b given c is statistically indistinguishable
from the uniform distribution on {0,...,|[n2/p'q’|}. That is, c and b are essentially independent.

Because the distribution of ¢ is essentially uniform, x is essentially distributed like a random
element of QR,,. Since we know all the relevant roots of  and h, we can easily sign all messages.

Now suppose the forger creates a Type III forgery, (e,y,y'). Then we have

ye _ IhH(z’) _ Zm’

where

m= Qe'Hei (a+ H(z").

Let d = ged(e,m). The fact that ged(d,2p'q’) = 1 implies that y¢/¢ = z™/¢, and so we can
use the algorithm of Lemma 1 to compute an (e/d)-th root of z, which is nontrivial provided
efm. So it suffices to show that e/m with non-negligible probability. Let r be a prime dividing
e. Now, r)2¢'[]; e; by construction. So it suffices to show that rf(a + H(z')) with non-negligible
probability. Let a = bp’q’+c as above. Now, r may depend on ¢, but we observed above that ¢ and b
are essentially independent. And since by construction r)p'q’, it follows that a+ H(z') = 0 (mod )
with probability very close to 1/r, as we are evaluating a linear polynomial in b at a random point.
Thus, with non-negligible probability, r}(a + H(z')).

Using a universal one-way hash function

The notion of a universal one-way family of hash functions was introduced by Naor and Yung
[NY89]. A family H of hash functions indexed by a key k is universal one-way if the following
property holds: if an adversary chooses a message x, and then a random key k is chosen, it should
be hard for the adversary to find y # x such that Hy(z) = Hg(y).

The universal one-way property is a much weaker property than full collision resistance, so
it is desirable to rely on this weaker property from a security point of view. See [BR97] for
further discussion. Note that the length of the key k may grow with the message length; for some
constructions, the growth rate is logarithmic.

We can modify our basic signature scheme to use a universal one-way hash as follows. We add
a random hash key &’ to the public key. A signature is of the form (e, y,y’, k), where k is a random

hash key, and we have:
ye = l_th/(lc,x’) and (yl)e’ _ x/th(m) (1)



Theorem 2 The above signature scheme is secure against adaptive chosen message attack, under
the strong RSA assumption and the assumption that H is a uniwversal one-way family of hash
functions.

The proof is a simple modification of the proof of Theorem 1. We sketch the differences.
In classifying types of forgeries, we define Type I and Type II forgeries as follows.

Type I For some 1 <j <t, e=e¢; and (k,2') = (kj, z}).

Type II For some 1 < j <1, e =¢; and (k,2') # (kj,z}).

Here, k; represents the hash key used in signing the jth message, and k the hash key appearing
in the forged signature. Type III forgeries are the same as before.

In the case of a Type I forgery, the proof is identical to the proof of Theorem 1, except that
we have to observe that the universal one-way property and the fact that k& = k; implies that
Hy(m) = Hy,;(m;) with negligible probability.

In the case of a Type II forgery, the proof is the same as before, except that we have to argue that
Hy (k, ") = Hp (kj, 7;) with negligible probability. Suppose, to the contrary, that the adversary
succeeds in finding (k,2') such that Hy (k,z') = Hy(kj,z};). Then we can break the universal
one-way property of H using a different simulator, as follows. This new simulator generates a
public key/private key pair for the signature scheme, but without choosing the hash key k'. Next,
the simulator guesses the value j defining the Type II forgery, and generates :c§ € QR,, at random,
along with a random hash key k;. Note that the correct length of k; may depend on the length
of m;, which is at this point in time unknown to the simulator, so the simulator will also have to
make a guess here as well. Now, a hash key k' is chosen, and the simulator is going to use the
adversary to find a collision Hy(k,") = Hp (kj, 7). The simulator completes the public key by
adding k' to it. Now the adversary is run against this public key. Since the simulator knows the
private key of the signature scheme, it can easily generate signatures for message i, for 1 < ¢ < ¢,
with ¢ # j. For ¢ = j, the simulator generates a signature on a message m; so that the resulting
(kj, x;) is equal to the previously chosen value of (k;, xg) But this the simulator can easily do since
it has the factorization of n available to it: it generates a prime e;, and then solves the equations
(1) for y; and yj, using the given values of kj, z}, ¢;, along with k’. That completes the description
of the simulator. If the adversary succeeds in finding a collision Hy(k,2') = Hy (kj, ), then this
breaks the universal one-way assumption on H.

4 A Random Self Reduction for the Flexible RSA Problem

In this section, we show that the flexible RSA problem, at least a version of it that suffices for our
purposes here, is random self reducible.

We assume that n = pq, where p and ¢ are primes of the form p = 2p' + 1, ¢ = 2¢' + 1, where p’
and ¢’ are also prime. Also, the exponent r is restricted to be an odd number that is smaller than
both p’ and ¢'.

Now, we first define a problem related to the flexible RSA problem: the flexible QR-RSA
problem. This is the same as the flexible RSA problem, except that z is chosen as a random
element of QR,,. We note the following:

e using Lemma 1, the flexible RSA problem can be reduced to the flexible QR-RSA problem;

e the signature scheme in §3, as well as all of the variants presented here, can in fact be proven
secure under the weaker assumption that the flexible QR-RSA problem is hard.



We now argue that the flexible QR-RSA problem is random self reducible. The argument here
is a variant of the argument presented in the proof of Theorem 1 for the Type III forger. Suppose
we have an algorithm A that for random Z € QR,, computes r and U7 with r > 1 odd. Now, we
are given an arbitrary quadratic residue z, and want to find a corresponding r and z'/”. We can
assume that z has order p’q’ modulo n, since otherwise either z = 1 and the problem is trivial, or
ged(z — 1,n) splits n, and the problem can be efficiently solved using well-known techniques. Now
we choose k € {1,...,n?} at random, and set Z = z¥. Write k = p’¢’X + Y. Now, the distribution
of Y is statistically indistinguishable from the uniform distribution on {0,...,p'q" — 1}. Further,
the conditional distribution of X, given Y, is also statistically indistinguishable from the uniform
distribution on {0, ..., [n%/(p'q’)]}. Thus, the value Z is (effectively) a random quadratic residue.
Now we apply algorithm A to Z, obtaining an r and § = /7 (with some non-negligible probability).
Let d = ged(r, k). We want d # r, so that we can apply Lemma 1. But this will happen with non-
negligible probability, independent of the adversary’s computation: if s is a prime dividing r, then
because of the above observation about the conditional distribution of X given Y, the probability
that Xp'q'+Y =0 (mod s) is roughly 1/s. So we have §" = z¥', where 7' = r/d > 1 and k' = k/d.
Since ged(r’, k') = 1, we can apply the algorithm of Lemma 1 to compute 21/ ’"', thus solving the
flexible QR-RSA problem for the given value of z.

5 Trapdoor Hash Scheme

Consider the basic signature scheme presented above, and consider a signature (e, y,y’) on a message
m. Let 2’ = (y)¥ h=H(™)_ Then we have y¢ = zh"(@").

One can view the value H(z') as a kind of “trapdoor hash,” also called a “chameleon hash” (see
[KR] for detailed discussion, references, and further applications). One can also base a trapdoor
hash on the assumed hardness of the Discrete Logarithm problem in a standard way, as follows. Let
g1, 92 be two random generators for a group G of order s, where s is an (I + 1)-bit prime. To hash a
message m, we compute the hash value o = H(g! gQH (m)), where H is an ordinary, collision-resistant
hash function, and ¢ is chosen at random mod s. In addition to the hash value «, we also output
the side information ¢. The trapdoor in this scheme is the g; logarithm of go. A simulator that
knows the trapdoor can construct a hash value o without knowing m, and then later, given m, can
construct and the appropriate side information .

We now describe a signature scheme based on this.

Key Generation Two random /’-bit primes p and ¢ are chosen, where p = 2p’ +1 and q¢ = 2¢' +1,
with both p’ and ¢’ prime. Let n = pg. Also chosen are:

e random h,z € QR,;

e a group G of order s, where s is an (I + 1)-bit prime, and two random generators g1, go

of G.

The public key is
(TL, ha T, g1, 92),

along with an appropriate description of G (including s). The private key is

(p,q).



Signature Generation To sign a message m (an arbitrary bit string), a random (I 4 1) bit prime
e is chosen, and a random t € Z; is chosen. The equation

¢ = ghtie ™)

is solved for y. The signature is
(e,y,1).

Signature Verification To verify a putative signature (e, y,t) on a message m, it is first checked
that e is an odd (I + 1)-bit number. Second, it is checked that

_ t H(m)
Tr = yeh H(glg2 )

Theorem 3 The above signature scheme is secure against adaptive chosen message attack, under
the strong RSA assumption and the assumption that H is collision-resistant, and the assumption
that the Discrete Logarithm problem for the group G is hard.

The proof of this theorem is very similar to the proof of Theorem 1. We leave the details to the
reader.

In a variation on this scheme, we give the signing algorithm the trapdoor to the hash. The
advantage of doing this can be appreciated if one makes a distinction between the “off line” and
“on line” cost of signing. If the signer has the trap door, then in fact the “on line” cost is essentially
a single multiplication mod s—all of the other work in creating the signature can be done before
the message m is actually received.

6 Remarks on Prime Generation

In our signature scheme, the signer must generate a random (I + 1)-bit prime with each signature.
As we remarked already, these primes need not be chosen from the uniform distribution (I 4+ 1)-bit
primes. The only requirement is that the probability of generating two equal primes should be
negligible. Thus, we have quite a bit of flexibility in how we generate these primes. This is perhaps
important, because if one is not careful, the cost of prime generation can easily be the dominant
cost of signing. This is especially so if one wants a completely rigorous algorithm with a sufficiently
small error probability.

For example, suppose one uses the Miller-Rabin test [Rab80] to test for primality. Suppose
I = 160. Further, suppose we want an error rate of 2%, which will allow us to make 232 signatures
with an overall error rate of 274, Now suppose we choose random 161-bit numbers until we have
found a number that passes a number of trial divisions and a single Miller-Rabin test. Along the
way, we will make a number of Miller-Rabin tests that reject some composite numbers that pass
the trial division test. On average, we need to do 8-10 such Miller-Rabin tests, depending on how
much trial division one does. Once we have found a number that passes a single Miller-Rabin
test, we have to perform a number of additional Miller-Rabin tests to reduce the error probability
sufficiently. Using results of Damgard et al. [DLP93], roughly 20 additional tests suffice (although
it is not clear how tight this bound is). Performing these tests can be quite costly. Empirical tests
suggest that the time to generate primes via this technique will dominate the running time of the
signature algorithm when [’ =~ 512.
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A Fast Prime Generation Algorithm

Here we sketch a very efficient algorithm for generating primes as required by the signing algorithm.
Again, assume [ = 160. So we need to generate a 161-bit prime. To do this, we first generate a
random prime P in the range (252,25%). Because P is small enough, the primality of P can be
quickly verified using one of a number of procedures described in Bleichenbacher’s thesis [Ble96,
Chapter 3], which are correct for primes up to 106 > 253. For example, one of Bleichenbacher’s
results, as reported in [Mau95], states that the Miller-Rabin test for the bases 2,3,5,7,11,13 and
23 is a correct primality test for numbers in this range. Next, we repeatedly choose integers R in
the interval ((2'6° —1)/2P, (21! —1)/2P) until e = 2PR + 1 is prime.

The following lemma, which is a variant of a result of Brillhart et al. [BLS75], provides an
effective proof of primality.

Lemma 2 Let e, P, and R be as above. Then e is prime if and only if the following conditions
hold.

(i) There exists an integer a such that

— a* ' =1mode, and
— ged(a?f —1,e) = 1.

(ii) If R = 2Pz +vy, where x and y are integers with 0 < y < 2P, then y? — 4x is neither 0 nor a
perfect square.

(i) R # m mod 2Pm + 1 for all integers m with 1 < m < e/4P3.

Remarks. Note that this lemma differs from the one in [BLS75] only in condition (%i). This
condition is equivalent to the condition that 2Pm + 1f/2PR + 1 for the stated values of m, and is
formulated as it to allow for more efficient calculation. The reason we need this particular condition
is that P is just slightly too small for the lemma to be valid otherwise, and until Bleichenbacher’s
results are improved, we cannot increase the size of P enough to drop this condition. The bound
e/4P2 on m in this condition is less than 8 in the worst case, and empirically appears to be less
than 2 on average. The time spent evaluating this condition is insignificant compared to the overall
prime generation time.

To apply this lemma, one first does some trial division, and if e passes this test, one applies the
Miller-Rabin test with base a = 2. If this test passes, one applies the test of Lemma 2 with the
same base a. The quantity a® ! mod e in condition (i) can be obtained for free as a by-product
of the Miller-Rabin test. If the primality of e is still undetermined, we repeat the Miller-Rabin
test and the test of Lemma 2 with a random base a, until the primality of e is determined. The
expected number of such repetitions is bounded by a constant, but in practice, the primality of e
is almost always determined by the base a = 2.

Proof of Lemma 2. We first show that if the three conditions hold, then e is prime. The other
implication is left to the reader. Our proof follows the arguments in [Mau95].

Condition (7) in the lemma implies that every prime divisor of e is of the form 2Pm + 1 for
some positive integer m.

Given the relative sizes of P and R, e can have at most three such prime divisors. If we have
e = [I3_1(2Pm; + 1), then we must have 8 P>m;moms < e, which implies that e is divisible by a
number 2Pm + 1 where 1 < m < e/8P3. The condition that e is divisible by 2Pm + 1 is easily seen
to be equivalent to the condition that R = m mod 2Pm + 1. Condition (%7) in the lemma rules out
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this possibility, so we can assume that if e is composite, we must have e = (2Pm; + 1)(2Pmgy + 1),
or equivalently, R = 2Pmimgy + (mq + mo).

We claim that my +mgy < 2P. To see this, suppose mi +mg > 2P. Then one of m; or my must
be at least P, say m; > P. Then we must have 2P? - 2Pmy = 4P%m3 < e, and again, condition
(#3) in the lemma rules out this possibility.

So we may assume that m; + mo < 2P, from which it follows that y = m1 + mo, and hence
x = mymsy. This implies that m, satisfies the equation m? — ym; + = = 0. But this is impossible,
because condition (%z) in the lemma rules out the existence of an integer solution to this equation.
So we conclude that e must be prime.

That completes the proof of Lemma 2.

The following lemma analyzes the running time and collision probability of the prime generation
algorithm.

Lemma 3 With this procedure, the expected number of trials until P s prime is at most 64.
Assuming the Generalized Riemann Hypothesis, the following two assertions hold. For any fized
P, the expected number of trials until e = 2PR + 1 is prime s at most 128. For any fized €, the
probability that a random e = 2PR + 1 is equal to é is at most 27144,

To prove this we use some explicit estimates from [BS96]. First, by Theorem 8.8.1 in [BS96],
we have the number of primes P in the given range is more than 2%6. The first claim in the lemma
follows trivially.

For the second and third claims, we use Theorem 8.8.18 in [BS96], which gives a very sharp
estimate on the number of primes in an arithmetic progression, assuming the Generalized Riemann
Hypothesis. Using a simple calculation, this theorem implies that for any P, there are more than
2190 primes of the form 2PR + 1 in the range (2'%°,2161). The second claim in the lemma now
follows easily.

For the third claim, the number of primes dividing é — 1 that are greater than 2°2 is at most 3.
Therefore, P | ¢ — 1 with probability at most 3-2746 < 27%4. Moreover, for any P, the probability
that 2PR + 1 = ¢é is at most 27190, The third claim follows immediately.

We do not claim that this is the best way to generate 161-bit primes, or even particularly
original, but it seems like a reasonable one, and it is certainly much more efficient than an iterated
Miller-Rabin test.

Since the technique suggested here provides a certificate of primality that is small and easily
verified, one could augment the signature scheme by adding this certificate to the signature and
having the verifier check it. This can only improve security, allowing us to weaken the strong RSA
assumption so that the adversary’s exponent has to be a certified prime of the proper form, and
not just an arbitrary integer.

Using a Hash Function

We can weaken the intractability assumption even further. Suppose that in the above algorithm for
generating a prime, we require that the random numbers P and R are outputs of a cryptographic
hash function. The signing algorithm can feed random bits into such a hash function, and if the
hash function is nearly uniform, the same properties that are proved above will still hold.

The hash function inputs that yield P and R (respectively) are included as part of the signature,
and the verifier checks that these values are correct. By doing this, we greatly constrain the adver-
sary’s attack strategy, allowing us to weaken the strong RSA assumption so that the adversary’s
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exponent is a certified prime of this very special form. This intuitively seems like a much harder
problem, and indeed, this intuition is somewhat justified by the fact the resulting signature scheme
is secure in the random oracle model under the ordinary RSA assumption.

We sketch in somewhat greater detail how the above idea can be implemented. Again, assume
I = 160, and that we are using the above algorithm to generate ¢ = 2PR + 1. We suggest two
different methods for generating P and R.

Method 1. In this method, let us assume that we take a block cipher that works on 128-bit blocks
and uses a 256-bit key. The block ciphers conforming to the forthcoming Advanced Encryption
Standard satisfy these requirements. To the signer’s public key, we add two randomly chosen 128-
bit strings, vp and vg. To generate a prime e = 2PR + 1 as used in a signature, the signing
algorithm proceeds as follows. To generate P, it chooses a 256-bit key Kp at random, applies the
block cipher using this key to vp, and from the output of the block cipher constructs a candidate
P in a canonical way. This is repeated until we get a prime P. Similarly, the signing algorithm
generates keys K g until the output of the block cipher under key Kg yields a bit string that can be
converted into a number R in a canonical way such that e = 2PR + 1 is prime. Instead of placing
the prime e in the signature, the signer places the keys Kp and Kpg in the signature, from which
the verifier can easily derive and validate e.

To analyze the security of this scheme, we use the ideal cipher model, rather than the random
oracle model. In the ideal cipher model, we assume that each block cipher key K indexes a
random permutation which an adversary can evaluate as a “black box” in either the forward or
reverse direction. See [KR96] for a more detailed description of of the ideal cipher model. Using a
standard argument, given a random exponent é of the form é = 2PR + 1, a simulator can easily
“plant” the the values P and R in these black boxes. The exact location of these planted values is
independent of the adversary’s view, and so with non-negligible probability, the adversary’s forgery
will yield a é-th root of a given number modulo n, thus solving a given instance of the standard
RSA problem.

To show that the scheme is still secure in the “real world,” one must make a pseudo-randomness
assumption about the block cipher. This will ensure that the probability that the signer uses the
same prime twice is still acceptably small.

Method 2. One disadvantage of the first method is that it requires an additional intractability
assumption—mnamely, an appropriate pseudo-randomness assumption for the block cipher. This
second method is slightly less efficient, but does not require this additional intractability assump-
tion. Of course, the signer still needs a source of random, or pseudo-random bits, but that is a
separate problem. The technique we propose is essentially the same as that proposed in [ShoO0b].
In the public key, we place two keys, Kp and Kg. These keys are randomly chosen keys that index
a family PIH of pair-wise independent hash functions mapping 384-bit strings to 128-bit strings.
We also assume that we have two cryptographic (“magic”) hash functions, MH p and MH g, which
map 384-bit strings to 128-bit strings. These cryptographic hashes could be implemented using a
standard hash function like MD5 or SHA-1, with random initial vectors IV p and IV g that are
also stored in the public key. To generate a candidate for P, we select a random 384-bit string vp,
and compute the 128-bit string PIH g, (vp) ® MH p(vp), deriving a candidate for P in a canonical
way. Likewise, to generate a candidate for R, we select a random 384-bit string vg, and compute
the 128-bit string PIH i, (vr) ® MHgr(vg), deriving a candidate for R in a canonical way. When
the signer finds P and R as above such that P and e = 2PR + 1 are prime, the signer places the
values vp and vg in the signature, from which the verifier can easily derive and validate e.
Modeling MHp and MH g as random oracles, it is straightforward for a simulator to “plant”
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an RSA exponent as above, and thus use a forging algorithm to solve the standard RSA problem.

To analyze the security in the “real world,” we make use of the Leftover Hash Lemma (a.k.a.,
the Smoothing Entropy Theorem). This lemma (see Chapter 8 of [Lub96] or also [IZ89]), together
with our particular choice of parameters, implies that the values PIH k,(vp) ® MHp(vp) and
PIH i, (vr) ® MH gr(vgr) have a distribution whose statistical distance from the random distribu-
tion on 128-bits is at most 27128, In deriving this, we need to make no additional intractability
assumptions, and it follows from this that the probability that the signer ever uses the same prime
twice is acceptably small.

7 Remarks on Key Generation

In the key generation step, we have to generate “strong primes” of the form p = 2p’ + 1, where
p' is also prime. The number p’ is also known as a Sophie Germain prime. Very little has been
actually proven about the density of such primes. In particular, it has not even been proven if there
infinitely many such primes. Nevertheless, it is conjectured (see [BH62, BH65]) that the number
of Sophie Germain primes not greater than z, which we denote S(z), satisfies

S(z) ~ c/; dt/(log 1)?, )

where C' is the constant defined by

e-ni{(-)" (-},

where the product is over all primes r, and w(r) is the number of solutions to the congruence
z(2z + 1) = 0 (mod r); that is, w(2) = 1 and w(r) = 2 for all primes r > 2. Here, log denotes the
natural logarithm. From [RS62], one can easily obtain the estimate

C =~ 1.32.

This conjecture is strongly supported by numerical evidence. Note that

T
/ dt/(log ) ~ z/(log ).
2
In order to generate such primes, we recommend the following procedure.

1. Generate a random, odd number p’ of desired length, say k bits.

2. Test if either p’ or 2p’ + 1 are divisible by any primes up to some bound B. If so, go back to
step 1.

3. Test if 2 is a Miller-Rabin witness to the compositeness of p’. If so, go back to step 1.
4. Set p=2p' + 1, and test if 2?' = +1 (mod p). If not, go back to step 1.

5. Apply the Miller-Rabin test to p’ some number ¢ times using randomly selected bases to
ensure an error probability of e. A reasonable choice of € is e = 2780,
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We do not claim that this procedure is new. Algorithms very similar to this have sometimes
been employed in practice. However, we are not aware of any formal analysis of this procedure in
the literature.

The most important thing about this procedure is the “parallel trial division” done in step 2.
This reduces the number of Miller-Rabin tests that need to performed by a significant amount
compared to the number that would need to be performed if we naively performed trial division
on p’ alone. In practice, this parallel trial division can easily yield a factor of 10 speed-up over the
naive method.

To measure the effectiveness of the parallel trial division in step 2, define g(B) to be the
probability that a random k-bit number (including even numbers) passes the trial division step,
i.e., is not divisible by any primes up to B. For our purposes, we can assume that B < k9. Then
Brun’s pure sieve! (see equation (2.16) in Chapter 2 of [HR74]) implies that

g(B) = H (1 — M) (1+ O(exp(—+v/klog2))) + O(Q_k/2),

r<B r

where the product is over primes r up to B. This implies that as B and k tend to infinity with
B < kOW),
D
B)~——
9(B) (log B)?’

where D is a constant, D ~ 0.416 (see [RS62]).

Note that in step 4, we do not need to iterate the Miller-Rabin test. This is because if p' is
prime, and the test in step 4 passes, then either 2 or —2 has multiplicative order p — 1 modulo p,
which implies that p is prime.

We have to consider the choice of number ¢ of iterations of the Miller-Rabin test in step 5 of
the above algorithm needed to get an overall error probability of € for a given value of e.

Consider the following: let p’ be a randomly chosen, odd k-bit number, and let Cj be the
event that p’ is composite, Py the event that p' is prime, and let Xy ; be the event that p' passes ¢
iterations of the Miller-Rabin test (with independent, randomly chosen bases). Also, let Y be the
event that 2p’ + 1 is not divisible by any primes up to B, and that P = +1 (mod 2p’ 4+ 1), and let
Sk be the probability that p’ is a Sophie Germain prime. Results in [DLP93] give explicit upper
bounds for the probability py; = Pr[C| X} ¢]. Unfortunately, py ; is not the relevant bound on the
error probability. The relevant probability is Pr[Cy| X}, A Yi].

We have
Pr[Cy A Xgp N Y]

PI‘[X kit N\ Yk]
PI‘[Ck AN X k,t]
PT[X kit A\ Yk]

_ Pr[Xp ]
— PROBIXL, A YR
kgt N Yy
PrXp ]

pk,tm- (3)

PI‘[Ck|Xk,t A Yk] =

IN

IA

Also, we have

PI‘[Xk’t] = PI‘[Xk,t A Ck] + PI‘[Xk,t A Pk] < PI‘[Ck‘Xk’t] PI‘[Xk’t] + Pr[Pk],

! Certainly stronger sieves are also applicable, but this is the simplest sieve which gives the result we need.
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from which it follows that

Pr[P]
Pr[Xg ] < . 4
X < T @
From (3) and (4), we have
Pt PrPy]
P X Y; .
R TP Y ®)

Adapting the arguments and estimates used in the proof of Proposition 2 in [DLP93], one can show
that for k > 25,
Pr[P;] < 4/k. (6)

Unfortunately, there are no known lower bounds on the density of Sophie Germain primes. However,
in light of conjecture (2), it seems reasonable to conjecture that

S(z) - S(z/2) > %c /x ; dt/(log 1)” (7)

for x > 2% and for all k of practical interest (e.g., & > 500). Such a conjecture, if true, would imply
that
Pr[Sy] > 2/k?, (8)

and hence
Pr[C|Xps A Yi] < —28L ok, (9)
’ 1 —prt
If one is willing to believe the above conjecture about the density of Sophie Germain primes,
then we can choose ¢ in the above algorithm so that

Dkt

2k <e 10
1—prt - (10

If one is not willing to believe this conjecture, then we can proceed as follows. In the above
algorithm, we initialize a counter j to 1, and every time we execute the loop, we increment j. In
step 5, we choose the iteration count ¢ so that

pet 4 1

-— < —r€. 11
1—prs k= 5j125 (11)

To analyze the overall error probability of this algorithm, note that the above algorithm is
logically equivalent to, though much more efficient than, the algorithm obtained by moving step 5
up to the top of the loop. In this transformed algorithm, for the jth loop iteration, consider the
probability that p’ is composite and passes the iterated Miller-Rabin test. The probability we are
interested in, then, is Pr[Cy A X} 4], for ¢ chosen as in (11). Using (4) and (6), along with (11), one
can easily calculate that

4 1

Summing over all loop iterations, the probability that we ever make such an error is at most

i ]L <e (13)

Cﬂlb—t

This second approach does not rely on any conjectures for its correctness, but it is slightly
less efficient. We emphasize, however, that the increase in running time will be, in practice, quite
negligible, and so we would recommend its use.
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8 Implementation and Performance

The second author, together with Thomas Schweinberger and Mehdi Nassehi at IBM Research in
Zurich, have designed and implemented a fully specified version of this signature scheme. The
specification, along with a detailed, concrete security analysis will be available in a forthcoming
paper.

All of the implementation ideas sketched in §3, §6, and §7 have been fully incorporated into the
implementation. Moreover, the scheme makes use of the new universal one-way hash construction
of [Sho00a|, using SHA-1 as the underlying hash function. The assumption that one must make
about SHA-1 is that the underlying compression function (mapping 672 bits to 160 bits) is second
pre-image collision resistant. This means that given a random input, it is infeasible to find a
different input that yields the same output. This is both qualitatively and quantitatively a much
weaker assumption than the assumption that SHA-1 is collision resistant.

We report some preliminary measurements on the performance of the scheme. For short mes-
sages, the time to create or verify a signature is dominated by the public-key operations. For
long messages, the time to hash the message must also be taken into account. However, the hash
algorithm we employ, as described above, has essentially the same speed as that of SHA-1, so we
do not address this any further here.

Our implementation is in the C programming language, and we used the publicly available
GMP package (version 2.0.2) for long integer arithmetic, although we implemented our own sliding-
window modular exponentiation routine as such a routine is not provided by GMP.

Our timing experiments were conducted on a PowerPC 604, model 43P-140, running AIX. As
a base line, we first report the times to perform some basic arithmetic operations. The times to
perform 512-bit modular multiplication, squaring, and exponentiation (with a 512-bit exponent)
were

34pus, 32us, and 18ms,

respectively. The corresponding times for 1024-bit numbers (and 1024-bit exponent) are
103us, 100us, and 118ms,

respectively.

In our implementation of the signature scheme, we break the signing algorithm up into two
phases: the key set-up phase, and the main signing phase. The key set-up phase needs to be
run just once for a given signing key, and it builds some tables that expedite the exponentiations
performed in the main signing phase.

For a 1024-bit RSA modulus, we measured the time for the key set-up phase at 31ms, and the
time for the main signing phase at 50ms. The time to verify a signature is 57ms.

For the main signing phase, roughly one third of the time is spent generating a 161-bit prime
(this is an average value which can vary substantially), and roughly one third of the time is spent
in each of the two exponentiation operations.

These running times indicate that our signing algorithm is about 1.4 times slower than stan-
dard RSA, if we do not take into account the key set-up time, which may be appropriate in an
environment where the same key will be used to sign many messages; if we take this key set-up
time into account, then our signing algorithm is about 2.3 times slower than standard RSA.

It is a bit more difficult to compare the signature verification time of our scheme to that of
standard RSA, since the size of the public exponent in a standard RSA signature may vary quite
a bit. Certainly, if a very small exponent is used in standard RSA, this will be substantially faster
than our scheme; however, if a full-length exponent is used, then our scheme is faster.
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Of course, the running time of the signing and verification algorithms is not the only performance
measurement. Other important characteristics include the size of a signature, as well as the size of
a public key. Here, we must admit, the size of our signatures and public keys are several times the
size of those in a standard RSA signature.

Another, though perhaps much less important, characteristic is the running time of the key
generation algorithm. In our implementation, the average time to generate a public key/private
key pair is 26s. Because we have to generate Sophie Germain primes, this is unfortunately quite
costly, but since this only affects the running time of the key generation algorithm, it is probably
acceptable in most typical applications.
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