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Abstract

This paper addresses the problem of designing practical protocols for proving properties
about encrypted data. To this end, it presents a variant of the new public key encryption of
Cramer and Shoup based on Paillier’s decision composite residuosity assumption, along with
efficient protocols for verifiable encryption and decryption of discrete logarithms (and more
generally, of representations with respect to multiple bases). This is the first verifiable encryption
system that provides chosen ciphertext security and avoids inefficient cut-and-choose proofs. The
presented protocols have numerous applications, including key escrow, optimistic fair exchange,
publicly verifiable secret and signature sharing, universally composable commitments, group
signatures, and confirmer signatures.
Keywords. Verifiable encryption, verifiable decryption, adaptive chosen ciphertext security,
public key encryption.

1 Introduction

This paper concerns itself with the general problem of proving properties about encrypted data. In
the case of public-key encryption, which is the setting in which we are interested here, there are
two parties who are in a position to prove some property to another party about an encrypted
message — namely, the party who created the ciphertext, and the party who holds the secret key.
A protocol in which the encryptor is the prover is a verifiable encryption protocol, while a protocol
in which the decryptor is the prover is a verifiable decryption protocol.

For example, suppose a party T has a public key/secret key pair (PK,SK) for a public key
encryption scheme. Party A might encrypt, using T ’s public key PK, a secret message m that
satisfies a publicly-defined property θ, and give the resulting ciphertext ψ to another party B. The
latter party might demand that A prove that ψ is an encryption of a message satisfying property θ.
Ideally, the proof should be “zero knowledge,” so that no unnecessary information about m is leaked
to B as part of the proof. Another party B′ might obtain the ciphertext ψ, and may request that T
prove or disprove that ψ decrypts under SK to a message m satisfying a publicly-defined property
θ′; a special case of this would be the situation where T simply gives m to B′, and proves to B′

that the decryption was performed correctly. Again, ideally, the proof should be “zero knowledge.”
Now, if one expects to obtain reasonably practical protocols for this problem, it seems necessary

to restrict the type of properties that the protocols should work with. In this paper, we consider
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only properties related to the discrete logarithm problem. The message m encrypted by A above
is the discrete logarithm of an element δ with respect to a base γ, and A proves to B that ψ is
an encryption logγ δ under T ’s public key PK. Here, the common inputs to A and B in the proof
protocol are PK, ψ, δ, and γ. Similarly, when a party B′ presents ψ to T for decryption, T may
state and prove whether or nor ψ decrypts to logγ δ, or alternatively, T may give the decryption
of ψ to B′, and simply prove that the decryption was performed correctly. We also consider the
obvious generalizations from discrete logarithms to representations with respect to several bases —
i.e., proving that a ciphertext is an encryption of (m1, . . . ,mk) such that δ = γm1

1 · · · γmk
k .

Although the restriction to properties related to the discrete logarithm problem may seem ex-
cessive, it turns out (as we discuss in some detail below) that protocols for proving such properties
have many useful applications in cryptography, including key escrow, optimistic fair exchange, pub-
licly verifiable secret and signature sharing, universally composable commitments, group signatures,
and confirmer signatures. One reason why this restriction is not really so excessive is because in
the past few years, efficient protocols for proving numerous properties about committed values —
using Pedersen’s commitment scheme [Ped92] and generalizations to groups of unknown order —
have been developed (c.f., [FO97, DF02, Bou00]); combining these protocols with our scheme for
verifiable encryption of a representation (i.e., an opening of a commitment), we immediately get
corresponding protocols for proving such properties about encrypted values.

Our contribution. The contribution of this paper is to present and analyze a practical public-key
encryption scheme, together with a suite of practical proof protocols for the properties related to
the discrete logarithm problem outlined above. The encryption scheme is a variant of the new
public key encryption scheme of Cramer and Shoup [CS02] based on Paillier’s decision composite
residuosity assumption [Pai99], suitably modified so as to support our proof protocols. The proof
protocols are all of the usual, three move “Σ-protocol” type [CDS94], satisfying the usual, and very
strong conditions of special honest verifier zero knowledge and special soundness. We note that any
such protocol can be easily and efficiently converted into a “real” zero-knowledge protocol using
well known techniques, e.g., [Dam00]. Our scheme for verifiable encryption of discrete logarithms is
the first one that provides chosen ciphertext security and avoids inefficient cut-and-choose proofs.
Our scheme for verifiable decryption of discrete logarithms is the first practical protocol of its
kind. Our system is very flexible, in that a single public key for the encryption scheme can be
used with many different groups; that is, users can choose their own (arbitrary and varied) groups
for discrete logarithms, subject only to some (reasonable) size constraints. As pointed out in
[KP98, CM99b, ASW00] such separability in system design is highly desirable in practice. Although
our protocols do not rely on the random oracle heuristic, we hasten to point out that even allowing
this heuristic, our protocols are much more efficient than previously known protocols for these
problems.

1.1 Applications

In this section, we outline some of the numerous applications of verifiable encryption and decryption
of discrete logarithms and representations. For all of them our protocols, used together with the
existing solutions, either yield more efficient solutions or add security against chosen ciphertext
attacks, which is often crucial.

1.1.1 Key Escrow

Party A may encrypt its own secret key for an asymmetric cryptographic primitive under the public
key of a trusted third party T , and present to a second party B the ciphertext ψ and a proof that ψ
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is indeed an encryption of it’s secret key. This problem area has attracted a good deal of attention,
with specific schemes being proposed in [Sta96, BG96, YY98, ASW00, PS00].

Now, if A’s secret key is, say, a key for a discrete log based scheme, such as Schnorr or DSS
signatures or ElGamal encryption, we can use our verifiable encryption protocol directly. We note
that for this and other applications, it is important to be able to bind some public data, called a
label, to the ciphertext at both encryption and decryption time. In this application, user A would
attach a label to ψ that indicates the conditions under which ψ should be decrypted, e.g., A’s
identity and perhaps an expiration date. The definition of chosen ciphertext security ensures that
decrypting a ciphertext under any label different from the label used to create the ciphertext reveals
no information about the original encrypted message.

Even though T is “trusted,” it might be nice to minimize the trust we need to place in T . To
this end, verifiable decryption comes in handy — we can force T to prove that it performed the
decryption operation correctly. Of course, this does not prevent T from misbehaving in other ways,
such as divulging a secret key to an unauthorized party.

If A’s secret key is for a factoring based scheme, one can still use our protocol for verifiable
encryption of a representation. One can use Pedersen’s commitment scheme to commit to some
quantity related to the secret key, and then use an appropriate protocol to prove that the committed
value is indeed the right one, together with our protocol to prove that the encryption contains
an opening of the commitment. The quantity committed to could be the factorization of an
RSA modulus, the decryption exponent of an RSA scheme, or an appropriate root in a Guillou-
Quisquater scheme — there are protocols for proving that a committed value is of such a form
[FO97, CM99a, DF02, PS00, Bou00].

1.1.2 Optimistic Fair Exchange

Two parties A and B want to exchange some valuable digital data (e.g., signatures on a contract,
e-cash), but in a fair way: either each party obtains the other’s data, or neither party does. One way
to do this is by employing a trusted third party T , but, for the sake of efficiency, with T only involved
in crisis situations. One approach to this problem is to have both parties verifiably encrypt to each
other their data under T ’s public key, and only then to reveal their data to each other — if one party
backs out unexpectedly, the other can go to T to obtain the required data. The general problem of
optimistic fair exchange has been extensively studied, c.f., [ASW97, BDM98, BP90, Mic, ASW00],
while the solution using verifiable encryption was studied in detail in [ASW00].

Our scheme for verifiable encryption may be used directly to efficiently implement the fair
exchange of Schnorr or DSS signatures. As outlined in [ASW00], if the public key of the Schnorr
signature scheme consists of the base γ and the group element α = γx, and A has a signature on a
message m of the form (β, c, s), where β = γr, c = H(β,m), s = r + xc mod ρ, and ρ is the group
size, then A gives to B the triple (β, c, δ), where δ = γs, along with an encryption ψ of s under
T ’s public key, and proves to B that ψ is an encryption of logγ δ. In addition to checking the proof
that ψ is a correct encryption of logγ δ, B also checks that δ = βγc; with these checks, B can be
sure that if the need arises, ψ can be decrypted so as to obtain a signature on m. As argued in
[ASW00], this technique of reducing a signature to a discrete logarithm does not make it any easier
for anyone to forge a signature. Moreover, as discussed in [ASW00], similar techniques can be used
to facilitate the fair exchange of other items, such as electronic cash.

As in the escrow application, the label mechanism plays a crucial role here, helping to enforce
the logic of the exchange protocol, and a verifiable decryption protocol may be used to hold T ’s
feet to the fire.
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1.1.3 Publicly Verifiable Secret Sharing and Signature Sharing

Stadler [Sta96] introduced the notion of publicly verifiable secret sharing. Here, one party, the
dealer, shares a secret with several proxies P1, . . . , Pn, in such a way that a third party (other
than the dealer and the proxies) can verify that the sharing was done correctly. This can be done
quite simply by sharing the secret using Shamir’s secret sharing scheme: the dealer encrypts Pi’s
share under Pi’s public key, and gives to the third party commitments to these shares, along with
commitments to the coefficients of the blinding polynomial, and all of the ciphertexts, and proves
to the third party that the ciphertexts encrypt openings of the commitments to the shares. As
the openings to the commitments are just discrete logarithms, verifiable encryption of discrete
logarithms is just the right tool.

Using the notion discussed above above for reducing a signature to a discrete logarithm, one
can easily implement a (publicly) verifiable signature sharing scheme [FR95, CG98] for Schnorr
and DSS signatures.

These two applications of verifiable encryption were discussed in [CD00].

1.1.4 Universally Composable Commitments

The notion of universally composable (UC) commitments, introduced by Canetti and Fischlin
[CF01], is a very strong notion of security for a commitment scheme. It basically says that commit-
ments in the real world act like commitments in an ideal world in which, when a party A commits
to a value x to a party B, A presents x to an idealized trusted party T (that does not exist in the
real world), and when A opens the commitment, T gives x to B. In the ideal world, no information
about x is revealed to B prior to opening, and A is forced to fix the value committed to when the
commitment protocol runs.

This notion of security is so strong, in fact, that it can only be realized in the common reference
string (CRS) model, where all parties have access to a string that was generated by a trusted party
according to some prescribed distribution. In the CRS model, the simulator S in the ideal world
is given the privilege of generating the common reference string, and so S may know some “side
information” related to the common reference string that is not available to anyone in the real
world.

Verifiable encryption of a representation may be used to implement UC commitments in the
CRS model, as follows. The CRS consists of a public key for the encryption scheme, along with
bases γ1 and γ2 for some suitable group. When A commits a value x to B, he creates a Pedersen
commitment C = γx1γ

r
2 , and an encryption ψ of the representation (x, r) of C with respect to

(γ1, γ2). A then gives (C,ψ) to B, and proves to B that ψ indeed decrypts to a representation of
C. In order to satisfy the definition of security for UC commitments, and in particular, to prevent
“man in the middle attacks,” a label containing A’s identity should be attached to ψ.

The reason this is secure is that the simulator S in the CRS model knows the secret key to
the encryption scheme, which allows him to “extract” values committed by corrupted parties, and
S knows the discrete logarithm of γ2 with respect to γ1, which allows him to “equivocate” values
committed by honest parties. The proof that ψ is an encryption of a representation C ensures that
the value extracted by the simulator at commitment time agrees with the value revealed at opening
time.

The details of this construction and security proof are the subject of a forthcoming paper.
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1.1.5 Confirmer Signatures

In a confirmer signature scheme, a notion introduced in [Cha94], a party A creates an “opaque
signature” ψ on a message m, which can not be verified by any other party except a designated
trusted third party T , who may either confirm or deny the validity of the signature to another
party B. Under appropriate circumstances, T may also convert ψ into an ordinary signature,
which may then be verified by anybody. Additionally, the party A may prove the validity of an
opaque signature ψ to a party B, at the time that A creates and gives ψ to B. As described in
[CM00], one may implement confirmer signatures as follows: A creates an ordinary signature σ
on m, and encrypts σ under T ’s public key. Using verifiable encryption, A may prove to B that
the resulting ciphertext ψ indeed encrypts a valid signature on m, and using verifiable decryption,
T may confirm or deny the validity of ψ, or alternatively, just decrypt ψ, thus converting it to
the ordinary signature σ. To implement this idea for Schnorr signatures, one again uses the idea
outlined in above for reducing signatures to discrete logarithms. The details of all this are the
subject of a forthcoming paper.

1.1.6 Group Signatures and Anonymous Credentials

In a group signature scheme (see [ACJT00, KP98, CD00]), when a user joined a group (whose mem-
bership is controlled by a special party, called the group manager), the user may sign messages on
behalf of the group, without revealing his individual identity; however, under appropriate circum-
stances, the identity of the individual who actually signed a particular message may be revealed
(using a special party, called the anonymity revocation manager, which may be distinct from the
group manager).

Without going into too many details, verifiable encryption may be used in the following way
as a component in such a system. When a group member signs a message, he encrypts enough
information under the public key of the anonymity revocation manager, so that later, if the identity
of the signer needs to be revealed, this information can be decrypted. To prove that this information
correctly identifies the signer, he makes a Pedersen commitment to this information, proves that
the committed value identifies the user, encrypts the opening of the commitment, and proves that
the ciphertext decrypts to an opening of the commitment. To turn this into a signature scheme,
one must use the Fiat-Shamir heuristic [FS87] to make it non-interactive (the interactive version is
called an identity escrow scheme [KP98]).

Although one can implement group signatures without it, by using verifiable encryption, one
can build a more modular system, in which the group manager and anonymity manager are sep-
arate entities with independently generated public keys (this is the separability issue). Verifiable
decryption can be used both to ensure the correct behavior of the anonymity revocation man-
ager (preventing it from “framing” innocent users), and to allow even more fine-grained control of
anonymity revocation: instead of simply revealing the identity of a particular signer, the anonymity
revocation manager can state (and prove) whether or not a particular signature was generated by
a particular user.

Credential systems [Cha85, CL01] are a generalization of group signatures that allow users
to show credentials to various organizations, and obtain new credentials, without revealing their
identity, except through the use of an anonymity revocation manager. Verifiable encryption can
be used as a component in such systems in a manner similar to that described above for group
signatures. In fact, our verifiable encryption scheme is used in a prototype credential system
developed at IBM called idemix [CL01, CVH02].
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1.2 Previous Work and Further Discussion

In all applications mentioned in §1.1, it is essential that the underlying encryption scheme provide
security against chosen ciphertext attacks. As pointed out in [ASW00], the earlier work on verifiable
encryption in [Sta96, BG96, YY98] overlooked this fact, as does [PS00].

Our encryption scheme and proof protocols are quite efficient. In particular, the proof proto-
cols are conventional “Σ-protocols,” rather than the generally more expensive “cut and choose”
protocols, such as those in [Sta96, BG96, YY98, ASW00], that have been previously designed
for the problem of verifiable encryption. Moreover, our verifiable encryption scheme actually
produces a proof that a given ciphertext is correct, as opposed to the paradigm followed in
[Sta96, BG96, YY98, ASW00], which intertwines the process of encrypting and proving, so that
the entire transcript of the proof must be retained by the verifier in lieu of a (short) ciphertext.
Additionally, the combined encrypting/proving paradigm makes it much harder to incorporate any
type of verifiable decryption protocol.

Our verifiable decryption protocols are the first practical schemes of their kind.
Unlike, e.g., the schemes in [Sta96, YY98], we do not require that all users of the system work

with the same algebraic group — in our system, there are no “double decker” discrete logarithms,
and the encryption keys may be used with any group or groups, provided certain reasonable size
restrictions are met.

Our decryption procedure can be implemented as a threshold decryption protocol. This allows
one to minimize the trust placed in the decryptor, and in some applications this may be a preferable
alternative to verifiable decryption.

Our protocols are based on a number of techniques. The key ingredients that make our verifiable
encryption protocol possible are:

• Fujisaki and Okamoto’s method for proving relations on committed values [FO97] (with some
refinements, as in [CS00, DF02]),

• the related interval proofs [CM98, CFT98],

• Paillier encryption [Pai99], and

• Cramer and Shoup’s universal hash proof encryption technique [CS02].

The additional ingredients needed to make our verifiable decryption protocols work are:

• Cramer, Damg̊ard, and Schoenmakers’ proofs of partial knowledge [CDS94],

• Boudot’s exact interval proofs [Bou00], and

• new protocols for proving the inequality of discrete logarithms.

To give the reader a rough idea of the complexity of of our protocols, consider a setting in
which the discrete logarithms being encrypted are with respect to an element of order ρ, where
ρ is, say, around `′ ≈ 160 bits. For such a ρ, it suffices to work with a modulus n of around
` ≈ 1024 bits for the Paillier encryption scheme. Counting just squarings, which are all that matter
asymptotically, and ignoring lower order terms, the encryption algorithm takes 3` squarings mod
n2, and the decryption algorithm takes 5` squarings mod n2. For the verifiable encryption protocol,
the prover performs 2` squarings mod n, 3` squarings mod n2, and `′ squarings in the underlying
group; the verifier performs 3` squarings mod n2, ` squarings mod n, and `′ squarings in the group.
The verifiable decryption protocols are about 5 to 6 times slower than this. For representations
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with respect to several bases, the complexity of the encryption and decryption algorithms, and the
corresponding proof protocols, grows linearly in the number of bases, as one would expect.

2 Preliminaries

2.1 Notation

Let a be a real number. We denote by bac the largest integer b ≤ a, by dae the smallest integer
b ≥ a, and by dac the largest integer b ≤ a + 1/2. For positive real numbers a and b, let [a]
denote the set {0, . . . , bac − 1} and [a, b] denote the set {bac, . . . , bbc} and [−a, b] denote the set
{−bac, . . . , bbc}.

Let a, b, and c be integers, with b > 0. Most of the time, we use least non-negative remainders,
i.e., c = a mod b is a − ba/bcb and we have 0 ≤ c < b. Sometimes, we have to compute balanced
remainders, i.e., c = a rem b is a− da/bcb and we have −b/2 ≤ c < b/2. Moreover, if b is odd, then
−(b− 1)/2 ≤ a rem b ≤ (b− 1)/2 for all a.

By neg(λ) we denote a negligible function, i.e., a function f such that f(λ) < 1/p(λ) holds for
all polynomials p(λ) and all sufficiently large λ.

Let (P, V ) be a pair of interactive Turing machines. By V (x)P (y) we denote the output of V
upon interacting with P , where V ’s input is x and P ’s input is y.

We use notation introduced by Camenisch and Stadler [CS97] for the various zero-knowledge
proofs of knowledge of discrete logarithms and proofs of the validity of statements about discrete
logarithms. For instance,

PK{(a, b, c) : y = gahb ∧ y = gahc ∧ (u ≤ a ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers a, b, and g such that y = gahb and
y = gahc holds, where v < a < u,” where y, g, h, y, g, and h are elements of some groups G = 〈g〉 =
〈h〉 and G = 〈g〉 = 〈h〉. The convention is that the elements listed in the round brackets denote
quantities the knowledge of which is being proved (and are in general not known to the verifier),
while all other parameters are known to the verifier. Using this notation, a proof-protocol can be
described by just pointing out its aim while hiding all details.

2.2 Special Honest-Verifier Zero-Knowledge Protocols

A special honest-verifier zero-knowledge protocol is a protocol between a prover and a verifier,
where y is their common input and x is the prover’s additional input. The protocol is restricted
to three moves: in the first move the prover sends the verifier a “commitment” message t, in the
second move the verifier sends the prover a “challenge” message c, and in the third move the prover
sends the verifier a “response” message s. Finally, there must exist a simulator that, on input y and
any “challenge” message c̃, outputs a “commitment” and “response” messages t̃ and s̃ such that the
distribution of the triple (t̃, c̃, s̃) is (statistically) indistinguishable from the one of triples (t, c, s)
stemming from real conversations of the prover and the verifier for which c = c̃. Note that the
existence of such a simulator implies that the protocol is (ordinary) honest-verifier zero-knowledge.

For particular types of proof systems, we shall give explicit, detailed definitions of special
honest-verifier zero knowledge, as appropriate.

While this notion of zero-knowledge is not sufficient for most applications, there exist a num-
ber of generic constructions to turn a special honest-verifier zero-knowledge protocol into one that
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satisfies stronger notions of zero-knowledge. The most important examples are probably the con-
structions to obtain concurrent zero-knowledge protocols [Dam00, DNS98, CGGM00] or witness-
hiding protocols [CDS94]. In particular, the construction due to Damg̊ard achieves (concurrent)
zero-knowledge virtually for free [Dam00].

2.3 Secure Public-Key Encryption

Here, we recall the notion of a public-key encryption scheme. Actually, we need the notion of a
public-key encryption scheme that supports labels. A label is an arbitrary bit string that is input
to the encryption and decryption algorithms, specifying the “context” in which the encryption or
decryption operation is to take place.

A public key encryption scheme provides three algorithms:

• a probabilistic, polynomial-time key generation algorithm G that on input 1λ — where λ ≥ 0
is a security parameter — outputs a public-key/private-key pair (PK,SK). A public key PK
specifies a finite, easy-to-recognize message space MPK.

• a probabilistic, polynomial-time encryption algorithm E that takes as input a public key PK,
a message m ∈MPK, and a label L, and outputs a ciphertext ψ.

• a deterministic, polynomial-time decryption algorithm D that takes as input a private key SK,
a ciphertext ψ, a label L, and outputs either a message m ∈MPK, where PK is the public-key
corresponding to SK, or a special symbol reject.

Any public-key encryption scheme should satisfy a “correctness” or “soundness” property, which
loosely speaking means that the decryption operation “undoes” the encryption operation. For our
purposes, we can formulate this as follows. We call a public-key encryption scheme sound if for
all (PK,SK) ∈ G(1λ), for all m ∈ MPK, for all L ∈ {0, 1}∗, and for all ψ ∈ E(PK,m, L), we have
D(SK, ψ, L) = m.

This definition can easily be relaxed to allow for an incorrect decryption with negligible proba-
bility, but we do not pursue this matter here. For all encryption schemes presented in this paper, it
is trivial to verify this soundness property, and so we will not explicitly deal with this issue again.

We say that a ciphertext is valid w.r.t. a label L (and a key pair (PK,SK)) if the decryption
algorithm does not reject it and is invalid w.r.t. L otherwise.

Note that in this paper, we only work with finite message spaces.

2.4 Adaptive Chosen Ciphertext Security

Consider a public-key encryption scheme, and consider the following game, played against an arbi-
trary probabilistic, polynomial-time adversary.

1. Key-Generation Phase. Let λ ≥ 0 be the security parameter. We run the key-generation
algorithm of the public-key encryption scheme on input 1λ, and get a key pair (PK,SK). We
equip an encryption oracle with the public key PK, and a decryption oracle with the secret
key SK. The public key PK is presented to the adversary.

2. Probing Phase I. In this phase, the attacker gets to interact with the decryption oracle in an
arbitrary, adaptive fashion. This phase goes on for a polynomial amount of time, specified by
the adversary. More precisely, in each round of this interaction, the adversary sends a query
(ψ,L) to the decryption oracle. A query is a pair of bit strings chosen in an arbitrary way by
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the adversary. The decryption oracle in turn decrypts ψ with label L under the secret key
SK, and responds to the query by returning the decryption to the adversary.

3. Target-Selection Phase. The adversary selects two messages m0 and m1 from the message
space, along with a label L∗, and presents (m0,m1, L

∗) to the encryption oracle. The en-
cryption oracle selects a random σ ∈ {0, 1}, and encrypts mσ with label L∗ under PK. The
resulting encryption ψ∗, the target ciphertext, is presented to the adversary.

4. Probing Phase II. This phase is as Probing Phase I, the only difference being that the de-
cryption oracle only responds to queries (ψ,L) with (ψ,L) 6= (ψ∗, L∗).

5. Guessing-Phase. The adversary outputs a bit σ̂.

The adversary is said to win the game if σ̂ = σ. We define the advantage (over random guessing)
of the adversary as the absolute value of the difference of the probability that he wins and 1/2.

A public-key encryption scheme is said to be secure against adaptive chosen ciphertext attack if
for all polynomial time, probabilistic adversaries, the advantage in this guessing game is negligible
as a function of the security parameter.

3 The Encryption Scheme

3.1 Background

Let p, q, p′, q′ be distinct odd primes with p = 2p′ + 1 and q = 2q′ + 1, and where p′ and q′ are both
` bits in length. Let n = pq and n′ = p′q′. Consider the group Z∗

n2 and the subgroup P of Z∗
n2

consisting of all n-th powers of elements in Z∗
n2 .

Paillier’s Decision Composite Residuosity (DCR) assumption [Pai99] is that given only n, it is
hard to distinguish random elements of Z∗

n2 from random elements of P.
To be completely formal, one should specify a sequence of bit lengths `(λ), parameterized by a

security parameter λ ≥ 0, and to generate an instance of the problem for security parameter λ, the
primes p′ and q′ should be distinct, random primes of length ` = `(λ), such that p = 2p′ + 1 and
q = 2q′ + 1 are also primes.

The primes p′ and q′ are called Sophie Germain primes and the primes p and q are called safe
primes. It has never been proven that there are infinitely many Sophie Germain primes. Neverthe-
less, it is widely conjectured, and amply supported by empirical evidence, that the probability that
a random `-bit number is Sophie Germain prime is Ω(1/`2). We shall assume that this conjecture
holds, so that we can assume that problem instances can be efficiently generated.

Note that Paillier did not make the restriction to safe primes in originally formulating the DCR
assumption. As will become evident, we need to restrict ourselves to safe primes for technical
reasons. However, it is easy to see that the DCR assumption without this restriction implies the
DCR assumption with this restriction, assuming that safe primes are sufficiently dense, as we are
here.

We can decompose Z∗
n2 as an internal direct product

Z∗
n2 = Gn ·Gn′ ·G2 ·T,

where each group Gτ is a cyclic group of order τ , and T is the subgroup of Z∗
n2 generated by

(−1 mod n2). This decomposition is unique, except for the choice of G2 (there are two possible
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choices). For any x ∈ Z∗
n2 , we can express x uniquely as x = x(Gn)x(Gn′)x(G2)x(T), where for

each Gτ , x(Gτ ) ∈ Gτ , and x(T) ∈ T.
Note that the element h = (1 + n mod n2) ∈ Z∗

n2 has order n, i.e., it generates Gn, and that
ha = (1 + an mod n2) for 0 ≤ a < n. Observe that P = Gn′G2T.

3.2 The Scheme

For a security parameter λ ≥ 0, ` = `(λ) is an auxiliary parameter.
The scheme makes use of a keyed hash scheme H that uses a key hk, chosen at random from

an appropriate key space associated with the security parameter λ; the resulting hash function
Hhk(·) maps a triple (u, e, L) to a number in the set [2`]. We shall assume that H is collision
resistant, i.e., given a randomly chosen hash key hk, it is computationally infeasible to find two
triples (u, e, L) 6= (u′, e′, L′) such that Hhk(u, e, L) = Hhk(u′, e′, L′).

Let abs : Z∗
n2 → Z∗

n2 map (a mod n2), where 0 < a < n2, to (n2 − a mod n2) if a > n2/2, and
to (a mod n2), otherwise. Note that v2 = (abs(v))2 holds for all v ∈ Z∗

n2 .
We now describe the key generation, encryption, and decryption algorithms of the encryption

scheme, as they behave for a given value of the security parameter λ.

Key Generation. Select two random `-bit Sophie Germain primes p′ and q′, with p′ 6= q′,
and compute p := (2p′ + 1), q := (2q′ + 1), n := pq, and n′ := p′q′, where ` = `(λ) is an auxiliary
security parameter. Choose random x1, x2, x3 ∈R [n2/4], choose a random g′ ∈R Z∗

n2 , and compute
g := (g′)2n, y1 := gx1 , y2 := gx2 , and y3 := gx3 . Also, generate a hash key hk from the key space of
the hash scheme H associated with the security parameter λ. The public key is (hk, n, g, y1, y2, y3).
The secret key is (hk, n, x1, x2, x3).

In the rest of the paper, let h = (1 + n mod n2) ∈ Z∗
n2 , which as discussed above, is an element

of order n.

Encryption. To encrypt a message m ∈ [n] with label L ∈ {0, 1}∗ under a public key as above,
choose a random r ∈R [n/4] and compute

u := gr , e := yr1h
m , and v := abs

(
(y2y

Hhk(u,e,L)
3 )r

)
.

The ciphertext is (u, e, v).

Decryption. To decrypt a ciphertext (u, e, v) ∈ Z∗
n2 ×Z∗

n2 ×Z∗
n2 with label L under a secret key

as above, first check that abs(v) = v and u2(x2+Hhk(u,e,L)x3) = v2. If this does not hold, then output
reject and halt. Next, let t = 2−1 mod n, and compute m̂ := (e/ux1)2t. If m̂ is of the form hm for
some m ∈ [n], then output m; otherwise, output reject.

This scheme differs from the DCR-based schemes presented in [CS02], because in our situation,
special attention must be paid to the treatment of elements of order 2 in the Z∗

n2 , as these can cause
some trouble for the proof systems we discuss in the next sections. Because of these differences, the
above encryption scheme does not exactly fit into the general framework of [CS02], even though
the basic ideas are the same. We therefore analyze the security of the scheme starting from first
principles, rather than trying to modify their framework.

Before presenting the security analysis, we remark on one of the more peculiar aspects of the
scheme, namely, the role of the abs(·) function in the encryption and decryption algorithms. If one
left this out, i.e., replaced abs(·) by the identity function, then the scheme would be malleable, as
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(u, e, v) is an encryption of some message m with label L, then so is (u, e,−v). This particular
type of malleability [ADR02, Sho01] is in fact rather “benign,” and would be acceptable in most
applications. However, we prefer to achieve non-malleability in the strictest sense, and because
this comes at a marginal cost, we do so. We also mention that in independent work, Gennaro
and Lindell [GL03] devise a similar (but not quite identical) scheme, but for completely different
purposes: their goal is to construct efficient password-based key exchange protocols.

Theorem 1. The above scheme is secure against adaptive chosen ciphertext attack provided the
DCR assumption holds, and provided H is collision resistant.

The rest of this section is devoted to the proof of Theorem 1.
Let us fix a value of the security parameter λ, which fixes ` = `(λ), and let us fix an adversary

A. Let ψ∗ = (u∗, e∗, v∗) denote the target ciphertext, and L∗ the associated label.
We prove this theorem by analyzing a sequence of modifications to the environment in which

the adversary runs. We refer to the attack game run with the original environment as Game 0
(c.f. §2.4), and to the attack game run with subsequent modifications to the environment as Games
1, 2, etc. Each of these games are best viewed as operating on the same underlying probability
space. The value of the random variable σ is identical in each game, but the output σ̂ of the
adversary may vary among games. We define the event Ti, for i ≥ 0, as the event that the σ = σ̂
in Game i.

Game 1. This is the same as Game 0, except for the following modification to the decryption oracle.
If the decryption oracle is invoked in Probing Phase II with a ciphertext/label pair ((u, e, v), L) such
that (u, e, L) 6= (u∗, e∗, L∗) but Hhk(u, e, L) = Hhk(u∗, e∗, L∗), then the decryption oracle rejects
the ciphertext.

Let F1 be the event that a ciphertext is rejected in Game 1 using the above rejection rule. It is
clear that Games 0 and 1 proceed identically until F1 occurs; more precisely, the events T1 ∧ ¬F1

and T0 ∧ ¬F1 are identical. Therefore,

|Pr[T1]− Pr[T0]| ≤ Pr[F1]. (1)

Moreover, we have
Pr[F1] ≤ AdvCRHFA′(λ), (2)

where AdvCRHFA′(λ) denotes the success probability that a particular adversary A′ has in finding
a collision in H for the given value of the security parameter λ. The running time of A′ is about
the same as that of A. Indeed, given a hash key hk, adversary A′ simply runs Game 1, using the
given value of hk in the key generation algorithm, and when F1 occurs, A′ outputs (u, e, L) and
(u∗, e∗, L∗).

Game 2. This game is the same as Game 1, except for the following modification to the decryption
oracle. If the decryption oracle is invoked in Probing Phase II with a ciphertext (u, e, v) such that
v2 = (v∗)2 and v 6= v∗, then the decryption oracle rejects the ciphertext.

Let F2 be the event that a ciphertext is rejected in Game 2 using the above rejection rule, but
would not have been rejected for any other reason. It is clear that Games 1 and 2 proceed identically
until F2 occurs; more precisely, the events T2 ∧ ¬F2 and T1 ∧ ¬F2 are identical. Therefore,

|Pr[T2]− Pr[T1]| ≤ Pr[F2]. (3)

Moreover, we have
Pr[F2] ≤ AdvFactorA′′(λ), (4)

11



where AdvFactorA′′(λ) denotes the success probability that a particular algorithm A′′ has in fac-
toring a number n as generated by the encryption algorithm for the given value of the security
parameter λ. The running time of A′′ is about the same as that of A. Algorithm A′′ takes the given
number n, constructs the remaining components of the public key, and then lets adversary A run
in Game 2. If and when event F2 occurs, we have v2 = (v∗)2, v 6= v∗, abs(v) = v, and abs(v∗) = v∗.
This implies that v 6= ±v∗. It follows that if v/v∗ = (a mod n2), then gcd(a, n) splits n.

Game 3. This game is the same as Game 2, except for the following modification to the encryption
oracle. Instead of computing e∗ and v∗ as in the encryption algorithm, we compute them using the
secret key, as follows:

e∗ := (u∗)x1hmσ

v∗ := abs
(
(u∗)x2+Hhk(u

∗,e∗,L∗)x3

)
This modification is purely conceptual, as the values of e∗ and v∗ computed by the encryption

oracle in Game 3 are identical to those computed in Game 2. Therefore,

Pr[T3] = Pr[T2]. (5)

Game 4. Now we further modify the encryption oracle. Let r∗ denote the value of r generated
by the encryption oracle. Then, instead of computing u∗ as gr

∗
, the encryption oracle in this game

chooses a random ū ∈ P, and sets u∗ := ū2.
We claim that

|Pr[T4]− Pr[T3]| = O(2−`). (6)

To see this, observe that ū2 is uniformly distributed over Gn′ . Also, observe that with probability
1−O(2−`), g is a generator for Gn′ , and that the distribution of r∗ is O(2−`)-close to the uniform
distribution on [n′]. It is an easy exercise to show that the bound (6) follows from these observations.

Game 5. We again modify the encryption oracle. Instead of choosing ū at random from P, the
encryption oracle chooses ū at random from Z∗

n2 ; otherwise, the computation is identical to that of
Game 4.

It is clear that any significant difference between Pr[T5] and Pr[T4] leads immediately to an
effective statistical test for distinguishing P from Z∗

n2 . More precisely, there exists an adversary
A′′′, whose running time is roughly the same as that of A, such that

|Pr[T5]− Pr[T4]| ≤ AdvDCRA′′′(λ), (7)

where AdvDCRA′′′(λ) denotes the advantage that A′′′ has in distinguishing P from Z∗
n2 for the given

value of the security parameter λ.

Game 6. We again modify the encryption oracle. This time, we replace u∗ by a random element
of GnGn′ such that u∗(Gn) has order n.

We claim that
|Pr[T6]− Pr[T5]| = O(2−`). (8)

To see this, note that in Game 5, u∗ is uniformly distributed over GnGn′ , and so u∗(Gn) has order
n with probability 1−O(2−`). The bound (8) follows immediately.
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Game 7. Now we modify the key generation algorithm. Instead of choosing x1, x2, x3 at random
from [n2/4], we choose them at random from [nn′].

Because the uniform distribution on [n2/4] is O(2−`)-close to the uniform distribution on [nn′],
it follows immediately that

|Pr[T7]− Pr[T6]| = O(2−`). (9)

Game 8. Now we modify the decryption oracle. In this game, in addition to rejecting a ciphertext
(u, e, v) ∈ Z∗

n2 ×Z∗
n2 ×Z∗

n2 with label L if u2(x2+Hhk(u,e,L)x3) 6= v2, the decryption oracle also rejects
this ciphertext if u /∈ Gn′G2T.

In this game, the decryption oracle leaks no information about the value of x1 modulo n. ¿From
this, and the fact that u∗(Gn) has order n and e∗ = (u∗)x1hmσ , it follows that A’s output σ̂ is
independent of σ. Therefore,

Pr[T8] = 1/2. (10)

Let F8 be the event that in Game 8, some ciphertext (u, e, v) with label L is rejected using the
special rejection rule introduced in Game 8, but would not have been rejected for any other reason,
i.e., the special rejection rules introduced in Games 1 and 2 do not apply, and u2(x2+Hhk(u,e,L)x3) =
v2.

It is clear that Games 7 and 8 proceed identically until F8 occurs. More precisely, the events
T8 ∧ ¬F8 and T7 ∧ ¬F8 are identical. Therefore,

|Pr[T8]− Pr[T7]| ≤ Pr[F8]. (11)

Let κ = κ(λ) denote an upper bound on the number of decryption oracle queries made by A
for the given value of the security parameter λ. We assume this bound holds, regardless of the
environment in which A runs. We claim that

Pr[F8] ≤ κ · 2−`. (12)

To prove (12), we argue as follows. Let x̄2 and x̄3 denote the values of x2 and x3, respectively,
modulo n. Similarly, let x̄′2 and x̄′3 denote the values of x2 and x3, respectively, modulo n′.

Let us condition on fixed values of

n, g, x1, x̄
′
2, x̄

′
3, hk,

as well as fixed values of the coin tosses of A. In this conditional probability space, the public key
is fixed, A’s queries to the decryption oracle in Probing Phase I, as well as the responses of the
decryption oracle. To see why responses of the decryption oracle are fully determined, observe that
all ciphertexts (u, e, v) with u /∈ Gn′G2T are rejected, and that the decryption oracle squares u in
all computations involving u; thus, the response of the decryption oracle is determined by x̄′2 and
x̄′3, which are fixed. Also, in this conditional probability space, it is determined whether or not
A invokes the encryption oracle, and if so, A’s inputs to the encryption oracle. However, by the
Chinese Remainder Theorem, the values of x̄2 and x̄3 in this conditional probability space are still
uniformly and independently distributed over [n].

In this conditional probability space, consider a particular invocation of the decryption oracle in
Probing Phase I with a ciphertext (u, e, v) and label L. Suppose that u /∈ Gn′G2T. Let ū = u(G′

n)
2,

ū′ = u(Gn)2, and H = Hhk(u, e, L). Note that ū 6= 1, and so ū has order p, q, or n. Now, we have

u2(x2+Hhk(u,e,L)x3) = (ū)x̄2+Hx̄3(ū′)x̄
′
2+Hx̄′3 .
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It follows that u2(x2+Hhk(u,e,L)x3) is uniformly distributed over a particular coset in Gn′Gn of the
subgroup generated by ū. As v2 is fixed in this conditional probability space, it follows that
u2(x2+Hhk(u,e,L)x3) = v2 with probability at most 2−`.

Now suppose that in this conditional probability space A invokes the encryption oracle with
particular messages m0 and m1, and a label L∗. Let us further condition on fixed values of σ
and u∗. This determines the value of e∗, and also the value of H∗ = Hhk(u∗, e∗, L∗). Let us also
further condition a fixed value of x̄2 + H∗x̄3 modulo n. This determines the value v∗. In the
resulting conditional probability space, the output of the encryption oracle, as well as all queries
and responses of decryption oracle queries in Probing Phase II are completely determined.

In this conditional probability space, consider a particular invocation of the decryption oracle
in Probing Phase II with a ciphertext (u, e, v) and label L, such that (u, e, v, L) 6= (u∗, e∗, v∗, L).
Suppose that u /∈ Gn′G2T, and that the special rejection rules introduced in Games 1 and 2 do
not apply. We consider two cases.

Case 1: (u, e, L) = (u∗, e∗, L∗). We must have v 6= v∗, as (u, e, v, L) 6= (u∗, e∗, v∗, L). Because
the special rejection rule in Game 2 does not apply, we must have v2 6= (v∗)2, which implies that
u2(x2+Hhk(u,e,L)x3) 6= v2.

Case 2: (u, e, L) 6= (u∗, e∗, L∗). As the special rejection rule in Game 1 does not apply, we must
have H 6= H∗. By the definition of H, this implies that H 6≡ H∗ (mod p) and H 6≡ H∗ (mod q).
This in turn implies that in this conditional probability space, the distribution of x̄2 +Hx̄3 modulo
n is uniform. It follows that u2(x2+Hhk(u,e,L)x3) is uniformly distributed over a particular coset in
Gn′Gn of the subgroup generated by ū. Because v2 is fixed in this conditional probability space,
it follows that u2(x2+Hhk(u,e,L)x3) = v2 with probability at most 2−`.

The above arguments show that the event F8 occurs for a particular decryption query with
probability at most 2−`. The bound (12) now follows.

Putting together (1)-(12), we have

|Pr[T0]− 1/2| ≤ AdvCRHFA′(λ) + AdvFactorA′′(λ) + AdvDCRA′′′(λ) + κ · 2−` +O(2−`).

Theorem 1 now follows immediately.

3.3 Extensions to Threshold Decryption

Our scheme can easily be transformed to provide threshold decryption, where it comes in handy
that the knowledge of the factorization of n is not required for decryption. This allows one to
reduce the trust assumption for the decryptor when used as a trusted third party. This can be
done either along the lines in [SG98], which requires a random oracle security argument, or along
the lines in [CG99], which does not require that argument, but for which the decryption protocol
is less efficient.

4 The Strong RSA and Factoring Assumptions

This strong RSA assumption is the following: given a composite modulus n and a random element
g ∈ Z∗

n, it is hard to compute h ∈ Z∗
n and integer e > 1 such that he = g. To be complete, one

needs to specify more precisely the distribution from which n is drawn. As in §3, we shall specify
that n is of the form pq, where p = 2p′ + 1, q = 2q′ + 1, and p′ and q′ are uniformly distributed
over all `-bit numbers such that p, q, p′, q′ are prime and p′ 6= q′. We also set n′ = p′q′. As usual,
` = `(λ), where λ is a security parameter.
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We will make use of both the strong RSA assumption, as well as the assumption that factoring
integers n as above is hard. Of course, the strong RSA assumption implies that factoring is hard.

We will make use of these two assumptions as follows. First, we shall make extensive use of
the well known fact that if factoring is hard, then it is hard to compute a non-zero multiple of n′.
We shall also make use of the fact that if factoring is hard, then it is hard to compute a non-zero
multiple of either p′ or q′. To see this, suppose that m is a non-zero multiple of p′ or q′. If m is a
multiple of n′, then the above mentioned result applies. Otherwise, with overwhelming probability,
for random z ∈ Z∗

n, gcd(z2m − 1, n) will be either p or q, as the reader may easily check using the
Chinese Remainder Theorem. Thus, assuming factoring is hard, we may assume that it is hard to
compute a non-zero integer m such that gcd(m,n′) 6= 1.

We also shall use the following facts:

Theorem 2. Under the assumption that factoring is hard, given a modulus n (distributed as above),
along with random elements g, h ∈ (Z∗

n)
2, it is hard to compute integers a, b, such that

1 = gahb and (a 6= 0 or b 6= 0). (13)

Proof. Suppose there is an algorithm A that takes as input n, g, h as above, and outputs a, b
satisfying (13) with non-negligible probability. We can use use A to factor a given n, as follows:
generate g ∈ (Z∗

n)
2 at random — with overwhelming probability, g has order n′; choose r ∈ [1, n2]

at random, and set h = gr — the distribution of h is statistically close to the uniform distribution
on (Z∗

n)
2; feed n, g, h to A, obtaining a, b. With non-negligible probability, we have

g has order n′ , 1 = ga+rb , and (a 6= 0 or b 6= 0) . (14)

Claim: with non-negligible probability, not only does (14) hold, but also a + rb 6= 0. To prove
this claim, let us condition on fixed values of n, g, h, a, b, and coins of A, such that A outputs a, b on
inputs n, g, h, and such that the conditions in (14) are satisfied. Let us write r = r2n

′ + r1, where
0 ≤ r1 < n′. In this conditional probability space, the value r1 is also fixed, but the distribution of
r2 is statistically close to the uniform distribution on [4n]. We can write the equation a+ rb = 0 as
a+ r2n

′b+ r1b = 0, and in this equation all terms are fixed except for r2. We may as well assume
that b 6= 0, as otherwise, a 6= 0 and the equation never holds. There is at most one solution in r2
to the equation (as the coefficient n′b is non-zero), and so it holds with only negligible probability.
That proves the claim.

The identity ga+rb implies that a+ rb is a multiple of n′, and if a+ rb 6= 0, we have a non-zero
multiple of n′.

Theorem 3. Under the strong RSA assumption, given a modulus n (distributed as above), along
with random elements g, h ∈ (Z∗

n)
2, it is hard to compute w ∈ Z∗

n and integers a, b, c such that

wc = gahb and (c - a or c - b). (15)

Proof. Suppose we have an algorithm A that given n, g, h as above, computes w, a, b, c satisfying
(15) with non-negligible probability.

Case 1. Let us first consider the case where c = 0 with non-negligible probability. Then the
condition that c - a or c - b simply means that a 6= 0 or b 6= 0, and the result is implied by
Theorem 2.
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Case 2. Let us next consider the remaining, and more interesting, case where c 6= 0 with non-
negligible probability. We may as well assume that gcd(c, n′) = 1, since as was discussed at the
beginning of the proof, under the assumption that factoring is hard, it is difficult to compute non-
zero c such that gcd(c, n′) 6= 1. We now show how we can use A to either factor a given n or
find a non-trivial root of a given g, thus contradicting the strong RSA assumption (since a random
element of Z∗

n is a square with probability 1/4).
Given n and g, we proceed as follows. First, note that with overwhelming probability, g has

order n′. Let us compute h = gr, for r randomly chosen from [1, n2], so that the distribution of
h is statistically close to the uniform distribution on (Z∗

n)
2. Now we feed n, g, h to A, obtaining

w, a, b, c. With non-negligible probability, we have

g has order n′, wc = ga+rb, c 6= 0, gcd(c, n′) = 1, and c - a . (16)

Claim: with non-negligible probability, not only does (16) hold, but also c - (a + rb). To prove
this claim, let now condition on fixed values of n, g, h, w, a, b, c, and coins of A, such that A outputs
w, a, b, c on inputs n, g, h, and such that the conditions in (16) are satisfied. Let us write r =
r2n

′ + r1, where 0 ≤ r1 < n′. In this conditional probability space, the value r1 is also fixed, but
the distribution of r2 is statistically close to the uniform distribution on [4n].

Now, consider the congruence
a+ rb ≡ 0 (mod c) .

This congruence holds if and only if

a+ r1b+ r2n
′b ≡ 0 (mod c) .

Now, in the conditional probability space, all terms in the above congruence are fixed, except for
r2. Let us bound from above the probability that this congruence holds. We may as well assume
that c - b, because if c | b, then c - a, and the congruence will never hold. As gcd(c, n′) = 1, it
follows that the solutions r2 to the above congruence are uniquely determined modulo c/d′, where
d′ = gcd(c, b). Since c - b, it follows that d′ is a proper divisor of c, and hence c/d′ ≥ 2. Because the
distribution of r2 is statistically close to the uniform distribution on a very large range, it follows
that the congruence holds with probability at most about 1/2. This proves the claim.

It is left to show that if c - (a+ rb), then we can either factor n, or just compute a non-trivial
root of g. Let d = gcd(c, a + rb). Since we are assuming that c - (a + rb), it follows that c/d ≥ 2.
There are integers α and β such that d = αc+β(a+ rb), and using the identity wc = gahb, we have

gd = (wβgα)c,

and so g = ζ(wβgα)c/d for some ζZ∗
n with ζd = 1. Thus, the order of ζ divides d, and of course,

since 2n′ is the exponent of Z∗
n, it follows that the order of ζ divides gcd(d, 2n′). Now, since d | c

and gcd(c, n′) = 1, we have gcd(d, n′) = 1, from which it follows that ζ has order dividing 2.
So either ζ = ±1 or gcd(ζ − 1, n) splits n. In the latter case we have factored n. In the former

case we can compute such a root of g as follows. If c/d is even, then (wβgα)c/d ∈ (Z∗
n)

2 and so
(because g ∈ (Z∗

n)
2), we must have ζ = 1 (as −1 /∈ (Z∗

n)
2). If c/d is odd then g = (ζwβgα)c/d. In

either case, we have computed a (c/d)th root of g.

Discussion. The strong RSA assumption was introduced independently in [BP97] and [FO97]. Since
then, it has been found to be useful in the analysis of many cryptographic schemes (e.g., [CM98,
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GHR99, CS00, ACJT00, CL01]). We do not claim that Theorem 3 is new: it has appeared implicitly
and in more restricted form in previous papers: the essential idea in the proof of Theorem 3 already
appears in [CS00], although that paper deals with a more restricted, and somewhat simpler, setting;
also, the paper [DF02] implicitly contains a proof of a statement that is very similar to that of
Theorem 3. The paper [FO97] also makes some similar claims (implicitly), but some of their proofs
are flawed. Theorem 3 is actually a bit more general than we actually need for our paper, but as it
is actually a quite useful theorem in several contexts, we prefer to state it in a very general form.

5 Verifiable Encryption

Loosely speaking, verifiable encryption for a relationR is a protocol that allows a prover to convince
a verifier that a given ciphertext is an encryption under a given public key of a value w such that
(δ, w) ∈ R for a given δ.

Asokan et al. [ASW98, ASW00] present a protocol for verifiable encryption for the case where
w is a homomorphic pre-image of δ and Camenisch and Damg̊ard [CD00] present a protocol that
works for any relation R that has a three-move honest-verifier zero-knowledge proof of knowledge
where the verifier sends as a second message a random challenge. Both these protocols work for
any secure public key encryption scheme. However, they are based on the cut-and-choose paradigm
and hence are rather impractical.

In this section we present an efficient verifiable encryption protocol for discrete logarithms
in conjunction with the encryption scheme presented in the previous section. We then discuss
extensions of this protocol.

5.1 Definition of Verifiable Encryption

Before stating the formal definition of verifiable encryption, we begin with a high level discussion
of what we are after, along with some auxiliary definitions.

Let (G, E ,D) be a public key encryption scheme, and suppose we have generated a key pair
(PK,SK).

A verifiable encryption scheme proves that a ciphertext encrypts a plaintext satisfying a certain
relation R. The relation R is defined by a generator algorithm G′ which on input 1λ outputs a
description Ψ = Ψ[R,W,∆] of a binary relation R on W ×∆. We require that the sets R, W , and
∆ are easy to recognize (given Ψ). For δ ∈ ∆, an element w ∈ W such that (w, δ) ∈ R is called a
witness for δ. The idea is that the encryptor will be given a value δ, a witness w for δ, and a label
L, and then encrypts w under L, yielding a ciphertext ψ. After this, the encryptor may prove to
another party that ψ decrypts under L to a witness for δ. In carrying out the proof, the encryptor
will of course need to make use of the random coins that were used by the encryption algorithm:
we denote by E ′(PK,m, L) the pair (ψ, coins), where ψ is the output of E(PK,m, L) and coins are
the random coins used by E to compute ψ.

In such a proof system, the (honest) verifier will output 0 or 1, with 1 signifying “accept.”
We of course shall require that the proof system is sound, in the sense that if a verifier accepts a
proof, then with overwhelming probability, ψ indeed decrypts under L to a witness for δ. However,
it is convenient, and adequate for many applications, to take a more relaxed approach: instead
of requiring that ψ decrypts under L to a witness, we only require that a witness can be easily
reconstructed from the plaintext using some efficient reconstruction algorithm. Such an algorithm
recon takes as input a public key PK, a relation description Ψ[R,W, δ], an element δ ∈ ∆, and a
message m ∈MPK ∪ {reject}, and outputs w ∈W ∪ {reject}.
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We need to make some technical “compatibility” requirements: we say that an encryption
scheme, a relation generator, and a reconstruction algorithm as above are mutually compatible if
for all λ ≥ 0, all (PK,SK) ∈ G(1λ), and all Ψ[R,W,∆] ∈ G′(1λ), we have

• W ⊂MPK, and

• for all (w, δ) ∈ R, we have recon(PK,Ψ, δ, w) = w.

The first requirement simply says that witness “fit” into the message space, and the second require-
ment simply says that the reconstruction routine does not modify valid witnesses (together with
the correctness property for the encryption scheme, this ensures that an encryption of a witness
decrypts and reconstructs to the same witness).

We shall also require that the proof system is special honest-verifier zero knowledge. To formu-
late this more precisely below, we let Trans(PK,Ψ, δ, ψ, L, c, w, coins) denote the transcript seen by
a verifier that uses a fixed challenge c.

Definition 1. A proof system (P,V), together with mutually compatible encryption scheme
(G, E ,D), relation generator G′, and reconstruction algorithm recon, form a verifiable encryption
scheme, if the following properties hold.

Correctness: for all (PK,SK) ∈ G(1λ), for all Ψ[R,W,∆] ∈ G′(1λ), for all (w, δ) ∈ R, for all
L ∈ {0, 1}∗, for all (ψ, coins) ∈ E ′(PK, w, L),

Pr[x← V(PK,Ψ, δ, ψ, L)P(PK,Ψ,δ,ψ,L,w,coins) : x = 1] = 1− neg(λ).

Soundness: for all adversaries (A∗, P∗),

Pr[ (PK,SK)← G(1λ);Ψ[R,W,∆]← G′(1λ);
(δ, ψ, L, aux )← A∗(PK,SK,Ψ);
x← V(PK,Ψ, δ, ψ, L)P∗(aux);
m← D(SK, ψ, L);
w ← recon(PK,Ψ, δ,m) :
x = 1 ∧ (w, δ) /∈ R ] = neg(λ).

Special honest-verifier zero knowledge: There exists a simulator Sim such that for all adver-
saries (A∗, B∗, C∗), we have

Pr[ (PK,SK)← G(1λ);Ψ[R,W,∆]← G′(1λ);
(w, δ, L, aux )← A∗(PK,SK,Ψ), where (w, δ) ∈ R;
(ψ, coins)← E ′(PK, w, L);
c← B∗(aux , ψ);
b← {0, 1};
if b = 0

then α← Trans(PK,Ψ, δ, ψ, L, c, w, coins)
else α← Sim(PK,Ψ, δ, ψ, L, c);

b̂← C∗(aux , ψ, α) :
b = b̂ ] = 1/2 + neg(λ).
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The above definitions are fairly traditional. Our formulations of soundness and special honest-
verifier zero knowledge are basically of the “computational” variety, but where we have taken the
notion of “computational” one step further: instead of universally quantifying over the inputs to
the verifier (respectively, simulator), we quantify “computationally.” This is technically convenient,
and is adequate for most applications.

Also, the above definitions assume that the key for the encryption scheme are generated by a
trusted party. While it is possible to define verifiable encryption in a setting where the keys are not
generated by a trusted party, the definitions in this case are a bit more complicated and subtle, and
we do not present them here. Nevertheless, our protocols would require only slight modification to
remain secure in this setting.

5.2 Verifiable Encryption of a Discrete Logarithm

Let (hk, n, g, y1, y2, y3) be a public key of the encryption scheme described in §3. Recall that the
message space associated with this public key is [n].

Let Γ be a cyclic group of order ρ generated by γ. We assume that γ and ρ are publicly known,
and that ρ is prime. Let W = [ρ] and ∆ = Γ, and let R = {(w, δ) ∈ W × ∆ : γw = δ}. The
“discrete logarithm” relation R is the relation with respect to which we want to verifiably encrypt.

We shall of course require that n > ρ (in fact, we will make a stronger requirement). The
reconstruction routine recon will map a plaintext m ∈ [n] to the integer (m remn) mod ρ, i.e.,
it computes the balanced remainder of m modulo n, and then computes the least non-negative
remainder of this modulo ρ.

Setup. Our protocol requires the auxiliary parameters n, which must the product of two safe
(l + 1)-bit primes p = 2p′ + 1 and q = 2q′ + 1, and g and h, which are two generators of Gn′ ⊂ Z∗

n,
where n′ = p′q′; Gn′ is the subgroup of Z∗

n of order n′, and l = l(λ).
One may view n, g, and h as additional components of the public key of the encryption scheme,

or as system parameters generated by a trusted party. Depending on the setting, we may simply
put n := n. In any event, the prover should not be privy to the factorization of n.

Let k = k(λ) and k′ = k′(λ) be further security parameters, where 2−k(λ) and 2−k
′(λ) are

negligible functions ({0, 1}k is the “challenge space” of the verifier and k′ controls the quality of
the zero-knowledge property). We require that 2k < min{p′, q′, p′, q′, ρ} holds. Finally, we require
that ρ < n2−k−k

′−3 holds, i.e., that logγ δ “fits into an encryption”. (If this condition is not meet,
the value logγ δ could be split into smaller pieces, each of which would then be verifiably encrypted.
However, we do not address this here.)

The protocol. The common input of the prover and verifier is: the public key (hk, n, g, y1, y2, y3),
the augmented public key (n, g, h), a group element (δ), a ciphertext (u, e, v), and a label L. The
prover has additional inputs m = logγ δ and r ∈R [n/4] such that

u = gr, e = yr1h
m, and v = abs ((y2y

Hhk(u,e,L)
3 )r) .

1. The prover chooses a random s ∈R [n/4] and computes k := gmhs. The prover sends k to the
verifier.

2. Then the prover and verifier engage in the following protocol.
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(a) The prover chooses random

r′ ∈R [−n2k+k
′−2, n2k+k

′−2], s′ ∈R [−n2k+k
′−2, n2k+k

′−2], m′ ∈R [−ρ2k+k′ , ρ2k+k′ ].

The prover computes
u′ := g2r′ , e′ := y2r′

1 h2m′
, v′ := (y2y

Hhk(u,e,L)
3 )2r

′
, δ′ := γm

′
, and k′ := gm

′
hs

′
.

The prover sends u′, e′, v′, δ′, and k′ to the verifier.

(b) The verifier chooses a random challenge c ∈R {0, 1}k and sends c to the prover.

(c) The prover replies with r̃ := r′ − cr, s̃ := s′ − cs, and m̃ := m′ − cm (computed in Z).

(d) The verifier checks whether the relations

u′ = u2cg2r̃, e′ = e2cy2r̃
1 h

2m̃, v′ = v2c(y2y
Hhk(u,e,L)
3 )2r̃,

δ′ = δcγm̃, k′ = kcgm̃hs̃, and − n/4 < m̃ < n/4

hold. If any of them does not hold, the verifier stops and outputs 0.

3. If v = abs(v) the verifier outputs 1; otherwise she outputs 0.

Using notation from [CS97] we denote the sub-protocol of Step 2 as

PK{(r,m, s) : u2 = g2r ∧ e2 = y2r
1 h

2m ∧ v2 = (y2y
Hhk(u,e,L)
3 )2r ∧

δ = γm ∧ k = gmhs ∧ −n/2 < m < n/2} .

Proof of Security. We prove the following theorem about the above system. Given this theorem,
one can apply the standard constructions (e.g., [Dam00]) to turn the sub-protocol used in Step 2
into an efficient one that is zero-knowledge w.r.t. any verifier, and can thus obtain a verifiable
encryption system that satisfies computational zero-knowledge.

Theorem 4. Under the strong RSA assumption, the above system is a verifiable encryption scheme.

Proof. The correctness and special honest-verifier zero-knowledge properties are easy to verify, and
we leave this to the reader.

It remains to consider soundness.
If the success-probability of the prover is non-negligible, then there is a knowledge extractor that

produces (in time polynomial in λ and with non-negligible probability) two answers (r̃(1), s̃(1), m̃(1))
(r̃(2), s̃(2), m̃(2)) from the prover on two different challenges c(1) and c(2) w.r.t. the same u′, e′, v′, δ′,
and k′. W.l.o.g., suppose that c(2) > c(1). Let ∆r = r̃(1)− r̃(2), ∆s = s̃(1)− s̃(2), ∆m = m̃(1)− m̃(2),
and ∆c = c(2) − c(1) > 0. From the verification equations one can derive the following equations:

u2∆c = g2∆r e2∆c = y2∆r
1 h2∆m v2∆c = (y2y

Hhk(u,e,L)
3 )2∆r

δ∆c = γ∆m k∆c = g∆mh∆s

Now we use the strong RSA assumption. By Theorem 3, since we have computed k,∆m,∆s,
and ∆c such that k∆c = g∆mh∆s, we may assume that ∆c | ∆m and ∆c | ∆s. Also, by construction
we have |∆c| < min{p, q, p′, q′, p, q, p′, q′, ρ} and hence ∆c is invertible modulo any of those primes.
Let ĉ = ∆c−1 mod nn′. As u2 has order dividing nn′, we get u2 = g2∆rĉ, i.e.,

u = w1g
∆rĉ (17)
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for some w1 of order 2. Similarly, we get

e = w2y
∆rĉ
1 h∆m/∆c (18)

v = w3(y2y
Hhk(u,e,L)
3 )∆rĉ (19)

δ = γ∆m/∆c (20)

for some w2 and w3 of order 2. It is not hard to see that from v = abs(v) and from Eqns. (17)-(19)
it follows that decryption of the triple (u, e, v) will provide the integer m̄ := ∆m/∆c mod n modulo
n (note that due to the squarings in the decryption algorithm, all the wi’s disappear).

We claim that for m̌ = (m̄ remn) mod ρ we have δ = γm̌, i.e., that (u, e, v) is an encryption
of logγ δ. As |m̃(1)|, |m̃(2)| < n/4 and ∆c | ∆m, we must have |∆m/∆c| < n/2. Hence ∆m/∆c =
((∆m/∆c mod n) remn) = m̄ remn and therefore δ = γ∆m/∆c = γm̌.

5.3 Extensions

Our encryption scheme can be extended as follows to encrypt l messages at once. The idea is to
use several y1’s to compute several e’s. That is, the secret key becomes (hk, x

(1)
1 , . . . , x

(l)
1 , x2, x3)

with x
(1)
1 , . . . , x

(l)
1 , x2, x3 ∈R [n2/4], and the public key becomes (hk, n, g, y

(1)
1 , . . . , y

(l)
1 , y2, y3) with

y
(i)
1 := gx

(i)
1 . To encrypt a messages m(i) ∈ [n] with label L ∈ {0, 1}∗ under a public key as above,

choose a random r ∈R [n/4] and compute

u := gr , e(i) := (y(i)
1 )

r
hm

(i)
, and v := abs

(
(y2y

Hhk(u,e,L)
3 )r

)
.

To decrypt a ciphertext (u, e(1), . . . , e(l), v) with label L under a secret key as above, first check
that abs(v) = v and u2(x2+Hhk(u,e,L)x3) = v2. If this does not hold, then output reject and halt.
Next, let t = 2−1 mod n, and compute m̂(i) := (e(i)/ux

(i)
1 )2t. If all m̂(i)’s are of the form hm

(i)
for

some m(i) ∈ [n], then output the m(i)’s; otherwise, output reject. It is easy to prove this encryption
scheme secure.

It is now straightforward to extend our verifiable encryption protocol to the above encryption
scheme to obtain to a verifiable encryption scheme that encrypts a (subset of a) representation of
a group element with respect to several bases.

Further, all of these protocols can be easily adapted to the case where the order of the group Γ
is not known, i.e., a subgroup of of Z∗

N for an RSA-modulus N .

6 Proving the Inequality of Discrete Logarithms

Our protocol for verifiable decryption (below) requires that one party proves to another party
whether or not two discrete logarithms are equal, where one of the discrete logarithms might not
be known to the prover (that is, in the case the discrete logarithms are not equal). There are
well-known, efficient, special honest-verifier zero-knowledge proof systems for proving that two
discrete logarithms are equal (see [CP93]), so we focus on the problem of proving that two discrete
logarithms are unequal. We discuss an efficient protocol for this problem separately as it is of
independent interest and as the algebraic setting here is simpler than the one in which we use it in
the next section.
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Let G = 〈g〉 be a group of prime order q. The prover and verifier have common inputs g, h, y, z ∈
G, where g and h are generators for G, and logg y 6= logh z. The prover has the additional input
x = logg y. The prover and verifier then engage in the following protocol.

1. The prover chooses r ∈R Zq, computes the auxiliary commitment C = (hx/z)r, and sends C
to the verifier.

2. The prover executes the protocol denoted

PK{(α, β) : C = hα
(1
z

)β ∧ 1 = gα
(1
y

)β}
with the verifier.

3. The verifier accepts if it accepts in Step 2, and if C 6= 1; otherwise, the verifier rejects.

Note that in an actual implementation, the value C may be sent to the verifier as part of the
first message in the sub-protocol in Step 2.

Theorem 5. The above protocol is a special honest-verifier proof system for proving that logg y 6=
logh z.

Proof. Correctness of the protocol is by inspection.
Consider the protocol’s soundness. If a prover can make an honest verifier accept with non-

negligible probability, then using standard rewinding arguments, there exist values α and β such
that the equations

C = hα
(1
z

)β 1 = gα
(1
y

)β (21)

hold. From the second equation of (21) one can conclude that

α ≡ β logg y (mod q) .

Substituting β logg y for α in the first equation of (21), we get C = (hlogg y/z)β . As the verifier
accepts only if C 6= 1, this implies that hlogg y/z 6= 1, i.e., that logg y 6= logh z.

To see that the protocol is special honest-verifier zero knowledge, note that in an actual run of
the protocol with an honest prover, C is a random element of G. Thus, the simulator can simply
generate C at random, and then use the simulator for the proof in Step 2.

Let us briefly discuss related work. Independently of our work, Bresson and Stern [BS02] provide
a protocol to prove that two discrete logarithms are not equal that is similar to ours. However,
their protocol is about a factor of two less efficient than ours and is only computationally sound.
Also, we note that the protocol proposed by Michels and Stadler [MS98] to prove whether or not
two discrete logarithms are equal is not zero knowledge because it reveals the value hx (which the
simulator can not compute, but a (dishonest) verifier can if he chooses h such the he knows logg h).

7 Verifiable Decryption

In this section we provide a protocol that allows the decryptor to prove that she decrypted correctly.
In particular, we provide a protocol that allows the decryptor to prove whether or not a given
ciphertext decrypts to a given plaintext. We then extend the protocol to one for proving whether
or not a given ciphertext decrypts to the discrete logarithm of a given group element.
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7.1 Definition of Verifiable Decryption

Verifiable decryption is a protocol between a prover, knowing the decryption key, and a verifier,
who as the result of the protocol either rejects or learns whether or not a given ciphertext decrypts
under a given label to a plaintext that satisfies a given relation.

We adopt the notation and terminology in §5.1. In addition, for mutually compatible encryption
scheme encryption scheme (G, E ,D), relation generator G′, and reconstruction algorithm recon, we
define the function f that for all (PK,SK) ∈ G(1λ), all Ψ[R,W,∆] ∈ G′, all ψ,L ∈ {0, 1}∗, and all
δ ∈ ∆

f(Ψ, δ, ψ, L,SK) =

{
+1 if (recon(PK,Ψ, δ,D(SK, ψ, L)), δ) ∈ R;
−1 otherwise.

The (honest) verifier in a verifiable decryption protocol will output either a value ±1, indicating
that this is the value of f , or the value 0, indicating that the proof is invalid.

A difficulty in defining soundness for verifiable decryption is that for many public key encryption
schemes (including ours and, e.g., the ElGamal based Cramer-Shoup one [CS98]), it is not well
defined whether or not a ciphertext is valid given only the public key. More precisely, there are
ciphertexts that can be both valid and invalid, depending on the actual value of the secret key.
Hence, it is in principle possible that the decryptor/prover could change her mind about such
ciphertexts, which seems inappropriate. In the following definition, we assume that the public and
secret key are generated by a trusted party which allows us to define soundness in terms of the secret
key and public key rather than only the public key. As for verifiable encryption, the definitions
for the setting where the keys are not generated by a trusted party are a bit more complicated
and subtle, and we do not present them here. However, our protocols would require only slight
modification to remain secure in this setting.

Definition 2. A proof system (P,V), together with mutually compatible encryption scheme
(G, E ,D), relation generator G′, and reconstruction algorithm recon, form a verifiable decryption
scheme, if the following properties hold.

Correctness: For all (PK,SK) ∈ G(1λ), for all Ψ[R,W,∆] ∈ G′(1λ), for all δ ∈ ∆, for all ψ,L ∈
{0, 1}∗,

Pr[x← V(PK,Ψ, δ, ψ, L)P(PK,Ψ,δ,ψ,L,SK) : x = f(Ψ, δ, ψ, L, SK)] = 1− neg(λ) .

Soundness: For all adversaries (A∗, P∗),

Pr[ (PK,SK)← G(1λ);Ψ[R,W,∆]← G′(1λ);
(δ, ψ, L, aux )← A∗(PK,SK,Ψ);
x← V(PK,Ψ, δ, ψ, L)P∗(aux) :
x = −f(Ψ, δ, ψ, L, SK) ] = neg(λ) .

Special honest-verifier zero knowledge: There exists a simulator Sim such that for all adver-
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saries (A∗, B∗), we have

Pr[ (PK,SK)← G(1λ);Ψ[R,W,∆]← G′(1λ);
(δ, ψ, L, c, aux )← A∗(PK,SK,Ψ);
b← {0, 1};
if b = 0

then α← Trans(PK,Ψ, δ, ψ, L, c,SK)
else α← Sim(PK,Ψ, δ, ψ, L, c, f(Ψ, δ, ψ, L,SK));

b̂← B∗(aux , α) :
b = b̂ ] = 1/2 + neg(λ) .

7.2 Verifiable Decryption of a Matching Plaintext

We give a protocol for the decryptor to prove whether or not a ciphertext (u, e, v) decrypts to a
message m under label L, i.e., using this protocol she can show that she did correctly decrypt. This
is a special case of verifiable decryption in which the relation R is equality, and the reconstruction
routine returns its last input as its output.

For our encryption scheme in §3, this proof corresponds to proving whether or not the two
equations

u2(x2+Hhk(u,e,L)x3)/v2 = 1 and (e/ux1)2/h2m = 1 (22)

hold (assuming that the public test abs(v) = v is satisfied). If the ciphertext is invalid, one or both
of the two statements do not hold. If the ciphertext is valid but decrypts to another message, the
first statement holds but the second one does not.

Proving that both of these equations hold is a fairly straightforward application of known
techniques.

To prove that at least one of the equations does not hold, we can use the “proof of partial
knowledge” technique of [CDS94], combined with the technique developed in §6. However, because
in the present setting the group has non-prime order we can not prove the relationship among
the secrets in the same way as in §6 and, more importantly, the resulting protocol would not be
zero-knowledge. The former problem can be solved using an auxiliary group Gn′ ⊂ Z∗

n as we did
in §5. We consider the latter problem. Depending on the values of the secret keys x1, x2, and x3,
the left hand sides of the equations (22), and thus the auxiliary commitments to be provided in the
protocol, lie in different (sub-)groups, i.e., in Gn, Gn′ , or GnGn′ . As the simulator does not know
the values x1, x2, and x3, it can not simulate these auxiliary commitments. We solve this problem
using the fact that for all elements a ∈ GnGn′ we have

a 6= 1 ⇔ (an ∈ Gn′ ∧ an 6= 1) ∨ (a ∈ Gn ∧ a 6= 1) .

Thus, to prove that (at least) one of the equations (22) does not hold, we prove that either(u2(x2+Hhk(u,e,L)x3)

v2

)n
6= 1 (23)

or (u2(x2+Hhk(u,e,L)x3)

v2

)n
= 1 and

u2(x2+Hhk(u,e,L)x3)

v2
6= 1 (24)
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or ((e/ux1)2

h2m

)n
= (e/ux1)2n 6= 1 (25)

or ((e/ux1)2

h2m

)n
= 1 and

(e/ux1)2

h2m
6= 1 (26)

holds. Now, whenever one of the four cases applies it is always well defined in which group the
left-hand sides of the inequalities lie and we can apply the ideas underlying the protocol in §6
to prove that at least one of these four inequalities applies. We remark that the case where the
statements (23-25) are false but the statement (26) is true corresponds to the case where the
ciphertext is a valid encryption of a message different from m. If any of the statements (23-25) is
true corresponds to the cases where the ciphertext is invalid.

We are now ready to describe the protocol between the decryptor and a verifier. Their common
input is (hk, n, g, y1, y2, y3), (n, g, h), (u, e, v), m, and L and the additional input to the decryptor
is (x1, x2, x3). The triple (n, g, h) is an auxiliary parameter as in the one previous section. (As we
assume here that n is generated by a trusted party as well, i.e., that the decryptor is not provided
with n’s factorization; also, n and n could be identical.) In the following description we assume
that all the messages the prover sends to the verifier prior to the execution of one of the possible
PK protocols will in fact be bundled with the first message of that PK protocol. Here we provide
the proof-protocols only by high-level notation; the actual protocols are easily derived from it (cf.
also the the verifiable encryption protocol presented in §5 and its high-level notation).

1. If m 6∈ [n] or the ciphertext is malformed, (e.g., if v 6= abs(v)), the verifier outputs −1, and
the protocol stops.

2. If (u, e, v) is a valid ciphertext and decrypts to m under label L, the decryptor sends 1 to
the verifier, and then engages in the protocol denoted

PK{(x1, x2, x3) : y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧ v2 = u2x2u2Hhk(u,e,L)x3 ∧ e2

h2m
= u2x1}

with the verifier.

3. If (u, e, v) is an invalid ciphertext w.r.t. the label L or decrypts to some message different
from m under L, then the decryptor sends −1 to the verifier. They proceed as follows.

(a) The decryptor chooses a1 ∈R [n/4], a2 ∈R [n2/4], a3 ∈R [n/4], and a4 ∈R [n2/4], along
with b1, b2, b3, b3 ∈R [n/4].
She then computes C1 := ga1hb1 , C2 := ga2hb2 , C3 := ga3hb3 , and C4 := ga4hb4 .
She chooses C1 ∈R Gn′ , C2 ∈R Gn, C3 ∈R Gn′ , and C4 ∈R Gn.
Furthermore,

(Case 1) if u2n(x2+Hhk(u,e,L)x3) 6= v2n, she sets C1 := (ux2+Hhk(u,e,L)x3/v)2na1 ,

(Case 2) else if u2(x2+Hhk(u,e,L)x3) 6= v2, she sets C2 := (ux2+Hhk(u,e,L)x3/v)2a2 ,

(Case 3) else if (ux1/e)2 6∈ 〈h〉, she sets C3 := (ux1/e)2na3 ,

(Case 4) else (ux1/e)2 6= h2m, and she sets C4 := (ux1hm/e)2a4 .

The decryptor sends C1, C2, C3, C4, C1, C2, C3, and C4 to the verifier.
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(b) The decryptor and the verifier carry out the protocol denoted

PK
{

(x1, x2, x3, a1, . . . , a4, b1, . . . , b4, r1, . . . , r4 s1, . . . , s4) :[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C1 = u2nr1(
1
v
)2na1 ∧ C1 = ga1hb1 ∧ 1 = (

1
C1

)x2(
1
C1

)Hhk(u,e,L)x3gr1hs1
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C2 = u2r2(
1
v
)a2 ∧ C2 = ga2hb2 ∧ 1 = (

1
C2

)x2(
1
C2

)Hhk(u,e,L)x3gr2hs2
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C3 = u2nr3(
1
e
)2na3 ∧ C3 = ga3hb3 ∧ 1 = (

1
C3

)x1gr3hs3
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C4 = u2r4(
hm

e
)2a4 ∧ C4 = ga4hb4 ∧ 1 = (

1
C4

)x1gr4hs4
]}

,

where r1, . . . , r4, s1, . . . , s4 are temporary secrets (i.e.,

r1 = a1(x2 +Hhk(u, e, L)x3), s1 = b1(x2 +Hhk(u, e, L)x3),
r2 = a2(x2 +Hhk(u, e, L)x3), s2 = b2(x2 +Hhk(u, e, L)x3),
r3 = x1a3, s3 = x1b3,

r4 = x1a4, s4 = x1b4,

(computed in Z)). (To derive the actual protocol one may to apply the techniques by
Cramer et al.[CDS94] for realizing the ∨’s.)

(c) The verifier checks that C2
1 6= 1, C2

2 6= 1, C2
3 6= 1, and C2

4 6= 1.

The computational load of the prover and the verifier is about one to four times the load in the
protocol for verifiable encryption described in the previous section (depending on whether Step 2
or Step 3 gets carried out).

Theorem 6. Assuming factoring is hard, the above scheme is a verifiable decryption scheme (for
matching plaintexts).

Proof. Correctness is trivial, and we leave this to the reader.
We now show that the protocol is special honest-verifier computational zero-knowledge by pro-

viding a simulator.
First the simulator executes step 1 of the protocol as the decryptor would, that is, if m 6∈ [n] or

if the ciphertext is malformed the simulator stops. The simulator queries an oracle to determine
whether or not ψ decrypts to m. If it does, it sends the verifier 1 it simulates step 2 by the simulator
for the PK -protocol of step 2. If does not, it simulates step 3 as follows. First the simulator sends
the verifier −1. Then it chooses b1, b2, b3, b3 ∈R [n/4]. It then computes C1 := hb1 , C2 := hb2 ,
C3 := hb3 , and C4 := hb4 . It chooses C1 ∈R Gn′ , C2 ∈R Gn, C3 ∈R Gn′ , and C4 ∈R Gn. Next it
invokes the simulator for the PK -protocol of step 3. This concludes the simulator.
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It remains to show that the simulator indeed works. It is clear that the simulation of steps 1
and 2 works. Consider step 3.

Note that in the real run as well as in the simulation the pairs (C1, C1), . . . , (C4, C4) are inde-
pendently distributed. Moreover they obviously have the same distribution in the simulation as in
the real run except for the one pair for which the prover replaces the Ci.

We consider the cases where the prover replaces C1 and C2, respectively. The remaining two
cases are analogous.

Case 1. Here u2n(x2+Hhk(u,e,L)x3) 6= v2n holds and the prover replaces C1. Note that
(u(x2+Hhk(u,e,L)x3)/v)2n ∈ Gn′ and (u(x2+Hhk(u,e,L)x3)/v)2n 6= 1. Thus (u(x2+Hhk(u,e,L)x3)/v) gen-
erates Gn′ (or we could factor n) and C1 = (ux2+Hhk(u,e,L)x3/v)2na1 is a random element of Gn′ as
a1 is chosen at random from the appropriate interval. Also, as b1 is chosen independently of a1, C1

is a random element from Gn′ . Hence C1 and C1 have the same distribution in the run with the
real prover as in the simulation.

Case 2. As the above case does not apply, i.e., (u(x2+Hhk(u,e,L)x3)/v)2n = 1 we have that
(ux2+Hhk(u,e,L)x3)/v)2 ∈ Gn. Again, (ux2+Hhk(u,e,L)x3)/v)2 generates Gn (or we could factor n) and
C2 = (ux2+Hhk(u,e,L)x3/v)2a2 as a1 is chosen at random. For the same reason as in Case 1, C2 is a
random element from Gn′ and C2 and C2 have the same distribution in the run with the real prover
as in the simulation.

These facts, together with the fact that all the PK -protocols used as sub-protocols are special
honest-verifier zero-knowledge (showing the latter is standard and left to the reader), imply that
the verifiable decryption protocol is special honest-verifier zero-knowledge. Note that we have used
in an essential way the fact that we quantify “computationally” over the inputs to the simulator:
the inputs that cause the simulator to fail are assumed to be hard to find.

In the remainder we prove soundness. Let us generate a public keys and secret keys according
to the usual algorithms, obtaining

n, g, y1, y2, y3, x1, x2, x3, n, g, h.

All of this information is available to the adversary, who produces m,ψ,L, and is able to make the
verifier accept on these inputs with non-negligible probability. Using standard rewinding techniques
we can produce two accepting conversations for either the PK protocol in Step 2 or the one in Step 3
(for different challenges but the same first message), depending on whether m = D(1λ,SK, ψ, L).
We consider these two cases.

Case I. First assume that m 6= D(1λ,SK, ψ, L) but that V ’s output is 1. Let (u, e, v) := ψ. In
this case we get two accepting conversations of the PK protocol in Step 2 and hence two answers

(x̃(1)
1 , x̃

(1)
2 , x̃

(1)
3 ) and (x̃(2)

1 , x̃
(2)
2 , x̃

(2)
3 )

for the two different challenges c(1) and c(2) but with the same first message (here we use the same
notation for the protocol variables as for the PK protocol in the previous section). W.l.o.g., suppose
that c(2) > c(1). Let ∆x1 = x̃

(1)
1 − x̃

(2)
1 , ∆x2 = x̃

(1)
2 − x̃

(2)
2 , ∆x3 = x̃

(1)
3 − x̃

(2)
3 , and ∆c = c(2) − c(1).

From the verification equation of the PK protocol one can derive the following equations:

y1
∆c = g∆x1 , y2

∆c = g∆x2 , y3
∆c = g∆x3 , (27)

v2∆c = u2∆x2u2Hhk(u,e,L)∆x3 , and (28)

(
e2

h2m
)∆c = u2∆x1 . (29)
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As n is the product of two safe primes p and q, we have |∆c| < min{p, q, p′q′} and hence ∆c is
invertible modulo n′n. We know xi such that yi = gxi and therefore it follows from (27) that

∆c xi ≡ ∆xi (mod n′) for i = 1, . . . , 3 . (30)

Now, D(1λ,SK, ψ, L) 6= m means that least one of the four statements (23-26) must be true and
therefore at least one of the two statements

u2(x2+Hhk(u,e,L)x3) 6= v2 or (e/ux1)2 6= h2m (31)

holds. We consider these two cases:

Case 1. If u2(x2+Hhk(u,e,L)x3) 6= v2 we must have that u2∆c(x2+Hhk(u,e,L)x3) 6= v2∆c =
u2∆x2+Hhk(u,e,L)∆x3 (from Equation (28) and because ∆c is invertible modulo nn′) and there-
fore also

∆c(x2 +Hhk(u, e, L)x3) 6≡ ∆x2 +Hhk(u, e, L)∆x3 (mod n′n) ,

as the order of u2 divides n′n. From (30) it follows that

∆c(x2 +Hhk(u, e, L)x3) ≡ ∆x2 +Hhk(u, e, L)∆x3 (mod n′) .

Therefore ∆cx2 −∆x2 + (∆cx3 −∆x3)Hhk(u, e, L) must be a non-zero multiple of n′, which
would allow us to factor n, which is impossible.

Case 2. If u2x1 6= ( e
hm )2 we can, similarly as in case 1, conclude that u2∆cx1 6= u2∆x1 from Equa-

tion (29) and that ∆cx1 − ∆x1 is a non-zero multiple of n′, which would again allow us to
factor n, which is impossible.

Case II. It remains to consider the case when V ’s output is −1 but m = D(1λ,SK, ψ, L) holds.
Let (u, e, v) := ψ. Thus we have

v2 = u2(x2+Hhk(u,e,L)x3) and u2x1 = (
e

hm
)2 . (32)

As usual we obtain two accepting conversation of the PK protocol in Step 3 and thus two answers

(x̃(1)
1 , x̃

(1)
2 , x̃

(1)
3 , ã

(1)
1 , . . . , ã

(1)
6 , b̃

(1)
1 , . . . , b̃

(1)
4 , r̃

(1)
1 , . . . , r̃

(1)
4 , s̃

(1)
1 , . . . , s̃

(1)
4 )

and

(x̃(2)
1 , x̃

(2)
2 , x̃

(2)
3 , ã

(2)
1 , . . . , ã

(2)
4 , b̃

(2)
1 , . . . , b̃

(2)
4 , r̃

(2)
1 , . . . , r̃

(2)
4 , s̃

(2)
1 , . . . , s̃

(2)
4 )

for the two different challenges c(1) and c(2) but with the same first message (here we use the same
notation for the protocol variables as for the PK protocol in the previous section and left out an
intermediate step that deals with the ∨’s (c.f. [CDS94])). W.l.o.g., suppose that c(2) > c(1). Let

∆xi = x̃
(1)
i − x̃

(2)
i (i = 1, . . . , 3); ∆ai = ã

(1)
i − ã

(2)
i (i = 1, . . . , 4);

∆bi = b̃
(1)
i − b̃

(2)
i (i = 1, . . . , 4); ∆si = s̃

(1)
i − s̃

(2)
i (i = 1, . . . , 4);

∆ri = r̃
(1)
i − r̃

(2)
i (i = 1, . . . , 4); ∆c = c(2) − c(1) .
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From the verification equation of the PK protocol one can derive that

y1
∆c = g∆x1 , y2

∆c = g∆x2 , and y3
∆c = g∆x3 , (33)

hold and either

C∆c
1 = u2n∆r1(

1
v
)2n∆a1 , C∆c

1 = g∆a1h∆b1 , and 1 = (
1
C1

)∆x2+Hhk(u,e,L)∆x3g∆r1h∆s1 (34)

or

C∆c
2 = u2∆r2(

1
v
)2∆a2 , C∆c

2 = g∆a2h∆b2 , and 1 = (
1
C2

)∆x2+Hhk(u,e,L)∆x3g∆r2h∆s2 (35)

or

C∆c
3 = u2n∆r3(

1
e
)2n∆a3 , C∆c

3 = g∆a3h∆b3 , and 1 = (
1
C3

)∆x1g∆r3h∆s3 (36)

or

C∆c
4 = u2∆r4(

1
e
)n∆a4 , C∆c

4 = g∆a4h∆b4 , and 1 = (
1
C4

)∆x1g∆r4h∆s4 (37)

hold. We know xi such that yi = gxi and therefore it follows from (33) that

∆c xi ≡ ∆xi (mod n′) for i = 1, . . . , 3 . (38)

We next consider the implications of the cases when the equations (34), the equations (35), the
equations (36), or the equations (37) hold in conjunction with (33).

Case 1. Consider the case where Equations (33) and (34) hold. From the last two equations of (34)
we get

g∆a1(∆x2+Hhk(u,e,L)∆x3)h∆b1(∆x2+Hhk(u,e,L)∆x3) = g∆c∆r1h∆c∆s1 .

Under the assumption that factoring n is hard, and applying Theorem 2, we may assume that

∆a1(∆x2 +Hhk(u, e, L)∆x3) = ∆c∆r1 . (39)

Because n is the product of two safe primes and we have |∆c| < min{p, q, p′q′}, it follows from
C2

1 6= 1 (which is checked by the verifier in Step 3c) that C∆c
1 6= 1. From the first equation

of (34) it follows that u2n∆r1 6= v2n∆a1 . By Eq. (39) and the fact that u2n and v2n have order
dividing n′, we have

u2n∆a1(∆x2+Hhk(u,e,L)∆x3) 6= v2n∆c∆a1 ,

and hence

u2n(∆x2+Hhk(u,e,L)∆x3) 6= v2n∆c . (40)

From (40) and the first equation of (32) we have

u2n(∆x2+Hhk(u,e,L)∆x3) 6= v2n∆c = u2n∆c(x2+Hhk(u,e,L)x3) .
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Because the order of u2n divides n′ we can further conclude that

∆x2 +Hhk(u, e, L)∆x3 6≡ ∆c(x2 +Hhk(u, e, L)x3) (mod n′) .

From (38) if follows that

∆x2 +Hhk(u, e, L)∆x3 ≡ ∆c(x2 +Hhk(u, e, L)x3) (mod n′) ,

which is a contradiction to the previous equation and hence this case can not occur.

Case 2. We consider the case where Equations (33) and (35) hold. Similarly as in case 1, we can
derive that

u2(∆x2+Hhk(u,e,L)∆x3) 6= v2∆c = u2∆c(x2+Hhk(u,e,L)x3)

holds (assuming n is hard to factor). Because the order of u2 divides n′n we can further
conclude that

∆x2 +Hhk(u, e, L)∆x3 6≡ ∆c(x2 +Hhk(u, e, L)x3) (mod n′n) .

From (38) if follows that

∆x2 +Hhk(u, e, L)∆x3 ≡ ∆c(x2 +Hhk(u, e, L)x3) (mod n′) .

Therefore ∆cx2 −∆x2 + (∆cx3 −∆x3)Hhk(u, e, L) must be a non-zero multiple of n′, which
would allow us to factor n, which is a contradiction.

Case 3. Similarly as in case 1, from the Equations (33) and (36), one can derive that

u2n∆x1 6= e2n∆c (41)

holds (or we factor n with non-negligible probability). From the second equation of (32) and
hn = 1 if follows that u2nx1 = e2n and u2n∆cx1 = e2n∆c, and from (41), that

u2n∆cx1 6= u2n∆x1 and finally that ∆cx1 6≡ ∆x1 (mod n′)

as u2n has order dividing n′. The latter, however, is a contradiction to Eqn. (38) and thus
this case can not occur.

Case 4. Similarly as before, from the Equations (33) and (37) one can show that

u2∆x1 6= (
e

hm
)2∆c (42)

holds (or we factor n with non-negligible probability). From the second equation of (32) and
from (42) we get u2∆cx1 6= u2∆x1 . Similarly as in case 2, it follows that ∆cx1 − ∆x1 is a
multiple of n′ and we are again able to factor n.
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7.3 Verifiable Decryption of a Discrete Logarithm

We now describe how the protocol provided in the previous section can be modified to obtain a
protocol for verifiable decryption of a discrete logarithm. The setting and notation are as in §5.2;
in particular, we make use of the same reconstruction routine.

We need to modify the protocol from the previous section only for the cases where the ciphertext
is valid. That is, instead of proving that the ciphertext decrypts (or does not decrypt) to a given
message, the decryptor now has to prove that it decrypts (or does not decrypt) to a value m such
that (m remn) ≡ logγ δ (mod ρ). This corresponds to proving whether or not the three equations

u2(x2+Hhk(u,e,L)x3)/v2 = 1 or (e/ux1)2n = 1 or δ = γ(logh2 (e/ux1 )2 remn) (43)

hold. Note that logh2(e/ux1)2 exists if and only if (e/ux1)2n = 1. The first two statements of (43)
can be handled as in the previous section. The last one can be handled by proving knowledge of a
secret, say m, that (1) equals the encrypted message modulo n, (2) equals (or doesn’t equal) logγ δ
modulo q, and (3) lies in the interval [−(n−1)/2, (n−1)/2]. The first two properties can be proved
under the strong RSA assumption using additional parameters (n, g, h) as in the previous section.
We discuss proving the last one. Different from the interval-proof used for verifiable encryption,
this interval-proof needs to be exact, i.e., if we allowed for the same sloppiness, then the prover
could for instance add a multiple of n to m and then show that (u, e, v) does not (or does) decrypt
to logγ δ.

Boudot [Bou00] presents several protocols to prove that in integer m lies exactly in an interval
[a, b]. One protocol uses the fact that x ∈ [a, b] is equivalent to b − x ≥ 0 and x − a ≥ 0 and that
one can show that an integer is positive by proving knowledge of four values the squares of which
sum up to the considered integer (in Z), again under the strong RSA assumption using additional
parameters (n, g, h). Lagrange proved that an integer can always be represented as four squares
and Rabin and Shallit [RS86] provide an efficient algorithm for finding such squares.

We note that in our case the interval is symmetric and it therefore suffices to prove that
((n− 1)/2)2 −m2 ≥ 0 holds, which is more efficient.

With these observations one can derive the following protocol for verifiable decryption of a
discrete logarithm from the protocol presented in the previous section.

The common input of the decryptor and the verifier is (hk, n, g, y1, y2, y3), (n, g, h), (u, e, v), δ, L
and the additional input to the decryptor is (x1, x2, x3).

1. If δ 6∈ Γ or the ciphertext is malformed (e.g., if v 6= abs(v)), the verifier outputs −1, and the
protocol stops.

In case (u, e, v) is a valid ciphertext w.r.t. label L, the prover decrypts it, thereby obtains m,
and computes integers w1, . . . , w4 such that

∑4
i=1wi = (n− 1)2/4−m2 (c.f. [RS86]).

2. If (u, e, v) indeed decrypts to logγ δ under label L, i.e., if δ = γm remn, the decryptor sends 1
to the verifier, chooses t1, . . . , t5 ∈R [n/4], computes

W1 := gw1ht1 ,W2 := gw2ht2 ,W3 := gw3ht3 ,W4 := gw4ht4 , and M := gmht5 ,

and sends W1, W2, W3, W4, and M to the verifier.
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The prover and the verifier engage in the protocol

PK{(x1, x2, x3,m,w1, . . . , w4, t1, . . . , t5, s) :
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

v2 = u2x2u2Hhk(u,e,L)x3 ∧ e2 = u2x1h2m ∧
W1 = gw1ht1 ∧ W2 = gw2ht2 ∧ W3 = gw3ht3 ∧ W4 = gw4ht4 ∧

M = gmht5 ∧ g(n−1)2/4 = MmWw1
1 Ww2

2 Ww3
3 Ww4

4 hs ∧
δ = γm} ,

where s is a temporary secret (i.e., s = −t5m−
∑4

i=1witi).

3. If (u, e, v) is an invalid ciphertext w.r.t. the label L or decrypts to some message m such that
δ 6= γm remn, then the decryptor sends −1 to the verifier. They proceed as follows.

(a) The decryptor chooses a1 ∈R [n/4] a2 ∈R [n2/4], a3 ∈R [n/4], and a4 ∈R [ρ], along with
b1, . . . , b3, t1, . . . , t5 ∈R [n/4].
She computes C1 := ga1hb1 , C2 := ga2hb2 , C3 := ga3hb3 , and C4 := ga4hb4 .
She computes W1 := ht1 , W2 := ht2 , W3 := ht3 , W4 := ht4 , and M := ht5 .
She chooses C1 ∈R Gn′ , C2 ∈R Gn, C3 ∈R Gn′ , and C4 ∈R Γ.
Furthermore,

(Case 1) if u2n(x2+Hhk(u,e,L)x3) 6= v2n, she sets C1 := (ux2+Hhk(u,e,L)x3/v)2na1 ,

(Case 2) else if u2(x2+Hhk(u,e,L)x3) 6= v2, she sets C2 := (ux2+Hhk(u,e,L)x3/v)2a2 ,

(Case 3) else if (ux1/e)2 6∈ 〈h〉, she sets C3 := (ux1/e)2na3 ,

(Case 4) else δ 6= γm remn, and she sets C4 := (γm/δ)a4 ,

Wi := gwihti (i = 1, . . . , 4), and
M := gmht5 .

The decryptor sends C1, C2, C3, C4, C1, C2, C3, and C4 to the verifier.
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(b) The decryptor and the verifier carry out the protocol denoted

PK
{

(x1, x2, x3, a1, . . . , a4, b1, . . . , b4, r1, . . . , r4 s1, . . . , s5, t1, . . . , t5, w1, . . . , w4,m) :[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C1 = u2nr1(
1
v
)2na1 ∧ C1 = ga1hb1 ∧ 1 = (

1
C1

)x2(
1
C1

)Hhk(u,e,L)x3gr1hs1
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C2 = u2r2(
1
v
)a2 ∧ C2 = ga2hb2 ∧ 1 = (

1
C2

)x2(
1
C2

)Hhk(u,e,L)x3gr2hs2
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

C3 = u2nr3(
1
e
)2na3 ∧ C3 = ga3hb3 ∧ 1 = (

1
C3

)x1gr3hs3
]

∨
[
y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧

e2 = u2x1h2m ∧
W1 = gw1ht1 ∧ W2 = gw2ht2 ∧ W3 = gw3ht3 ∧ W4 = gw4ht4 ∧

M = gmht5 ∧ g(n−1)2/4 = MmWw1
1 Ww2

2 Ww3
3 Ww4

4 hs5 ∧

C4 = γr4(
1
δ
)a4 ∧ C4 = ga4hb4 ∧ 1 = (

1
C4

)mgr4hs4
]}

,

where r1, . . . , r4, s1, . . . , s4 are temporary secrets (i.e.,

r1 = a1(x2 +Hhk(u, e, L)x3), s1 = b1(x2 +Hhk(u, e, L)x3),
r2 = a2(x2 +Hhk(u, e, L)x3), s2 = b2(x2 +Hhk(u, e, L)x3),
r3 = x1a3, s3 = x1b3,

r4 = ma4, s4 = mb4,

s5 = −t5m−
4∑
i=1

witi.

(computed in Z)). (To derive the actual protocol one has to apply the techniques by
Cramer et al.[CDS94] for realizing the ∨’s.)

(c) The verifier checks that C2
1 6= 1, C2

2 6= 1, C2
3 6= 1, and C4 6= 1.

Theorem 7. Under the strong RSA assumption, the above scheme is a verifiable decryption scheme
(for discrete logarithms).

Proof. One needs to prove soundness, correctness and special honest-verifier zero-knowledge w.r.t.
an oracle f ′(δ, ψ, L,SK) that replies with 1 if δ = γm̂ where m̂ = D(SK, ψ, L) remn, or with −1
otherwise.

The following proof is very similar to the one of Theorem 6.
Correctness is by inspection.
We now show that the whole protocol is special honest-verifier computational zero-knowledge

by providing a simulator.
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First the simulator executes Step 1 of the protocol as the decryptor would, that is, if δ 6∈ Γ
or v 6= abs(v) it and stops. Otherwise, the simulator chooses random integers m,w1, . . . , w4 ∈R
[−n/2, n/2].

If f ′(δ, ψ, L, SK) = 1, it simulates step 2 as follows. It chooses t1, . . . , t5 ∈R [n/4] and computes
W1 := ht1 , W2 := ht2 , W3 := ht3 , W4 := ht4 , and M := ht5 . Then it sends the values W1, . . . ,W4,
and M to the verifier and finally invokes the simulator for the PK -protocol of step 2.

If f ′(δ, ψ, L, SK) = 1, it simulates step 3 as follows. The simulator chooses b1, b2, b3, b3 ∈R
t1, . . . , t5[n/4]. It then computes C1 := hb1 , C2 := hb2 , C3 := hb3 , C4 := hb4 , W1 := ht1 , W2 := ht2 ,
W3 := ht3 , W4 := ht4 , and M := ht5 . It chooses C1 ∈R Gn′ , C2 ∈R Gn, C3 ∈R Gn′ , and C4 ∈R Γ.
It finally invokes the simulator for the PK -protocol of step 3. This concludes the simulator.

The argument that this simulation actually works is rather similar to the one given in the proof
of Theorem 6.

In the remainder we prove soundness. Let us generate a public keys and secret keys according
to the usual algorithms, obtaining

n, g, y1, y2, y3, x1, x2, x3, n, g, h.

All of this information is available to the adversary, who produces δ, ψ, L, and is able to make the
verifier accept on these inputs with non-negligible probability. By standard rewinding techniques
we can produce two accepting conversations for either the PK protocol in Step 2 or the one in
Step 3 (for different challenges but the same first message), depending on whether δ = γm̂, where
m̂ = D(SK, ψ, L) remn, for (δ, ψ, L) provided by A∗. We consider these two cases.

Case I. First assume that δ 6= γm̂ or reject = D(SK, ψ, L) but that V ’s output is 1. Let (u, e, v) :=
ψ. We can now get two accepting conversations of the PK protocol in Step 2 and hence two answers

(x̃(1)
1 , x̃

(1)
2 , x̃

(1)
3 , m̃(1), w̃

(1)
1 , . . . , w̃

(1)
4 , t̃

(1)
1 , . . . , t̃

(1)
5 , s̃(1))

and

(x̃(2)
1 , x̃

(2)
2 , x̃

(2)
3 , m̃(2), w̃

(2)
1 , . . . , w̃

(2)
4 , t̃

(2)
1 , . . . , t̃

(2)
5 , s̃(2))

for the two different challenges c(1) and c(2) but with the same first message (here we use the same
notation for the protocol variables as for the PK protocol in the previous section). W.l.o.g., suppose
that c(2) > c(1). Let ∆x1 = x̃

(1)
1 − x̃

(2)
1 , ∆x2 = x̃

(1)
2 − x̃

(2)
2 , ∆x3 = x̃

(1)
3 − x̃

(2)
3 , ∆m = m̃(1) − m̃(2),

∆w1 = w̃
(1)
1 − w̃

(2)
1 , . . ., ∆w4 = w̃

(1)
4 − w̃

(2)
4 , ∆t1 = t̃

(1)
1 − t̃

(2)
1 , . . ., ∆t5 = t̃

(1)
5 − t̃

(2)
5 , ∆s = s̃(1) − s̃(2),

and ∆c = c(2)−c(1). From the verification equation of the PK protocol one can derive the following
equations:

y1
∆c = g∆x1 y2

∆c = g∆x2 y3
∆c = g∆x3 (44)

v2∆c = u2∆x2u2Hhk(u,e,L)∆x3 (45)

e2∆c = u2∆x1h2∆m (46)

W∆c
1 = g∆w1h∆t1 W∆c

2 = g∆w2h∆t2 W∆c
3 = g∆w3h∆t3 W∆c

4 = g∆w4h∆t4 (47)

M∆c = g∆mh∆t5 g∆c(n−1)2/4 = M∆mW∆w1
1 W∆w2

2 W∆w3
3 W∆w4

4 h∆s (48)

δ∆c = γ∆m (49)
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Consider the equations (47) and (48). Under the strong RSA assumption, and using Theorem 3,
we may assume that ∆c divides each of ∆m, ∆w1, . . ., ∆w4, ∆t1, . . ., ∆t5, and ∆s. So we compute
m̂ = ∆m/∆c, ŵ1 = ∆w1/∆c, . . ., ŵ4 = ∆w4/∆c, t̂1 = ∆t1/∆c, . . ., t̂5 = ∆t5/∆c, and ŝ = ∆s/∆c
and we know that

M = mgm̂ht̂5 W1 = w1g
ŵ1ht̂1 W2 = w2g

ŵ2ht̂2 W3 = w3g
ŵ3ht̂3 W4 = w4g

ŵ4ht̂4 δ = γm̂

(50)

holds for some m, w1, w2, w3, and w4 such that m2 = 1 and w2
i = 1. Furthermore, we can rewrite

the second equation of (48) as follows

g(n−1)2/4 = agm̂
2+

∑
ŵ2

i hm̂t̂5+
∑
ŵi t̂i+ŝ (51)

for some a such that a2 = 1. In fact, a = 1 as, first, a must lie in 〈g〉 and, second, if a 6= ±1 then
gcd(a− 1, n) splits n. Applying Theorem 2, we may assume that

(n− 1)2/4 = m̂2 + ŵ2
1 + ŵ2

2 + ŵ2
3 + ŵ2

4

and thus (n− 1)2/4− m̂2 ≥ 0 which is equivalent to

−(n− 1)/2 ≤ m̂ ≤ (n− 1)/2 . (52)

Consider Equations (44-46). As n is the product of two safe primes p and q, we have |∆c| <
min{p, q, p′q′} and hence ∆c is invertible modulo n′n. By construction we know xi such that
yi = gxi and therefore it follows from (44) that

∆c xi ≡ ∆xi (mod n′) for i = 1, . . . , 3 . (53)

Now we can either have D(SK, ψ, L) = reject or δ 6= γ(m remn) where m = D(SK, ψ, L) =
logh2(e/ux1)2, i.e., one of the three statements

u2(x2+Hhk(u,e,L)x3)/v2 6= 1 or (e/ux1)2n 6= 1 or (
e

ux1
)2 6= h2m̂ (54)

must hold (cf. (43)), where the last is equivalent to δ 6= γ(m remn) because of Equations (49) and (52)
and the fact that −(n− 1)/2 ≤ (m remn) ≤ (n− 1)/2.

We consider these three cases:

Case 1. If u2(x2+Hhk(u,e,L)x3) 6= v2 we must have that u2∆c(x2+Hhk(u,e,L)x3) 6= v2∆c =
u2∆x2+Hhk(u,e,L)∆x3 (from Equation (45) and because ∆c is invertible modulo nn′) and there-
fore also

∆c(x2 +Hhk(u, e, L)x3) 6≡ ∆x2 +Hhk(u, e, L)∆x3 (mod n′n) ,

as the order of u2 divides n′n. From (53) it follows that

∆c(x2 +Hhk(u, e, L)x3) ≡ ∆x2 +Hhk(u, e, L)∆x3 (mod n′) .

Therefore ∆cx2 −∆x2 + (∆cx3 −∆x3)Hhk(u, e, L) must be a non-zero multiple of n′ and we
can factor n, a contradiction.
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Case 2. If u2nx1 6= e2n we have that u2n∆cx1 6= e2n∆c. Because of (46) and hn = 1, we get

u2n∆cx1 6= u2n∆x1 and thus ∆cx1 6≡ ∆x1 (mod n′) ,

because u2n has order dividing n′. The latter, however, is a contradiction to Eqn. (53) and
thus this case can not occur.

Case 3. The inequality ( e
ux1 )2 6= h2m̂ is equivalent to ( e

hm̂ )2 6= u2x1 . Recalling that m̂∆c = ∆m we
can rewrite (46) as(

e∆c

h∆m

)2

=
( e

hm̂

)2∆c
= u2∆x1 and conclude that u2∆cx1 6= u2∆x1 .

Similarly to case 1, it follows that ∆cx1 −∆x1 is a multiple of n′ and we are again able to
factor n, a contradiction.

Case II. It remains to consider the case when V ’s output is −1 but δ = γ(D(SK,ψ,L) remn) holds.
Let (u, e, v) := ψ. Now all the three equations

u2(x2+Hhk(u,e,L)x3)/v2 = 1 (e/ux1)2n = 1 δ = γ(logh2 (e/ux1 )2 remn) (55)

must hold. As usual we obtain two accepting conversation of the PK protocol in Step 3 and thus
two answers

(x̃(1)
1 , x̃

(1)
2 , x̃

(1)
3 , ã

(1)
1 , . . . , ã

(1)
4 , b̃

(1)
1 , . . . , b̃

(1)
4 , r̃

(1)
1 , . . . , r̃

(1)
4 , s̃

(1)
1 , . . . , s̃

(1)
5 , t̃

(1)
1 , . . . , t̃

(1)
5 , w̃

(1)
1 , . . . , w̃

(1)
4 , m̃

(1)
1 )

and

(x̃(2)
1 , x̃

(2)
2 , x̃

(2)
3 , ã

(2)
1 , . . . , ã

(2)
4 , b̃

(2)
1 , . . . , b̃

(2)
4 , r̃

(2)
1 , . . . , r̃

(2)
4 , s̃

(2)
1 , . . . , s̃

(2)
5 , t̃

(2)
1 , . . . , t̃

(2)
5 , w̃

(2)
1 , . . . , w̃

(2)
4 , m̃

(2)
1 )

for the two different challenges c(1) and c(2) but with the same first message (here we use the same
notation for the protocol variables as for the PK protocol in the previous section and left out an
intermediate step that deals with the ∨’s (c.f. [CDS94])). W.l.o.g., suppose that c(2) > c(1). Let

∆xi = x̃
(1)
i − x̃

(2)
i (i = 1, . . . , 3); ∆ai = ã

(1)
i − ã

(2)
i (i = 1, . . . , 4);

∆bi = b̃
(1)
i − b̃

(2)
i (i = 1, . . . , 4); ∆ri = r̃

(1)
i − r̃

(2)
i (i = 1, . . . , 4);

∆si = s̃
(1)
i − s̃

(2)
i (i = 1, . . . , 5); ∆ti = t̃

(1)
i − t̃

(2)
i (i = 1, . . . , 5);

∆wi = w̃
(1)
i − w̃

(2)
i (i = 1, . . . , 4); ∆m = m(1) − c(2);

∆c = c(2) − c(1) .

From the verification equation of the PK protocol one can derive that

y1
∆c = g∆x1 , y2

∆c = g∆x2 , and y3
∆c = g∆x3 , (56)

hold and either

C∆c
1 = u2n∆r1(

1
v
)2n∆a1 , C∆c

1 = g∆a1h∆b1 , and 1 = (
1
C1

)∆x2+Hhk(u,e,L)∆x3g∆r1h∆s1 (57)
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or

C∆c
2 = u2∆r2(

1
v
)2∆a2 , C∆c

2 = g∆a2h∆b2 , and 1 = (
1
C2

)∆x2+Hhk(u,e,L)∆x3g∆r2h∆s2 (58)

or

C∆c
3 = u2n∆r3(

1
e
)2n∆a3 , C∆c

3 = g∆a3h∆b3 , and 1 = (
1
C3

)∆x1g∆r3h∆s3 (59)

or

C∆c
4 = γ∆r4(

1
δ
)∆a4 , C∆c

4 = g∆a4h∆b4 , 1 = (
1
C4

)∆mg∆r4h∆s4 (60)

e2∆c = u2∆x1h2∆m , M∆c = g∆mh∆t5 , g∆c(n−1)2/4 = M∆mW∆w1
1 W∆w2

2 W∆w3
3 W∆w4

4 h∆s5

(61)

W∆c
1 = g∆w1h∆t1 , W∆c

2 = g∆w2h∆t2 , W∆c
3 = g∆w3h∆t3 , and W∆c

4 = g∆w4h∆t4 .
(62)

hold. We know xi such that yi = gxi and therefore it follows from (33) that

∆c xi ≡ ∆xi (mod n′) for i = 1, . . . , 3 . (63)

We next consider the implications of the cases when the equations (57), the equations (58), the
equations (59), or the equations (60-62) hold in conjunction with (56). The first three cases appear
also in the proof of Theorem 6, while the last one is different:

Case 4. Similarly as in Case I above, from the Equations (61) and (62) we can derive that

e2∆c = u2∆x1h2∆cm̂ and − (n− 1)/2 ≤ m̂ ≤ (n− 1)/2 (64)

where m̂ = ∆m/∆c. Using Equations (63) and the fact that ∆c is invertible modulo nn′, we
get

e2 = u2x1h2m̂ ,

and, because of the second equation of (64),

m̂ = (logh2 u2x1/e2 remn) (65)

Similarly as we did in Case II in the proof of Theorem 6, one can derive from the last two
equations of (60) that

∆r4 = ∆a4m̂ (66)

holds (using the strong RSA assumption for n). Now using (66) in the first equation of (60)

C∆c
4 = γ∆a4m̂(

1
δ
)∆a4 and C4 = (

γm̂

δ
)â4 , (67)

where â4 := ∆a4/∆c (mod ρ). Because C4 6= 1 we must have that δ 6= γm̂ and because
of (65) that

δ 6= γ(logh2 u2x1/e2 remn) ,

which is a contradiction to the third equation of (55) and hence this case can not occur.
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